
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2018 1

Learning Feasibility for Task and Motion Planning
in Tabletop Environments

Andrew M. Wells1, Neil T. Dantam2, Anshumali Shrivastava1 and Lydia E. Kavraki1

Abstract—Task and motion planning (TMP) combines discrete
search and continuous motion planning. Earlier work has shown
that to efficiently find a task-motion plan, the discrete search can
leverage information about the continuous geometry. However,
incorporating continuous elements into discrete planners presents
challenges. We improve the scalability of TMP algorithms in
tabletop scenarios with a fixed robot by introducing geometric
knowledge into a constraint-based task planner in a robust way.
The key idea is to learn a classifier for feasible motions and to use
this classifier as a heuristic to order the search for a task-motion
plan. The learned heuristic guides the search towards feasible
motions and thus reduces the total number of motion planning
attempts. A critical property of our approach is allowing robust
planning in diverse scenes. We train the classifier on minimal
exemplar scenes and then use principled approximations to apply
the classifier to complex scenarios in a way that minimizes
the effect of errors. By combining learning with planning, our
heuristic yields order-of-magnitude run time improvements in
diverse tabletop scenarios. Even when classification errors are
present, properly biasing our heuristic ensures we will have little
computational penalty.

Index Terms—Motion and Path Planning; Task Planning

I. INTRODUCTION

INTEGRATED task and motion planning (TMP) requires
planning over a task-motion space that combines discrete

actions for manipulating objects with continuous, collision-free
motions that achieve these actions in a high degree-of-freedom
(DOF) composite space representing the state of the robot
and the objects. A strictly-hierarchical approach, where a task
planner first chooses a sequence of actions and then a motion
planner finds valid trajectories for each action, is incomplete
because there is no guarantee that actions selected by the task
planner will be geometrically feasible. Previous works [1], [2],
[3] break the strict hierarchy between task planning and motion
planning by communicating motion feasibility information from
the motion planner to the task planner.

Obtaining completeness in TMP presents challenges due
to the computational difficulty of high-dimensional motion
planning. Most practical motion-planning algorithms for high
DOF systems such as manipulators are not complete but at
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Fig. 1: Our learned heuristic expands from training on two prisms
(front left) to runtime scenes with arbitrary numbers and types of
objects. We approximate arbitrary meshes with inscribed prisms (the
red blocks in the wine glasses). Errors induced by the approximation
are corrected during planning, producing a robust system.

best probabilistically complete. A probabilistically complete
motion planner cannot prove that a motion is infeasible; the
planner can only run until a timeout. A TMP framework for a
high DOF system must call a probabilistically complete motion
planner using a timeout; otherwise, the motion planner could
run forever. On infeasible actions, the planner is guaranteed
to timeout, but there is also a possibility that the planner will
time out on a feasible action. So when the planner times out, a
probabilistically complete TMP framework will typically defer
the action, instead attempting another action. It will then later
revisit the action to reattempt motion planning with a longer
timeout. The need to expend computation on many possibly
infeasible motions imposes a high computational cost.

We show empirically that the run time of TMP for tabletop
manipulation domains is dominated by infeasible motion
planning attempts (see section VI). As described previously,
reducing the timeout of the motion planner is not a viable
approach, because then the motion planner will frequently fail
to solve feasible problems where a plan exists. Typical off-the-
shelf task planners used in TMP frameworks [1], [3] focus on
efficient planning in discrete spaces and admit only limited
geometric information. For example, in a scenario where the
task planner is searching for a discrete plan containing six
steps, it will enumerate satisfying plans in an arbitrary order
based on the solver’s heuristics and then call a motion planner
for each discrete step until all steps in a plan succeed.

Because calling motion planning on infeasible actions
increases overall run time, we propose a principled method
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of incorporating a motion feasibility heuristic into a TMP
framework. TMP frameworks break the overall plan into smaller
steps, which in turn are repetitive, suggesting this problem may
be amenable to machine learning algorithms, in our case an
SVM using geometric features of the objects being manipulated
Figure 2. This approach balances the difficulty of proving
motion infeasibility with the impracticality of learning a perfect
classifier. Rather than attempting to generalize the classifier, we
expand the domain by using the classifier on approximations
that are intentionally biased to reduce the cost of errors on
overall run time.

This paper improves the scalability of task and motion plan-
ning by demonstrating a new, principled method to incorporate
a heuristic for motion feasibility and to expand the domain
of the heuristic to new inputs. We believe that the underlying
method can be applied to many different TMP approaches
because expending computation to search for infeasible motion
plans is a fundamental challenge in probabilistically complete
TMP. We demonstrate that a classifier for feasibility can be
trained, that it improves scalability, and that we can incorporate
it in a way that is robust to classification error.

II. RELATED WORK

Task Planning: Research in task planning for robotics traces
back to early efforts in STRIPS [4]. Task planning approaches
typically focus on efficiently searching the state space, either
via heuristic search [5], [6], [7] or constraint-based methods
[8], [9]. Heuristic search methods, such as FF [6], use general-
purpose heuristics to reduce the number of states that are
expanded. Constraint-based methods, such as Madagascar [9],
propagate constraints to avoid searching the entire state space.

Motion Planning: For high DOF manipulators, the major mo-
tion planning approaches are optimization-based and sampling-
based planners. Optimization-based planners [10], [11] can
quickly solve some problems, but other problems—especially
cases involving small obstacles or narrow passages—pose
fundamental challenges for these planners. While optimization-
based motion planners are used in some TMP frameworks,
they are incomplete. Thus, TMP algorithms using optimization-
based motion planning will be incomplete. In contrast to
optimization-based planners, typical sampling-based planners
are probabilistically complete, i.e. when a solution exists,
the sampling-based planner will eventually find it [12], [13].
However, probabilistic completeness does not guarantee that a
solution will be found within a given time limit, so decision
problem versions of these algorithms are semi-deciding [14].
In our work, we use RRT-Connect [13] to ensure probabilistic
completeness, but other standard sampling-based planners could
be used instead with only minor modifications [15]. Heuristic
search can also be used for high DOF motion planning [16].

Task and Motion Planning: Due to the inherent difficulty
of the TMP sub-problems—task planning is NP-hard and
motion planning is PSPACE hard—many TMP approaches
consider restricted domains or set aside completeness to
improve efficiency for specific problem classes [14]. [2] can
guarantee completeness under some assumptions, such as
reversible actions, but performs greedy execution of plans,
which consumes time and energy if actions must ultimately
be reversed. [17] uses geometric constraints to reason about

motion planning in some scenarios, and [18] uses geometric
information to guide the task-level search. [3] provides a
framework to interface between task planners and motion
planners, but does not achieve probabilistic completeness until
the later work mentioned below. [19] focuses on precomputing
motion roadmaps to guide the search.

Approaches that are probabilistically complete include [20],
which achieves asymptotic optimality in planar manipulation
domains. The aSyMov planner [21], [22] uses an FF based
task planner with lazily-expanded roadmaps; roadmaps allow
plan re-use but present difficulty when configuration spaces
change as objects interact—e.g., when stacking and pushing.
The Synergistic Framework and related methods [23], [24], [25]
use a discrete search weighted by attempted motion planning
to provide feedback between the discrete and continuous layers.
In contrast, our work leverages both a constraint solver and
learned heuristic to more efficiently search the task space.

Other methods employ discrete abstractions of geometric
domains to synthesize policies [26] or handle dynamics [25],
but these methods do not focus on the high-DOF and changing
configuration spaces that occur during manipulation.

Our approach extends the constraint-based TMP implementa-
tion of [1], [27] by incorporating a learned feasibility heuristic
to guide search even in novel scenes.

Heuristics for Task and Motion Planning: In an attempt to
learn a general heuristic for task planning, Yoon and Xu [28],
[29] focus on learning a correcting factor to the relaxed-deletion
based heuristic of FF-search [6].

Learned heuristics have shown promise in the realm of
motion planning. For instance, sampling-based planners can
learn to bias the sampling distribution to achieve better planning
times [30]. Dynamic Movement Primitives attempt to learn
approaches to manipulation to allow cooperation between
multiple robots [31]. Our approach differs by using learning
to prune the TMP search but not to guide individual instances
of motion planning.

Garrett et al. [32] introduce a heuristic that incorporates
geometric information into FF search. The heuristic is not
based on learning and does not offer our guarantees on domain
expansion. Additionally it is nontrivial to incorporate into
frameworks that use a constraint-based task planner.

Several recent works apply learning to TMP. Chitnis et
al. [33] give a probabilistically complete method which uses
reinforcement learning to guide both the task level search for
a plan as well as the “refinement” from a symbolic description
into a concrete plan. In [34] the notion of “score-space” is
introduced as a metric to measure similarity between problem
instances to improve motion planning time. In both approaches,
learning is used for a different purpose than we propose here
and a principled approach to handling classification error is
not given.

Experience Based Planning: Though we do not use ex-
perience based motion planning, it is an important point of
discussion for our work since we too use pre-computation to
improve runtime performance. Deep learning approaches such
as [35] are promising but require large amounts of training data
to learn a sampling distribution. We focus on an easier problem
of predicting motion feasibility and require less training data.
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[36] focuses on reusing planning for common areas of motion,
but it is not clear how it would be adapted to deal with
unseen objects. The Thunder framework [37] runs planning
from scratch in parallel with a retrieve and repair planner to
maintain completeness. In general, we view such methods as
complementary to our own as they solve a different, but related
problem. It should be noted, however, that building any form of
experience graph becomes significantly more complicated as the
number—and combinations—of manipulable objects increases.
The free configuration space depends on the objects in question,
and thus can grow with the number of combinations of objects
(e.g., stacking or nested objects). The aSyMov planner uses
such a method, but the authors note that scalability quickly
becomes an issue [22]. One option is to prune the graph by
keeping the “important” nodes and discarding the rest, but
doing this for experience graphs on a variety of objects is
an open problem. Our approach utilizes an SVM which takes
milliseconds per call and has a small memory footprint.The
novel contribution of our work is a principled method of
incorporating feasiblity heuristics into a TMP framework to
allow domain expansion.

III. PROBLEM DESCRIPTION

We focus on Task and Motion Planning involving manip-
ulation in deterministic, fully observable cases. Additionally,
we assume the objects in our scene are rigid and that our C-
space is connected. Informally, we consider a class of problems
where a discrete task planning problem is specified (in e.g.,
PDDL) and some subset of the task actions (operators) have a
continuous motion component. To specify this component, we
include definitions of domain semantics that map the discrete
operators to continuous motions. For example, the operator
PICK-UP ?obj has discrete preconditions corresponding to
the discrete facts that the gripper is empty and the object has
nothing resting upon it (assuming we disallow moving stacks
of objects) as well as appropriate postconditions. Additionally,
the domain semantics map this discrete action to a continuous
motion planning problem of finding a collision free trajectory
from the current state to a state where the gripper is positioned
appropriately for grasping.Within this domain, we must find
a task-motion plan, a collision-free continuous trajectory
corresponding to a discrete series of task actions that satisfy
the task specification.

We also include as input to our algorithm a classifier that
can be queried for feasibility information on a motion planning
problem instance (C-space and start, goal poses).For a complete,
formal problem definition of standard TMP we point the reader
to [1]. Our problem definition differs by including a classifier
that maps a C-space and set of motion planning poses to true
or false. C : Ξ× 2Q 7→ {0, 1} in the language of [27], where
Ξ is a set of C-spaces and Q is a sequence of motion planning
poses.

Definition III.1. Task-Motion Plan
A task and motion plan is a sequence of pairs of task operators
and motion plans, TMP =

(
(〈a[0], Q[0]〉, . . . , 〈a[n], Q[n]〉

)
such that

(
a[0], . . . , a[n]

)
is in the task language L (i.e., is

a valid task plan) and for each pair 〈a[i], Q[i]〉 Q[i] is a
motion corresponding to task operator a[i] in the appropriate

configuration: first(Q[0]) = q[0] and for all subsequent i,
last(Q[i]) = first(Q[i+1]).

IV. ALGORITHM

In a typical TMP system, the task planner and motion
planner iterate between finding high-level plans and refining the
high-level plan into corresponding motion plans. Empirically,
we have found that most of the run time for common
manipulation problems is spent exploring motions that are
ultimately infeasible (see Figure 4). To address this bottleneck,
we learn a classifier for motion feasibility that expands to new
domains. We use the classifier to quickly estimate feasibility
of high-level actions, only attempting motion planning when
the entire high-level plan is classified as feasible. By avoiding
motion planning attempts for infeasible actions, we address
the major bottleneck in TMP and improve scalability.

Crucially, we integrate our learned heuristic within a TMP
framework [27] to produce a planning method that tolerates
classification error. False positives (infeasible actions classified
as feasible) are passed on to the motion planner, which will
determine infeasibility based on its timeout; thus a classifier
that always returns feasible will yield the original algorithm
without our learned heuristic having any effect. False negatives
(feasible motions classified as infeasible) will cause us to
defer motion planning on a feasible instance and may reduce
performance; however, our overall framework will later retry the
action, thus maintaining probabilistic completeness, assuming
a probabilistically complete motion planner is used.

Algorithm 1 shows our overall algorithm. The algorithm
has three broad phases: a task planning phase (lines 4-10), a
feasibility heuristic phase (lines 11-18), and a motion planning
phase (lines 20-29). The three phases repeat until finding a valid
task-motion. Compared to prior work [27], we introduce a new
feasibility heuristic phase that applies our learned classifiers
for motion feasibility.

The task planning phase searches for a new, candidate high-
level plan of up to horizon steps using the constraint-based
planner described in [1]. If no new plan below length horizon
exists (line 6), we extend horizon and the motion planning
timeout, reset constraints φ, and search again for the high-
level plan—potentially revisiting previous task plans with the
increased motion planning timeout, which is necessary for
probabilistic completeness (see Theorem 1). Once the high-
level plan A is found, we pass it to the feasibility heuristic
phase.

The feasibility heuristic phase uses learned classifiers to
estimate the feasibility of each action in the high-level plan.
For each action in the high-level plan A, we map the action to
a motion planning problem—specifically, the free configuration
space represented using a scene graph and goal pose—via the
domain semantics function λρ (line 14). Then, we call our
classifier to estimate when the motion is feasible (line 15). If
a motion is classified as infeasible, we update the constraint
equations to block the infeasible motion (line 17) and return
to the task planner. Otherwise, if all motions are feasible, we
proceed to motion planning.

Finally, the motion planning phase attempts to refine each
high-level action into a corresponding motion plan (line 22). If
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motion planning succeeds for all high-level actions, we have
successfully computed the task and motion plan. Otherwise, if
motion planning for any action fails (exceeds the timeout), we
update the constraint equations to find an alternate plan (line
25) and return to the task planner. Note that we reconsider this
plan later to preserve completeness (see Theorem 1).

Algorithm 1: TMP with Learned Heuristic

Input: D = (L, λα, λρ, C, σ[0],G) // TM Domain
Input: motionTO, cutoffTime, horizon
Output: T // Task-Motion Plan

1 (s[0], γ[0], q[0])← σ[0]; // state,scene,config
2 φ← initialConstraints(s[0], λα(γ[0]),L);
3 repeat
4 repeat /* Task Planning Phase */
5 A← nextTaskPlan(φ);
6 if ∅ = A then // UNSAT
7 horizon← horizon + 1;
8 motionTO← motionTO + 1;
9 φ← reset(φ, λα(G),horizon);

10 until A;
/* Feasibility Heuristic Phase */

11 f ← true;
12 if motionTO ≤ cutoffTime then
13 foreach a[i] ∈ A do
14 m[i] ← λρ(a

[i]); // Domain
Semantics

15 if ¬feasible(C,m) then
16 f ← false;
17 φ← addConstraints(a[i]);
18 break;

19 if f then /* Motion Planning Phase */
20 T ← ∅;
21 foreach a[i] ∈ A do
22 Q[i] ←

motionPlan(m[i], q[i],motionTO);
23 if ∅ = Q[i] then // timeout
24 T ← ∅;
25 φ← addConstraints(a[i]);
26 break;
27 else
28 q[i+1] ← last(Q[i]);
29 T [i] ← 〈a[i], Q[i]〉;

30 until T ;

A. Training Motion Feasibility Classifiers

We train the motion feasibility classifier based on a given
set of minimal, exemplar scenes. Each classifier is specific to
a robot, a task action, and the minimal set of fixed obstacles
in the scene (in our case, a table). The feature vector for
the classifier encodes the geometry and positions of movable
objects in the exemplar scene and the robot’s motion goal. We
obtain the ground truth, i.e., feasible or infeasible, for each

feature vector by running a sampling-based motion planner
with a long enough timeout to ensure that the probability of
not finding a feasible motion plan is negligible. We label the
data based on the result of this motion planning, and use the
labeled data to train a supervised learner; specifically, we train
a support vector machine, though other supervised learning
techniques could be applied.

B. Applying To Complex Scenes

To reduce training time, we limit training to scenarios with
two rectangular prisms manipulated by a UR5 mounted to
a table. At runtime, however, tabletop scenarios can include
arbitrary numbers of objects with arbitrary meshes. Using
a finite feature vector (see Figure 2), we cannot perfectly
represent scenes with an arbitrary mesh or number of objects.
Instead, we expand to these domains by approximating them
and/or decomposing them so they can be input to our classifier.
We use the following approximations to handle these more
complex scenes. Motivating insights and a proof of correctness
are discussed in subsection V-C.

Compared to our training scenes, a runtime scene may have
additional fixed or stationary objects. Each of these objects can
either be of the same type as those used in training (rectangular
prisms) or new objects types, including arbitrary meshes. We
generalize in these cases as follows:

1) Additional Fixed Obstacles: The classifier can ignore ad-
ditional fixed obstacles as justified below (see subsection V-C).
Note that motion planning does not ignore these obstacles.

2) Multiple Objects: When working with more than two
objects, we decompose the problem into estimating feasibility
for each pair of objects. We consider the problem to be
infeasible if any pair classifies as infeasible and feasible
otherwise.

3) New Movable Objects: We approximate non-rectangular
objects with a rectangular prism inscribed in the object.

We formally characterize these three domain expansions (sub-
section V-C) and empirically validate the approach (section VI)
for a tabletop manipulation domain.

V. ANALYSIS OF THE ALGORITHM

Now, we analyze the properties of our approach. First, we
show that our use of a learned heuristic maintains probabilistic
completeness, even when the classifier is wrong. Then, we dis-
cuss the impact of classification error. Finally, we characterize
how the classifiers expand to more complex domains.

A. Probabilistic Completeness

Definition V.1. Probabilistic Completeness
An algorithm is probabilistically complete if, as the run time
approaches infinity, the probability of the algorithm finding a
solution, should one exist, approaches one.

Probabilistic completeness requires certain assumptions. For
sampling-based motion planners, a path is assumed to have
some clearance. Additionally, we assume for TMP that we
can enumerate a sufficient set of placement locations and
actions to solve the problem. Under these assumptions, the
key to maintaining probabilistic completeness in our approach
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is handling cases when the classifier is wrong, which we
do by eventually ignoring the classifier. It should be noted
that because we train the classifier using RRT-connect with a
long timeout, even if a query is exactly the same as a training
example the classifier could still be wrong because RRT-connect
may have timed out on a feasible instance. Thus, ignoring
the classifier is unavoidable. Then, the proof of probabilistic
completeness follows [1].

Theorem 1. Algorithm 1 is probabilistically complete.

Proof. As the run time of the algorithm increases, the motion
planning timeout increases without bound (line 8), while
the cutoff time for ignoring the classifier remains constant.
Eventually, the motion planning timeout is increased beyond
the cutoff time. From this point on, the classifier is not used
(line 15). Then attemptMotion can only be set to true
and probabilistic completeness follows the proof of [1]: The
task planner is complete and enumerates all valid task plans
(line 4). The motion planner attempts to refine each candidate
task plan (line 22). If a probabilistically complete motion
planner is used, the probability of success approaches one
as motionTimeout increases. We progressively increase
motionTimeout with each increase of the task planning
horizon, revisiting all prior candidate plans with the greater
timeout. Thus over time, the probability of successfully refining
a feasible candidate plan approaches one.

B. Effect of Classification Error

Because we eventually ignore the classifier, classification
errors do not impact completeness, but they do reduce the
performance of our algorithm. The classifier may produce
false positives—infeasible actions labeled as feasible—or false
negatives—feasible actions labeled as infeasible. Planning
is faster when the classifier produces a false positive than
a false negative. A false positive will be passed on to the
motion planner, which must then explore the infeasible action
until timeout. Thus, a classifier that always labels every
action as feasible will be identical to the algorithm in [1]. A
false negative, however, may be significantly more expensive.
The false negative action will not be passed to the motion
planner until after the motion planning timeout has exceeded
the cutoff timeout (line 15), potentially spending significant
time to explore additional plans before the cutoff. Thus, we
bias the classifier to prefer false positives to false negatives.
Classification errors have two causes: errors from the classifier
proper and errors from domain expansion (see subsection IV-B).
We first discuss expansion errors and then later discuss errors
from the classifier proper.

C. Analysis of Domain Expansion

We analyze the classification errors introduced by our domain
expansions and their effect in the overall planning framework.
To simplify this discussion, we first assume the classifier is
an oracle for motion feasibility queries on scenes with two
prisms; in subsection VI-A we will discuss error with the
classifier proper. We prove that applying the oracle to complex
objects and environments via this domain expansion cannot

produce additional false negatives, which would adversely effect
computation time. These theoretical results have important
implications for the applicability of our work and are confirmed
by our experiments.

Definition V.2 (Oracle configuration space). Feature vector
f and classifier c represent a query in free C-space, ξoracle,
where:

• Movable objects have geometry and positions from f
• Fixed obstacles and robot are internal to c, i.e., based on

the training data

To apply the oracle to objects beyond pairs of rectangular
prisms, we must approximate the true runtime C-space, ξrun,
with the feature vector. The relationship between ξrun and
ξoracle affects classification error. Any difference between
ξoracle and ξrun may induce classification errors. A plan that
is feasible in ξrun but not in ξoracle induces a false negative,
while a plan that is not feasible in ξrun but is feasible in ξoracle
induces a false positive.

Because we prefer false positives to false negatives (see
subsection V-B), we want an oracle free C-space ξoracle that
over-approximates the true runtime free C-space ξrun. That is,
every valid plan through ξrun must also be valid in ξoracle (no
induced false negatives), but a valid plan in ξoracle may be
invalid in ξrun (induced false positives). This positive-biased
approximation holds when ξrun is a subset of ξoracle.

Theorem 2 (C-space approximation). If ξrun ⊆ ξoracle, then
the C-space approximation will not increase the false negative
ratio of a given classifier.

Proof. Assume to the contrary that the approximation may
induce a false negative and thus defer a feasible action. Then,
there exists some motion plan Q that is feasible in ξrun but
not feasible in ξoracle. But this contradicts ξrun ⊆ ξoracle.

Thus, when ξrun ⊆ ξoracle, our approximation of the true
free C-space induces no false negatives.

Motivated by this observation, we expand our method to
new domains in the following ways:

1) Additional Fixed Obstacles: Adding additional fixed
obstacles at runtime (e.g., a shelf too large for the robot to
manipulate) causes the true free C-space to under approximate
the oracle free C-space. Thus we can use the oracle in these
scenarios without introducing new false negatives (Figure 5d).

2) Multiple Objects: When working with more than two
objects, we can decompose the problem into estimating
feasibility for pairs of objects. Each pair involves the moving
object and one of the other objects. Thus there will be n− 1
pairs in a scene with n modeled objects. The problem is
considered infeasible if any call fails and feasible otherwise
(Figure 5c).

3) New Movable Objects: Adding new movable objects, e.g.,
glasses or teapots, that are under-approximated by inscribed
rectangular prisms, causes the true free C-space to under
approximate the oracle free C-space. Thus we can use the
classifier based on these inscribed prisms without introducing
new false negatives (Figure 5e).
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Finally, we note that any subset of these domain expansions
can be safely combined without introducing new false negatives
(Figure 5f).

In the preceding, we assumed that we had an oracle for
feasibility. Based on this analysis of an oracle, it follows that
a classifier without false negatives on the exemplar scenes
expands well, imposing at most the overhead of calling the
classifier. While assuming an oracle may be reasonable in
simple domains, a more complex domain will make this
unlikely. In practice we try to use a classifier with few or
no false negatives. The classifier can be statistically biased to
avoid false negatives, but in our experiments, we found this
unnecessary. It should be noted that our domain expansions will
tend to reduce the number of false negatives in the framework,
but our proof only guarantees that it will not introduce new
ones. To improve overall scalability, the classifier must generate
true negatives to guide the search. We demonstrate these
improvements empirically.

VI. EXPERIMENTS

We use experiments to provide training data to our SVM
and to test the overall method. Training experiments involve
two rectangular prisms and the fixed table. Ideally an SVM
would be trained for each new placement of fixed obstacles,
but this is not mandatory (see Theorem 2). Each training point
for the SVM is generated by running RRT-Connect three times
with a 30 second timeout and checking if any run solves the
instance. Each test scenario for the overall method is run in
10 independent trials.

A. Training the SVM

While manipulating one object in the presence of a stationary
object, we are learning to predict motion feasibility given the
locations and the sizes of the objects relative to the robot. We
use the method of support vector machines (SVM) for our
prediction, due to the low memory footprint and speed (it may
be called thousands of times for a single problem and only
takes a few milliseconds per call). Other classification models
could be used, especially in more complex environments, but
we found the increased accuracy from using a neural network
did not justify the additional costs to train, store and evaluate
the network.. Figure 2 illustrates the feature vector for an
example training scene. We use polar coordinates d and θ
describing the locations of the objects relative to the robot and
to each other, and we use the heights h, widths w, and lengths
` of both the objects under consideration.

The data set consists of roughly 10,000 runs of pairs of
rectangular prisms placed on a grid, which took about two
days to generate on a desktop machine. Note that this time is
spent running motion planning queries to produce a labeled data
set. This time could be reduced, but we chose to attempt each
query multiple times with long timeouts to ensure a reliable
set of training data. The prisms vary in size, but are always
axis-aligned to increase the consistency and minimize the size
of the feature vector. The prisms are placed on a grid with
cells 10cm x 10cm throughout reachable portions of the table.
The objective is to move one of the prisms to a specified open
space. We do this because we are interested in calculating

d12
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[
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Fig. 2: Representation of polar coordinates used in the feature vector.

whether the specified object can be usefully manipulated. The
capability to pick up the object is not sufficient, since picking
up an object changes the free C-space which can restrict the
ability to manipulate. Because we are not modeling dynamics,
our trajectories are reversible. Thus, we can use the same data
set to learn about picking up and putting down an object. This
reuse reduces the training time. With this exception, we train
a separate classifier for each action, in our case for each grasp
face. Because the runs rely on a sampling-based planner, we
attempt the same problem instance up to three times to achieve
an accurate ground-truth for the classifier.

We use the open-source library LIBSVM’s implementation
of a C-SVC with a radial basis function for the kernel and the
parameters of the C-SVC set to cost = 5000 and gamma =
0.95 [38]. With these settings, LIBSVM takes less than 10
seconds to fit the data on a desktop machine. On a hold out
sample of scenes similar to training, that is, scenes consisting of
two prisms, the classifier is correct approximately 96% of the
time. For a more complicated scenario, such as a mobile robot,
the classification rate may be lower. In such a case, a classifier
can be biased to prefer false positives over false negatives to
maintain the desirable properties discussed in section V. We
show a confusion matrix in Figure 3.

True Feasibility
Positive Negative

C
la

ss
ifi

er
Fe

as
ib

ili
ty

Positive 501± 8.86 10.9± 4.67
Negative 12.7± 3.71 76± 8.72

Fig. 3: SVM’s confusion matrix from 10-fold cross-validation

B. Runtime Experiments
All experiments are run on a desktop machine and the run

times are averaged across 10 independent runs with error bars
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Fig. 4: Time spent on task planning (orange) and motion planning
(green) for the given scenes.

showing one standard deviation. We use default settings for
TMKit with the exception that the motion planning timeout is
set to 30 seconds as this was found necessary for the scene in
Figure 5d Below we include figures of scenes used to test our
new approach along with run time results and an explanation
of why these scenes were chosen.

The scene in Figure 5a is chosen to estimate the drop in the
performance due to feasibility heuristic in scenarios when it
is not needed, i.e., where the first task plan chosen by TMKit
contains only feasible motions. There are two moveable blocks
(blue and red) that can be placed on the purple regions of the
table. The initial scene is given on the left and the final on
the right. The blue block is moved to a location that is not
obstructed by the red block, so the motion planner succeeds on
the first task plan it attempts to refine. As expected, because
it has the additional overhead of calling the SVM, the new
approach is slower. However, the drop in the performance is
only marginal.

The scene in Figure 5b is chosen to test the performance
increase in the simplest possible example where the initial
task plan chosen by TMKit will encounter infeasible motion.
In this setting, the blue block is obstructed by the red block,
which must be replaced to the original position for a feasible
plan. The motion planner needs to evaluate several task plans
before it succeeds in moving the blue block to its goal location.
As expected the new approach is significantly faster than the
old because it avoids expensive planning while attempting
infeasible motions.

Next we look at scenes which differ significantly from
the scenes used to train the SVM classifier. Our goal is to
understand how well our approach expands to new domains.

The scene in Figure 5c is chosen to test our method of dealing
with more than two objects. We can also contrast it with other
works [34] [33] that are tested in similar environments. Note
however, that our robot is stationary while the existing works
use a mobile PR2.

The scene in Figure 5d is chosen to demonstrate the scaling
of our approach to environments with additional obstacles. The
shelf is fixed but causes many motions that were feasible to
become infeasible (false positives).

The scene in Figure 5e is chosen to demonstrate scaling of
our approach to more complex objects. The motions of the
teapot are classified as if they were motions of a rectangular
prism fitting inside the teapot handle. Note that we must use
the handle rather than the body of the teapot to preserve the
correct offset from the gripper.

The scene in Figure 5f tests all of the domain expansions
together. The cylinder on the table is a fixed obstacle. The
wineglasses are approximated by rectangular prisms (here we

use a tighter approximation and treat the cup as if it were
not hollow). Our experiments show that feasibility prediction
can significantly improve the overall run time of the TMP
framework in tabletop environments.

VII. CONCLUSION

We have demonstrated an approach that utilizes approx-
imations and decompositions to robustly combine learning
and planning in TMP frameworks. We prove that our learned
heuristic expands from simple to complex scenes and that our
framework maintains probabilistic completeness. We demon-
strate results on a variety of tabletop manipulation scenarios,
showing order-of-magnitude performance improvements.

Limitations of our approach include the need for substantial
training data, the assumptions of rigid objects and connected
C-space, the domain expansions loss of detail and the need to
retrain for different robots.

There are several possibilities to improve our method. Ideal
performance requires that objects can be well approximated
by rectangular prisms. While we offer a domain expansion
that uses prisms to under approximate arbitrary meshes, the
classifier may fail to prune many motions that are infeasible. A
richer feature vector and alternative learning techniques could
give further speed improvements.

The training time is substantial, though the cost is amortized
over all planning runs. It is possible that beneficial results could
still be achieved by reducing the training time and statistically
biasing the SVM to prefer false positives.

While we have only tested in a pick-place scenario (with
stacking), the framework we have tested supports various
actions. We would like to expand our heuristic to more
general scenarios, such as a mobile robot that must move
around the room and choose a location from which to attempt
manipulation. Further work can incorporate sensing, uncertainty,
and probabilities that motion planning instances are infeasible
rather than a binary output.
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