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planning problem, with proven features as long as the tracking is good
enough, and one tracking problem.

The tracking problem is solved for a class of nonholonomic robots
of the unicycle type, and we illustrate the soundness of our method by
applying it to rigid body constrained motions.
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Randomized Path Planning for Linkages With Closed
Kinematic Chains

Jeffery H. Yakey, Steven M. LaValle, and Lydia E. Kavraki

Abstract—We extend randomized path planning algorithms to the case
of articulated robots that have closed kinematic chains. This is an impor-
tant class of problems, which includes applications such as manipulation
planning using multiple open-chain manipulators that cooperatively grasp
an object and planning for reconfigurable robots in which links might be
arranged in a loop to ease manipulation or locomotion. Applications also
exist in areas beyond robotics, including computer graphics, computational
chemistry, and virtual prototyping. Such applications typically involve high
degrees of freedom and a parameterization of the configurations that sat-
isfy closure constraints is usually not available. We show how to implement
key primitive operations of randomized path planners for general closed
kinematics chains. These primitives include the generation of random free
configurations and the generation of local paths. To demonstrate the fea-
sibility of our primitives for general chains, we show their application to
recently developed randomized planners and present computed results for
high-dimensional problems.

Index Terms—Closed linkages, kinematic chains, randomized path plan-
ning.

I. INTRODUCTION

This paper addresses the problem of path planning for general
linkages that have closed kinematic chains with redundant degrees of
freedom (DOF), in an environment that contains obstacles, as shown
in Fig. 1. In general, the constraints imposed by a closed linkage form
an algebraic variety and in principle complete planners such as [6] and
[3] could be used; however, the high computational complexity and
implementation difficulty of all of these algorithms for problems with
high degree of freedom makes them too prohibitive for practical use.
This motivates our approach in this paper, which extends randomized
planning techniques that were developed for open-chain systems [13],
[19] to general closed-chain systems.

Planning for linkages with closed kinematic chains has applications
both in and beyond robotics. Parallel manipulators involve closed kine-
matic constraints [22]. In manipulation planning, when multiple robots
grasp a single object, they form a closed loop containing the object as
a link of the chain [1], [15]. Many of the existing methods for manipu-
lation planning require inverse kinematics solutions for the robots [15]
which can be a limitation. Regrasping is also an important issue as one
or more of the manipulators often attain a singular configuration [23].
The ability to plan for linkages with closed kinematics chains elim-
inates the need of inverse kinematics solutions and could reduce the
number of regrasps needed during manipulation tasks, as the linkage
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Fig. 1. We investigate path planning for linkages that have closed kinematic
chains and must avoid static obstacles.

will be considered as a whole rather than as multiple, independent ma-
nipulators. A planner for closed linkages can also be applied torecon-
figurablerobots. Typically, this type of robot is composed of multiple,
independent robots that can connect and disconnect from one another
[16], [24], [27]. Closed linkages often occur during locomotion or re-
configuration of such complex robots [16], [27].

Many of the concepts used in path planning for robotics can also be
applied to computer graphical animation [5]. Human-like characters
can naturally be modeled as linkages and planning techniques are well
suited to animate those characters [28]. However, a difficulty arises
when these characters manipulate an object with both arms (e.g., pick
up a box, two characters grasp each other, etc.), because this forms a
closed linkage. There already exist algorithms capable of planning for
this problem [14], but as in coordinated manipulation planning, a de-
coupling of the planning for the animated character and the object is
done. Another application that could benefit from a planner for closed
linkages lies in virtual prototyping [7]. For designs that include closed
linkages, a planner could automate testing and potentially avoid con-
structing physical prototypes. Applications of path planning for link-
ages with closed chains also exist in computational chemistry. For ex-
ample, a fundamental problem in drug design is to find low-energy con-
figurations of molecules that satisfy rigidity constraints similar to those
obtained for three-dimensional (3-D) linkages [18].

In this paper, we extend randomized path planners to deal with closed
kinematic chains by showing how two important primitives of these
planners can be implemented for closed kinematic chains. These prim-
itives are the generation of random configurations and the generation of
local paths. We adopt a very general definition for the kinematic chain.
We also assume that inverse kinematics solutions are not available. Our
goal is to demonstrate the feasibility of extending randomized planners
in the general case. It is clear that by using robot-specific characteris-
tics or inverse kinematics a more efficient solution can be achieved.
We implement our developed primitives in the context of the prob-
abilistic roadmap planner (PRM) [13] and rapidly-exploring random
trees (RRTs) [19].

To the best of our knowledge, there are two published papers that
extend randomized planners to handle closed kinematic chains apart
from the earlier work in [15]. One is a previous paper of ours [20],
which presents a subset of the work in our current paper. The other is a
paper by Han and Amato [10]. In that paper, the authors show how to
develop a PRM-based planner for closed kinematic chains. They break
the closed chains into a set of open chains, apply standard PRM random
sampling techniques and forward kinematics to one subset of the sub-
chains, and then use inverse kinematics on the remaining subchains to
enforce the closure constraints. While this approach has been shown to
perform well with a robot consisting of a single chain of varied length
[10], experiments are not reported for the performance of the approach

for general chain systems. Undoubtedly, both [10] and our work ad-
vance the state-of-the-art in using randomized planners for planning
for mechanisms with closed loops, and we hope that further research
will result in efficient randomized planners for closed kinematics sys-
tems.

II. PROBLEM FORMULATION

In this section, a formal definition of a closed linkage will be pre-
sented and the path planning problem is formulated in the context of
these linkages.

A. Definition of a Linkage

Our problem will be defined in a bounded 2-D or 3-D world,W �
N , such thatN = 2 or N = 3. A link, Li, is a rigid body in

the world, which represents a closed, bounded point set. LetL =

fL1; L2; . . . ; Ln g denote a finite collection ofnl links. A joint Jk
contains the following information:

1) a subset of linksfLi; Lj ; . . . ; Lmg � L connected byJk;
2) the point of attachment for eachLi;
3) the type of joint (revolute, spherical, etc.);
4) the range of allowable motions.

LetJ be a collection ofnj joints, each of which connects various links
in L. We then defineM = (L;J ) to be alinkage.1 It will sometimes
be convenient to considerM as a graph in which the joints correspond
to vertices and the links correspond to edges. Therefore, letGM denote
the underlying graph ofM. The special case of unary links (a link
connected to a single joint) inM needs to be addressed, since the edge
corresponding to these links will only connect one vertex. An artificial
vertex needs to be created inGM for each unary link and it will be
connected only to the edge corresponding to the unary link. According
to the connectivity ofGM , we will then group linkages into classes.2

If GM is a tree, then we will consider this type of linkage to beopen.
A special case of an open linkage is anopen chain linkage, in which
all the vertices ofGM have degree less than three. In the case where
GM is cyclic and all vertices have degree greater than one, we will call
this aclosed linkage. We define aclosed chain linkageto be a closed
linkage in which all the vertices have degree exactly two. The last class
is thecompound linkage, in whichGM is cyclic with at least one vertex
having degree one.

B. Kinematic Closure Constraints

The kinematics ofM are expressed using standard parameteriza-
tions for chains [9], [12]. Theconfigurationof M is a vector,q, of
real-valued parameters that uniquely determine the position and ori-
entation of all links. The dimension ofq is the number of degrees of
freedom ofM.

In this paper, we are primarily concerned with the case in whichM is
a closed or compound linkage, implying thatGM contains cycles. For
this case, there will generally exist configurations that do not satisfy
closure constraintsof the formf(q) = 0. These constraints can be
defined by breaking each cycle inGM at a vertexv and writing the
kinematic equation that forces the pose of the corresponding joint to
be the same, regardless of which of the two paths were chosen tov.
Let F represent the setff1(q) = 0; f2(q) = 0; . . . ; fm(q) = 0g of
m closure constraints, whose formulation will be formally defined in

1We use the more general definition of linkage that includes open and closed
kinematic chains [9], rather than a linkage that contains only closed chains [11].

2Note that these classes deviate from the standard terminology used in mech-
anism design [11]. Our intent was for achain to imply linearity of the linkage
and forclosedto mean that the linkage contains no unary links.
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Section III-A. In general, ifn is the dimension ofC, thenm < n. Let
Ccons � C be defined as

Ccons = fq 2 C j 8fi 2 F ; fi(q) = 0g (1)

which denotes the set of all configurations that satisfy the constraints
in F .

A collision is defined forM(q) if any of the links ofM(q) collides
with any of the workspace obstacles or the other links inL. Consecu-
tive links usually do not give rise to collisions. LetW include a set of
obstaclesB = fB1; . . . ;Bn g, which are each a closed subset ofW .
Using standard terminology, letCfree denote the set of all configura-
tions such thatM(q) is not in collision. Formally, this is

Cfree =fq 2 Cj(M(q) \ B = ;)

^ (8Li; Lj 2 M(q); Li \ Lj = ;)g (2)

whereLi, Lj are nonconsecutive links.
In addition to the usual complications of path planning for articu-

lated linkages having many degrees of freedom, we are faced with the
additional challenge of keeping the configuration inCcons. Let Csat =
Ccons \ Cfree define the set of configurations satisfying both closure
and collision constraints.

AlthoughC is typically a manifold,Ccons will be more complicated.
Each of the holonomic constraints inF is a smooth function with a
nonzero derivative. Using stereographic projection, these constraints
can be reformulated as polynomial equations and together these con-
straints form a system of equations that characterize the configurations
satisfying the closure constraints. Areal algebraic varietycan be de-
fined by the polynomial equationsf1(q) = � � � = fm(q) = 0. The
surfaces defined by these varieties are not smooth in general and can
contain singular points. Therefore, a variety is not necessarily a mani-
fold, although a real algebraic variety can be split into a finite number
of manifolds [26]. Because of the nature of these closure constraints,
we will assume that we have noa priori knowledge of a parameteriza-
tion for the variety.

Our problem reduces to path planning in a space with lower dimen-
sion thanC, due to the fact that the equality constraints inF reduce
the dimensionality ofC. Since we have no efficient way to reduce the
number of parameters needed to specify the configuration for a closed
linkage, we allow a tolerance forCcons, which means that the con-
straints will be satisfied to within some numerical precision. This tol-
erance will be the subject of Section III-A.

C. Finding a Path

Our problem reduces to path planning inCsat, which has lower di-
mension thanC. Initially we are givenqinit 2 Csat andqgoal 2 Csat,
the initial configurationandgoal configuration, respectively. The task
is to find a continuous path� : [0; 1] ! Csat such that� (0) = qinit
and� (1) = qgoal. For a path to exist betweenqinit andqgoal, it will
be necessary that they are both contained within the same connected
component ofCsat.

The existence of closed kinematic chains greatly increases the dif-
ficulty of path planning because the set of configurations that satisfy
closure constraints is usually expressed in terms of implicit equations.
In the traditional path planning problem, a parameterization of the con-
figuration space is available. If closure constraints exist, a parameteri-
zation is usually not available (except for some specific mechanisms)
and the set of valid configurations is generally not even a manifold.3

3Even though it can be expressed as a stratification of manifolds [6], param-
eterizations of the strata are still unknown.

Fig. 2. An example of breaking cycles in a linkage.

D. A Specific 2-D Model

The following model will be used to facilitate later concepts and
for our implementation: 1)L is a collection of line segments in a 2-D
world; 2) joints are revolute and attach links at their endpoints; 3) there
are joint limits (e.g., joints are not allowed to rotate into the range 0��,
in which� is a parameter for the joint limit); 4) one of the joints attaches
a link to the origin (0,0) in the world,W ; 5) the obstacle region is
polygonal.

III. GENERATING RANDOM SAMPLES

One of the most basic operations in many randomized planners is the
construction of random configurations. For example, the basic PRM
approach [13] uses randomly generated configurations that lie inCfree.
These can be found by simply generating configurations inC and re-
jecting those in collision. The problem is considerably more compli-
cated for closed kinematic chains because all samples must lie inCcons,
satisfying closure constraints. This section provides a general approach
to generating random samples inCsat. The use of kinematic error is an
integral component of our approach.

A. Kinematic Error

To handle the closure constraints inF , we define a new linkage,
M0 = (L0;J 0), which is obtained by breaking cycles in the underlying
graphGM of M. Let the set of links be the same,L0 = L. LetJ 0 be
a superset ofJ and containnj +m joints, where a new joint is added
for each of them cycles inGM . For each cycle inGM , the joint where
the break occurs can be selected arbitrarily and will be denoted byJk.
There will be two links from the cycle inGM that are attached byJk.
For one of these links, disconnect it fromJk and form a new jointJ 0

k

on the link whereJk was formerly attached. If this insertion of joints
is performed for each cycle ofGM , the result will be a linkageM0

which has no cycles (GM is a tree). An example of “breaking” the
loops in a linkage is shown in Fig. 2. InM0, the configuration of any
link can be determined by applying the forward kinematic equations to
the sequence of links on the unique path toL0.

Neglecting self-collision, note thatM 0 can achieve any configura-
tion in C. If Jk andJ 0

k have the same position inW , then a closure
constraint fromM is satisfied. If this is true for all joints inJ 0 n J ,
then the configuration lies inCcons. The closure constraintfi(q) can
be written by subtracting the kinematic expression forJk(q) from the
expression forJ 0

k using the equations from Section II and will be done
as follows. LetB � f1; . . . ; njg be the indices of the set of joints that
were broken inM to formM0. A kinematic error function can be de-
fined as

e(q) =
k2B

kJk(q)� J
0

k(q)k
2
: (3)

Alternatively, the maximum (or anyLp norm) can be used to combine
the error from each broken loop. This error function allows us to rede-
fine Ccons as follows:

Ccons = fq 2 C j e(q) = 0g:
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Fig. 3. (a) The curves depictC and configurations are chosen at random
in C. (b) Randomized error minimization is performed on the samples to force
as many as possible ontoC .

Fig. 4. An algorithm that iteratively attempts to reduce the kinematic error of
a linkage.

Since the equality constraints that define kinematic closure are im-
plicit, we allow a specified real-valued tolerance� > 0 to determine
when the closure constraints are satisfied. This enables incremental
linear motions to be made along theCcons and gives us new definitions
for Ccons andCsat that take� into consideration:

~Ccons =fq 2 C j e(q) � �g;

~Csat =Ccons \ Cfree:

By using the� tolerance, we allow some freedom for the randomized
algorithms as they travel on the constraint surface.

Without the tolerance, we would need to use more costly algebraic
techniques to incorporate the closure constraints into our planner,
which would decrease the number of allowable degrees of freedom
for a linkage.

B. Gradient Descent

Fig. 3 illustrates the problem of generating vertices inCsat. A random
sample inC can easily be generated (of course, its distribution depends
on the parameterization ofC), but is not very likely to be in~Csat. The
algorithm in Fig. 4 gives pseudocode for a randomized descent tech-
nique that iteratively attempts to reduce the error function,e(q) from
Section III-A. The approach we use is to break the kinematic loops
and minimize the sum of squares the Euclidean distances of each joint
that is not where it should be to satisfy kinematic closure. An alterna-
tive would have been to define each of the closure constraintsfi(q) in
polynomial form. The algebraic distance could then be minimized, or
an approximation to the Euclidean distance inC may easily be mini-
mized [25].

The algorithm GENERATE_RANDOM_SAMPLE requires three
constants:�, which is the numerical tolerance on the error function,
I , which is the maximum number of search steps andJ which is
the maximum number of consecutive failures to close the kinematic
chains. The function RANDOM_NHBR takes in a configurationq as
a parameter and produces a new random configurationq0 in Cfree. The
distance between the new configurationq0 andq will be within a fixed
amountdmax, which will generally be very small. RANDOM_NHBR
may have to guess many nearby configurations to produce one that is
collision-free.e(q) measures the kinematic error of configurationq
as this is specified in (3). Rather than compute a complicate gradient
of e(q), any random configurationq0 in which e(q0) < e(q) is
kept. This was observed in [2] to be much faster than computing
an analytical gradient for high-degree-of-freedom problems. If the
algorithm becomes trapped in a local minimum and returns FAILURE,
then the sample is simply discarded. This has no serious effect on
the overall approach, except that some computation time is wasted.
Other approaches, such as the Levenberg-Marquardt [21] nonlinear
optimization algorithm could be used instead of randomized descent,
but one must be careful not to introduce an unwanted deterministic
bias on the solutions.

C. A Computed Example

We performed the following experiment to demonstrate that
the method presented above can generate a variety of samples for
closed-kinematics chains. We placed obstacles in a 2-D world so
that there would be many distinct connected components inCsat
(see Fig. 5). We then generated a PRM roadmap for this world and
observed the various connected components to determine whether
they were all represented. In Fig. 5, it can be seen that many of the
generated nodes wrap around various obstacles and have different
orientations. Each of these configurations lies in a distinct connected
component of~Csat, which means that no path exists between these
configurations. This experiment illustrates the ability of random
sampling to simultaneously explore all components of a space, which
is advantageous for PRM-type multiple-query planners.

IV. GENERATING LOCAL MOTIONS

Nearly all existing randomized path planners require the genera-
tion of local motions inCfree. To extend these planners, operations are
needed that generate local motions inCcons or Csat. Given a configu-
rationq 2 Csat, the task is to generate nearby configurations that also
lie in Csat and are reachable fromq by a local motion.

A. Random Steps in the Tangent Space

Suppose that a configurationq 2 Csat is given. We will use random
sampling to generate incremental motions. It is preferable to generate
samples that locally follow the tangent space of the constraints, rather
than choosing a random direction. Thetangent spaceis the set of tan-
gent vectors for someq 2 Ccons. Using a tolerance�, each of the tan-
gent vectors gives us a direction fromq that is likely to remain in~Csat,
which we can exploit when we wish to move locally. By sampling in
the tangent space when searching for configurations within a neighbor-
hood ofq, we will be more likely to generate a new configuration that
satisfies all closure constraints. The differential configuration vectordq

lies in the tangent space of a constraintfi(q) = 0 if

@fi(q)

@q1
dq1 +

@fi(q)

@q2
dq2 + � � �+

@fi(q)

@qn
dqn = 0: (4)
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Fig. 5. All ten components were found in a 2-D world that contains obstacles.

This leads to the following homogeneous system for all of them

closure constraints:

@f1(q)

@q1

@f1(q)

@q2
� � �

@f1(q)

@qn
@f2(q)

@q1

@f2(q)

@q2
� � �

@f2(q)

@qn
...

...
...

@fm(q)

@q1

@fm(q)

@q2
� � �

@fm(q)

@qn

dq1

dq2
...

dqn

= 0: (5)

Recall thatm < n. If the rank of the matrix isk � m, thenn � k

configuration displacements can be chosen independently and the re-
mainingk parameters must satisfy (5). We use singular value decom-
position (SVD), to compute an orthonormal basis for the tangent space.
This enables our algorithm to follow the tangent space and generate the
n�m random scalar displacements needed for the linear combination.
This technique increases the likelihood that local motions will remain
within tolerances for larger step sizes, thus improving the efficiency of
our algorithms.

To use this technique, it is critical to efficiently compute the partial
derivatives for each of our constraints. Each of these closure constraints
is formulated by finding the algebraic equations that forceJk andJ 0

k

at each break to have the same position in the world.Jk andJ 0

k can

be considered as unary joints, or in other words, there is only one link
attached to each of them.Lk andL0

k will denote these links forJk and
J 0

k, respectively. Note thatLk andL0

k will each have a unique chain
of links to the root linkL0 since the linkage is acyclic. The partial
derivatives of these open chains are efficiently computed forW � <2.
We use recursive formulas to compute thex andy positions for the
origin of each link inW

Xn = cos(qn)Xn�1 � sin(qn)Yn�1 + `n�1 (6)

whereX0 = x and

Yn = sin(qn)Xn�1 + cos(qn)Yn�1 (7)

in whichY0 = y. In (6) and (7),n represents the index of the link in
each open chain andqn represents the angle between successive links.
So,L0 will have index 0, etc. Once again,`n is the length of a link and
the (x; y) values are the coordinates of a link with respect to its coor-
dinate frame. These formulas yield an algebraic representation of the
kinematics for each open chain of links, but the partial derivatives with
respect to each parameterqi 2 q need to be computed. For each of the
above formulas, there are two cases to be considered when taking the
partial derivatives: taking the derivative with respect to the parameter
for link n, or for one of the otheri < n links:

@Xn

@qi
=

cos (qn)
@X

@q
� sin (qn)

@Y

@q
i < n

� sin (qn)Xn�1 � cos (qn)Yn�1 i = n
(8)

@Yn

@qi
=

sin (qn)
@X

@q
� cos (qn)

@Y

@q
i < n

cos (qn)Xn�1 � sin (qn)Yn�1 i = n
: (9)

By using the recursive linkage of these equations to our advantage,
memorized dynamic programming [8] can be used to efficiently eval-
uate these expressions for given configurations. The partial derivatives
are computed iteratively starting fromn = 0 and each value is stored in
a table for reuse in later iterations. The following two equations avoid
computing values for (6) and (7):

Xn =
@Yn

@qn
+ `n�1; (10)

Yn =�
@Xn

@qn
: (11)

B. Connecting Nearby Configurations

Some randomized path planners, such as the PRM, require the gen-
eration of paths that connects nearby configurations. This can be ac-
complished by chaining together a sequence of local steps using the
method just presented. Letq andq0 be two configurations inCsat that
we wish to connect (if possible).

To describe what is meant by “nearby,” a distance metric will be de-
fined. For the experiments in Section V we use a Euclidean metric on
the configuration space (appropriately adjusted for the topology). An
alternative is to compute the sum of squares of the Euclidean displace-
ments for all of the joints inJ [13].

The algorithm in Fig. 6 attempts to reduce�(q; q0), the distance from
q toq0, by a randomized gradient descent that simultaneously maintains
the kinematic error to within� and reduces�, but is free to travel due
to the allowed tolerances on the closure constraints.

The overall structure of the CONNECT_CONFIGURATIONS algo-
rithm is similar to GENERATE_RANDOM_SAMPLE. An additional
constantK is used to terminate the search afterK consecutive failures
to reduce�, even though kinematic closure is maintained. Also, the
constant�0 is introduced to stop the algorithm when the path fromq is
sufficiently close toq0. In some cases, it might be preferable to switch
the order of Lines 5 and 7, depending on whether we want to prioritize
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Fig. 6. An algorithm that iteratively attempts to move a system from one vertex
to another while keepingq in ~C .

the minimization of distance over the satisfaction of the closure con-
straint. The success of the algorithm is based on the assumption that the
selected vertices are close enough to ensure local minima and collision
constraints are not likely to prevent connection.

One drawback of creating paths using randomized gradient descent
is that the path needs to be stored for every edge we add to the roadmap.
The reason is that there is no longer a guarantee, due to the random-
ization, that a path can be regenerated between these vertices at a later
time. Another reason is that the gradient descent is computationally
expensive to perform and the computation required during the query
phase should be minimized. However, once a path has been generated,
several path optimization algorithms from Section V can be used to re-
duce the length of the path. As a result, the amount of space needed to
store the paths in the roadmap is reduced, along with the added benefit
of the higher quality paths.

C. Experiments

We again peformed experiments to demonstrate the feasibility and
advantages of random sampling versus tangent space sampling when
generating a random neighbor of a configuration. We generated 5000
random configurations satisfying the closure constraints and for each of
these configurations a random neighbor was computed using both the
random and tangent space sampling methods. The number of random
neighbors satisfying the closure constraints was recorded, as well as
their average distance from the original random configuration. This ex-
periment was performed repeatedly, changing the parameters of the two
methods to vary the average distance traveled between the random con-
figuration and its random neighbors. The chart in Fig. 7 compares the
two sampling methods for an 8-link closed chain linkage and Fig. 8 is a
comparison for a 7-link closed linkage that has two loops (the linkage
is shown in Fig. 9).

It is readily seen that for both linkages the tangent space sampling
will outperform random sampling in both criteria. Tangent space sam-
pling is more likely to produce a new configuration satisfying the clo-
sure constraints, as well as generating random neighbors along a greater
distance. Both of these can improve the overall computation time be-
cause more successful random neighbor sampling leads to less wasted
computation and increasing the distance traveled per step speeds con-
nection of two configurations. Computing the tangent space samples is
more expensive to perform, though. The average time needed to gen-
erate a neighbor using random sampling took 6.94�s. while tangent
space sampling took 1.518 ms. Even though the tangent space sampling
is more expensive to perform, the extra distance it allows the random
neighbors to travel makes up for this added expense. Another factor to
be considered is the time spent performing collision detection, which
usually dominates the time needed to compute the random neighbor
using either random or tangent space sampling.

Fig. 7. Comparison between random and tangent space sampling for random
neighbor generation of an 8-link closed chain linkage.

Fig. 8. Comparison between random and tangent space sampling for random
neighbor generation of a 7-link, 2-loop closed linkage.

Fig. 9. Snapshots along the path of a closed linkage with two loops.

V. PATH PLANNING EXPERIMENTS

In this section, we extend a PRM-based planner and an RRT-based
planner by applying the methods introduced in Sections III–IV. Two
notes are in order. First, collision detection was performed naively by
testing all pairs of line segments. Second, we optimize computed paths
given by the methods in Section IV as follows. We repeatedly iterate
over the path, analyzing every triplevi, vi+1 andvi+2. We compute
the distanced = �(vi; vi+2) and determine whetherd < dmax. In
this case, we can deletevi+1 without violating the maximum distance
between two consecutive configurations in a path. Ifd � dmax, then we
attempt to incrementally movevi+1 closer to the straight line between
vi andvi+2, as far as possible before violating the maximum kinematic
error allowance.

A. PRM Results

The implemented version of PRM is a modification of the planner
presented in [13]. A large number of configurations are distributed uni-
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Fig. 10. Snapshots along the path of a manipulator example.

Fig. 11. Two manipulators grasping and moving an object.

formly at random in the configuration space and those that are colli-
sion-free are retained as nodes of a roadmap. A local planner is then
used to find paths between each pair of nodes that are sufficiently
close together. If the planner succeeds in finding a path between two
nodes, they are connected by an edge in the roadmap. In the query
phase, the user specified start and goal configurations are connected
to the roadmap by the local planner. Then the roadmap is searched for
a shortest path between the given points.

We use GENERATE_RANDOM_SAMPLE to generate configura-
tions that lie inCsat. These serve as the vertices of the roadmap. The
edges of the roadmap are generated using CONNECT_CONFIGURA-
TIONS.

We now present three examples of linkages for which we have com-
puted roadmaps. The first linkage is shown in Fig. 9 and is composed
of seven links configured into two loops. A path was generated using
the roadmap and four intermediate configurations in the path have been
displayed. This linkage has three DOF: each of the loops in the linkage
has a single DOF and the base joint adds the third DOF. The next ex-
ample considers a manipulator attached to a closed linkage and is pic-
tured in Fig. 10. This linkage has 6 degrees of freedom: 5 from each
link in the loop and one for the manipulator (the grippers are not able to
move). The single closure constraint then reduces the total DOF to 4.
Our final example in Fig. 11 simulates two planar serial manipulators
cooperatively grasping an object. This example has 8-DOF, because
the two manipulators have 3 and 4 links plus the single DOF added by
the manipulated object. Once again, the closure constraint reduces the
total degrees of freedom to 6 for the linkage.

Fig. 12. Two manipulators grasping a cross-shaped object.

Fig. 13. A snake-like compound linkage example.

We did a straightforward implementation of the primitives de-
scribed in this paper and focused in displaying the feasibility of our
approach without worrying about performance. Indeed, all of the
considered problems were solved (snapshots along computed paths
are shown in Figs. 9–11, but computing general PRM roadmaps
required several hours of computation time, resulting in roadmaps
of several thousand nodes. This extensive computation time is due
to the repeated execution of the GENERATE_RANDOM_SAMPLE
and CONNECT_CONFIGURATIONS algorithms, which generally
are very expensive. Note that the implemented version of PRM tries
to generate a roadmap that captures the components of the free con-
figuration space. The roadmap is then stored for answering multiple
queries. After the roadmap has been precomputed, path queries can be
run very quickly: once the initial and goal configurations have been
connected to the roadmap, a simple graph search is all that is required
to compute the remainder of the path.

B. RRT Results

The RRT-based planner is a modification of a planner presented in
[19]. An RRT is a tree that is grown incrementally. Initially, there is a
single vertex,qinit. In each iteration, a vertex is added to the tree by
picking a random configuration and then extending the vertex that is
closest to the random sample [17], [19]. In the adaptation described
here, the RRT is biased towardqgoal by selectingqgoal as a “random”
sample a small percentage of the time.

We have computed several examples of paths for closed linkages
using the RRT approach. Each of these examples were computed by
selecting an initial configuration and then the RRT was allowed to
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Fig. 14. An 11-link compound linkage example.

expand until 8000 nodes were added to the tree. The first example,
shown in Fig. 12, is another coordinated manipulation task for two
serial manipulators grasping an object in the shape of a cross. This
example has 9-DOF, but with closure constraints the number of degrees
of freedom is reduced to 7. The time needed to generate this example
was 1271.18 s.

The second example is of a snake-like compound linkage, shown
in Fig. 13, where the “head” of the snake needs to compress so that
it may fit through an obstacle. This linkage has 9 DOF, but again has
a total of 7 DOF when closure constraints are considered. Altogether,
this example required 468.7 s to compute.

The last RRT example is an 11-link linkage, shown in Fig. 14 with
9-DOF once the closure constraints have been taken into account. The
computation of this example took 888.22 s.

VI. CONCLUSION

We presented extensions of successful randomized planners to the
case of linkages that have closed kinematic chains. Closure constraints
are common in many applications such as robotics, computational
chemistry, virtual prototyping and computer graphics. The difficulty
is that path planning must be performed in a complicated subset,Csat,
of the configuration space. Our current experiments demonstrate the
feasibility of our approach. We expect that substantial performance
improvement can be obtained by taking the following steps: 1)
using the motion primitives from this paper in recent, more-efficient
planning algorithms, such as the LazyPRM [4] or RRTConCon [19];
2) precomputing roadmaps while ignoring obstacles, as suggested
in [20] and applied in [10]; 3) employing efficient nearest-neighbor
algorithms and collision detection algorithms. We believe that a
running-time improvement of a couple of orders of magnitude is
possible; however, experimental support for this remains as a topic of
future research.
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