
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2019 1

Point-Based Policy Synthesis for POMDPs with
Boolean and Quantitative Objectives

Yue Wang, Swarat Chaudhuri, and Lydia E. Kavraki

Abstract—Effectively planning robust executions under un-
certainty is critical for building autonomous robots. Partially
Observable Markov Decision Processes (POMDPs) provide a
standard framework for modeling many robot applications under
uncertainty. We study POMDPs with two kinds of objectives: (1)
boolean objectives for a correctness guarantee of accomplishing
tasks and (2) quantitative objectives for optimal behaviors. For
robotic domains that require both correctness and optimality,
POMDPs with boolean and quantitative objectives are natural
formulations. We present a practical policy synthesis approach
for POMDPs with boolean and quantitative objectives by com-
bining policy iteration and policy synthesis for POMDPs with
only boolean objectives. To improve efficiency, our approach
produces approximate policies by performing the point-based
backup on a small set of representative beliefs. Despite being
approximate, our approach maintains validity (satisfying boolean
objectives) and guarantees improved policies at each iteration
before termination. Moreover, the error due to approximation is
bounded. We evaluate our approach in several robotic domains.
The results show that our approach produces good approximate
policies that guarantee task completion.

Index Terms—Formal Methods in Robotics and Automation,
Task Planning, Motion and Path Planning

I. INTRODUCTION

DEPLOYING robots in the physical world presents a
fundamental challenge with planning robust executions

under uncertainty. The framework of POMDPs [1] offers a
standard approach for modeling robot tasks under uncertainty.

A key algorithmic problem for POMDPs is the synthesis of
policies [1] that specify actions to take for all possible events
during execution. Traditionally, policy synthesis for POMDPs
focuses on quantitative objectives such as (discounted) re-
wards [2]–[11]. Recently, there has been a growing interest
in POMDPs with boolean objectives [12]–[17] that require
accomplishing tasks under all possible events.

On one hand, POMDPs with quantitative objectives provide
an optimality guarantee but may lead to overly conservative or
overly risky behaviors [18], depending on the reward function
chosen. On the other hand, POMDPs with boolean objectives
provide a strong correctness guarantee of completing tasks
[12]–[17] but the constructed policy may not be optimal. For
the example domain shown in Fig. 1, there are many valid
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Fig. 1: A robot with imperfect actuation and perception needs to pick
up the blue can on the table while avoiding collisions with uncertain
obstacles such as floor signs and file cabinets (boolean objective).
There are two regions marked with red tape that the robot should
avoid (quantitative objective).

policies that can accomplish the task, i.e., satisfying the boolean
objective. Among these valid policies, the most preferable
policy is the one that passes the smallest number of red regions
that the robot should avoid. Therefore, for domains that require
both correctness and optimality, POMDPs with boolean and
quantitative objectives are natural formulations.

Policy synthesis for POMDPs with boolean and quantitative
objectives has been studied before [15]. In that work, the goal is
to find an optimal policy that also ensures a goal state is reached
with probability 1. A more general policy synthesis problem of
POMDPs with both boolean and quantitative objectives is to
synthesize an optimal policy that satisfies the boolean objective
with a probability above a threshold. In this paper, we study
this problem for the special case of safe-reachability objectives,
which require that with a probability above a threshold, a goal
state is eventually reached while keeping the probability of
visiting unsafe states below a different threshold. Many robot
tasks such as the one shown in Fig. 1 can be formulated as
POMDPs with safe-reachability and quantitative objectives.

POMDPs with only safe-reachability objectives have been
considered in previous works [16], [17]. An offline approach
called Bounded Policy Synthesis (BPS) is presented in [16].
BPS computes a valid policy over a goal-constrained belief
space rather than the entire belief space to improve scalability.
The goal-constrained belief space only contains beliefs visited
by desired executions that can achieve the safe-reachability
objective and is generally much smaller than the original belief
space. For POMDPs with only quantitative objectives, point-
based POMDP solvers [3]–[10] have been quite successful
in recent years. Point-based POMDP solvers can solve large
POMDPs by producing approximate policies over representa-
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tive beliefs instead of the entire belief space.
Ideally, we can construct exact policies for POMDPs with

safe-reachability and quantitative objectives by enumerating
all beliefs in the goal-constrained belief space and performing
value iteration on these beliefs. However, this enumeration is
generally expensive [19] even though the goal-constrained be-
lief space with a bounded horizon is finite. We take inspiration
from recent advances in point-based POMDP solvers to improve
efficiency by selecting representative beliefs from the goal-
constrained belief space and producing approximate policies
through point-based backup [3], [5] over these representative
beliefs rather than the entire goal-constrained belief space.
For previous point-based POMDP methods, this selection
of representative beliefs is typically done through sampling
from reachable belief space. In our case, sampling from the
reachable belief space may not work well due to the additional
boolean objectives: the sampled belief may not be in the goal-
constrained belief space and thus there are no valid policies
from the sampled belief. The key problem here is the selection
of representative beliefs from the goal-constrained belief space,
which essentially asks whether there exists a valid policy
starting from a belief. This selection process can be done
by invoking our previous BPS method [16] to compute valid
policies. Since we need to construct policies for approximating
the goal-constrained belief space, we choose policy iteration
to handle the quantitative objective because policy iteration
typically converges faster than value iteration [4].

In this work, we present an offline policy synthesis approach,
Point-Based Policy Synthesis (PBPS), for POMDPs with safe-
reachability and quantitative objectives. PBPS combines BPS
[16] and Point-Based Policy Iteration (PBPI) [4] to synthesize
good approximate policies that satisfy the safe-reachability
objective. At a high level, PBPS applies BPS to efficiently
explore the goal-constrained belief space for finding a valid
policy π that satisfies the safe-reachability objective. Then
PBPS adapts PBPI to transform π into an improved policy
π′. This improved policy π′ may reach some belief b′ that
is not visited by the current policy. Therefore, PBPS invokes
BPS again to check whether there exists a valid policy starting
from b′. By doing this, we can explore new belief regions and
expand the set of representative beliefs, which is crucial to
the quality of the constructed policy [3]–[5]. PBPS alternates
between the computation of valid policies and policy iteration
until the termination condition is satisfied.

We prove that PBPS inherits many desirable properties of
PBPI. First, PBPS maintains validity and is monotonic: at each
iteration before termination, PBPS produces a valid policy with
improved quality. Second, the error introduced by PBPS due
to approximation is bounded. We evaluate PBPS in the kitchen
domain [16] and the Tag domain [3]. We also validate PBPS on
a Fetch robot for the domain in Fig. 1. The results demonstrate
that PBPS produces good approximate policies that achieve
the given safe-reachability objective.

Related Work: POMDPs [1] offer a principled mathe-
matical framework for modeling many robotics applications
under uncertainty. Many POMDP solvers [2]–[11] focus on
quantitative objectives such as (discounted) rewards. Recently,
there has been a large body of work in constrained POMDPs

[18], [20]–[22], chance-constrained POMDP [23], and risk-
sensitive POMDPs [24], [25] that handle explicit cost/risk
constraints. There are two differences between these POMDPs
and POMDPs with boolean and quantitative objectives. First,
the objective of these POMDPs is to maximize the expected
reward while keeping the expected cost/risk below a threshold,
while our objective is to maximize the expected reward while
satisfying a boolean objective in every execution including the
worst case. Second, these POMDPs typically assign positive
rewards for goal states to ensure reachability, while our boolean
objectives directly encode reachability constraints. It has been
shown that for certain domains that demand a correctness
guarantee of accomplishing tasks, POMDPs with boolean
objectives offer a better guarantee than these POMDPs [16].

Recent work [12]–[17] has studied POMDPs with boolean
objectives. POMDPs with both boolean and quantitative
objectives were first introduced in [15]. In that work, the
authors studied the almost-sure satisfaction problem where
the goal is to find an optimal policy that ensures a goal state
is reached with probability 1. In this work, we focus on a
more general policy synthesis problem of POMDPs with safe-
reachability and quantitative objectives, where the goal is to
find an optimal policy that ensures a goal state is reached with
a probability above a threshold, while keeping the probability
of visiting unsafe states below a different threshold.

Our method computes an approximate policy over a repre-
sentative subset of the goal-constrained belief space based on
the ideas from Point-Based Policy Iteration (PBPI) [4] and
the previous method Bounded Policy Synthesis (BPS) [16] for
POMDPs with only safe-reachability objectives. We apply the
same BPS algorithm in [16] to efficiently explore the goal-
constrained belief space and construct a valid policy. However,
we can not directly apply PBPI to find an optimal policy for
two reasons. First, PBPI considers infinite-horizon policies
represented as finite-state controllers [26] while our approach
focuses on bounded-horizon policies represented as a set of
conditional plans [9]. Second, PBPI only considers quantitative
objectives while our approach needs to consider both boolean
and quantitative objectives. More details on how we adapt
PBPI are discussed in Section III-A.

II. PROBLEM FORMULATION

In this work, we consider the problem of policy synthesis
for POMDPs with safe-reachability and quantitative objectives.
We follow the notation in [16], [17].

Definition 1 (POMDP). A POMDP is a tuple P =
(S,A, T ,O,Z, r), where S is a finite set of states, A is a
finite set of actions, T is a probabilistic transition function, O
is a finite set of observations, Z is a probabilistic observation
function, and r is a reward function. T (s, a, s′) = Pr(s′|s, a)
specifies the probability of moving to state s′ ∈ S after taking
action a ∈ A in state s ∈ S . Z(s′, a, o) = Pr(o|s′, a) specifies
the probability of observing observation o ∈ O after taking
action a ∈ A and reaching state s′ ∈ S. r(s, a) defines the
reward of executing action a ∈ A in state s ∈ S.

Due to uncertainty, states are partially observable and
typically we maintain a probability distribution (belief ) over
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all states b : S 7→ [0, 1] with
∑
s∈S

b(s) = 1. The set of

beliefs B = {b |
∑
s∈S

b(s) = 1} is the belief space. The

belief space transition TB is deterministic. boa = TB(b, a, o)
is the successor belief for a belief b after taking an action
a and receiving an observation o, defined by Bayes rule:

∀s′ ∈ S, boa(s′) =
Z(s′,a,o)

∑
s∈S
T (s,a,s′)b(s)

Pr(o|b,a) , where Pr(o|b, a) =∑
s′∈S
Z(s′, a, o)

∑
s∈S
T (s, a, s′)b(s) is the probability of receiv-

ing an observation o after taking an action a in a belief b.

Definition 2 (k-Step Plan). A k-step plan is a sequence
σ = (b0, a1, o1, . . . , ak, ok, bk) such that for all i ∈ (0, k],
the belief updates satisfy the transition function TB , i.e.,
bi = TB(bi−1, ai, oi), where ai ∈ A is an action and oi ∈ O
is an observation. |σ| = k is the length of the k-step plan σ.

Definition 3 (Safe-Reachability). A safe-reachability objec-
tive is a tuple G = (Dest ,Safe), where Safe = {b ∈
B |

∑
s violates safety

b(s) < δ2} is a set of safe beliefs and

Dest = {b ∈ Safe |
∑

s is a goal state
b(s) > 1 − δ1} ⊆ Safe is

a set of goal beliefs. δ1 and δ2 are small values for tolerance.

G compactly represents the set ΩG of valid plans:

Definition 4 (Valid k-Step Plan). A k-step plan σ = (b0, . . . ,
ak, ok, bk) is valid w.r.t. a safe-reachability objective G =
(Dest ,Safe) if bk ∈ Dest is a goal belief and all beliefs
visited before step k are safe beliefs (∀i ∈ [0, k), bi ∈ Safe).

Policy and Conditional Plan: Computing exact policies
over the entire belief space B is intractable, due to the curse
of dimensionality [27]: B is a high-dimensional space with
an infinite number of beliefs. To make the problem tractable,
we can exploit the reachable belief space Bb0 [3], [5]. Bb0
only contains beliefs reachable from the initial belief b0 and
is much smaller than B.

Our previous BPS work [16] has shown that the perfor-
mance of policy synthesis for POMDPs with safe-reachability
objectives can be further improved based on the notion of a
goal-constrained belief space BG . BG combines the reachable
belief space Bb0 and the set ΩG of valid plans defined by
the safe-reachability objective G. BG only contains beliefs
reachable from the initial belief b0 under a valid plan σ ∈ ΩG
and is generally much smaller than the reachable belief space.

Previous results [28]–[30] have shown that the problem
of policy synthesis for POMDPs is generally undecidable.
However, when restricted to a bounded horizon, this prob-
lem becomes PSPACE-complete [27], [31]. Therefore, BPS
computes a bounded policy π over the goal-constrained belief
space BG within a bounded horizon h. This bounded policy π
is essentially a set of conditional plans [9]:

Definition 5 (Conditional Plan). A conditional plan is a tuple
γ = (a, ν), where a is an action and ν is an observation
strategy that maps an observation o to a conditional plan γ′.

Fig. 2 shows an example of a conditional plan γ = (a1, ν)
represented as a tree rooted at a belief b. γ together with the
belief b defines a set Ωγ,b of plans in the belief space. For each
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Fig. 2: A conditional plan. Circle nodes represent beliefs, edges from
circle to rectangle nodes (a1, a

0
2, . . . 3) represent actions, and edges

from rectangle to circle nodes (o1 and o2) represent observations.

plan σ ∈ Ωγ,b, the execution is the following process: initially,
we start at the belief b and take the action a1 specified by γ.
Upon receiving an observation o, we move to the successor
belief boa = TB(b, a1, o) and start executing the conditional plan
γo for the observation o specified by the observation strategy
ν. This process repeats until we reach a terminal belief. The
horizon hγ = max

σ∈Ωγ,b
|σ| of a conditional plan γ is defined as

the maximum length of the plans in Ωγ,b.

Definition 6 (Valid Conditional Plan). A conditional plan γ
is valid starting from a belief b ∈ B w.r.t. a safe-reachability
objective G if every plan in Ωγ,b is valid (Ωγ,b ⊆ ΩG).

Definition 7 (k-Step Policy). A k-step policy π = {γ1, γ2, . . . }
is a set of conditional plans.

A k-step π defines a set of representative beliefs Bπ ⊆ B
that contains all beliefs visited by π. For every belief b ∈ Bπ ,
π(b) = γ ∈ π is the conditional plan associated with this belief
b. For a k-step policy π, the horizon hπ = max

γ∈π
hγ is k.

Similarly, the k-step policy π = {γ1, γ2, . . . } defines a set
Ωπ =

⋃
b∈Bπ

Ωγ,b of plans, where γ is the conditional plan

specified for the belief b by the policy π.

Definition 8 (Valid k-Step Policy). A k-step policy π is valid
w.r.t. a safe-reachability objective G if every plan in the set
Ωπ is valid (Ωπ ⊆ ΩG).

Quantitative Objectives: Each conditional plan γ =
(a, ν) ∈ π in a k-step policy π = {γ1, γ2, . . . } induces a
value function Vγ(b) that specifies the expected total reward
of executing the conditional plan γ starting from the belief b:

Vγ(b) =
∑
s∈S

r(s, a)b(s) +
∑
o∈O

Pr(o|b, a)Vγo(boa) (1)

where boa = TB(b, a, o) is the successor belief and γo is
the conditional plan for the observation o specified by the
observation strategy ν of the conditional plan γ.

Since the value function Vγ is linear with respect to the
belief space [1], Eq. 1 can be rewritten as Vγ(b) = αγ · b,
where αγ is the α-vector that specifies the reward for every
state s ∈ S following the conditional plan γ = (a, ν):

αγ(s) = r(s, a) +
∑
o∈O

∑
s′∈S

Z(s′, a, o)T (s, a, s′)αγo(s′) (2)

Therefore, the value function Vπ of the policy π can be
represented as a set of α-vectors Vπ = {αγ1 ,αγ2 , . . . }. For
every belief b ∈ Bπ, Vπ(b) = Vγ(b) = αγ · b, where γ is the
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POMDP, Initial Belief
Safe-Reachability Objective and Horizon Bound

BOUNDED
POLICY SYNTHESIS

POLICY
ITERATION

POLICY
EVALUATION

POLICY
IMPROVEMENT

termination condition satisfied: return π

valid policy
π = {γ1, γ2, . . . }

value function
Vπ = {αγ1 ,αγ2 , . . . }

new policy
π′ = {γ′1, γ′2, . . . }

new
belief b′

Fig. 3: Overview of the PBPS algorithm.

conditional plan for the belief b specified by the policy π. For
b 6∈ Bπ , Vπ(b) = max

α∈Vπ
α · b.

Problem Statement: Given a POMDP P , an initial belief
b0, a safe-reachability objective G, and a horizon bound h,
our goal is to synthesize a valid k-step (k ≤ h) policy
π∗G = argmax

valid π
Vπ(b0) that maximizes the expected reward

from b0. Note that π∗G is different from the optimal policy
π∗ = argmax

π
Vπ(b0) without the requirement of satisfying the

safe-reachability objective (π∗ may be invalid).

III. POINT-BASED POLICY SYNTHESIS

Fig. 3 shows the overview of our Point-Based Policy
Synthesis (PBPS) approach (Algorithm 1). PBPS combines
Bounded Policy Synthesis (BPS) [16] and Point-Based Policy
Iteration (PBPI) [4] to compute a good approximate policy π
that satisfies the given safe-reachability objective.

At a high level, PBPS aims to achieve both boolean (safe-
reachability) and quantitative (maximizing rewards) objectives.
In order to satisfy the boolean objective, PBPS applies BPS
to efficiently explore the goal-constrained belief space and
generate a valid policy π (Line 1). If there are no valid policies
within the horizon bound h, PBPS returns ∅ (Line 3). Otherwise,
PBPS adapts PBPI to compute an improved policy π′ with
respect to the value function Vπ of the current policy π. Though
the goal-constrained belief space over a bounded horizon is
finite, performing backup on the entire goal-constrained belief
space is still costly [19]. Therefore, we perform the point-based
backup [3], [5] on the set Bπ of beliefs visited by the current
policy π to improve efficiency.

This improved policy π′ may reach a successor belief
boa = TB(b, a, o) for a belief b ∈ Bπ (Line 13), and none of the
existing conditional plans are valid starting from boa (Line 18).
In this case, PBPS invokes BPS to check if boa is in the goal-
constrained belief space (Line 19). If BPS returns ∅, there are no
valid policies from the belief boa, which means the action choice
a is invalid for the observation o (Line 21). PBPS alternates
between the computation of valid policies and policy iteration
until the policy improvement 1

|Bπ|
∑
b∈Bπ

(Vπ′(b)− Vπ(b)) meets

the threshold ε (Line 31). Note that Bπ ⊆ Bπ′ since for
every b ∈ Bπ, there is one conditional plan γ ∈ π′ for b

Algorithm 1: PBPS
Input: POMDP P = (S,A, T ,O,Z, r), Initial Belief b0,

Safe-Reachability Objective G, Horizon Bound h
Output: k-Step Policy π

1 π ← BPS(P, b0,G, h) /* Initial valid policy */
2 if π = ∅ then /* No k-step (k ≤ h) valid policy */
3 return ∅
4 while true do
5 Vπ ← {αγ1 ,αγ2 , . . . } /* Policy evaluation */
6 Bπ ← the set of beliefs visited by π
7 π′ ← ∅ /* Start policy Improvement */
8 foreach b ∈ Bπ do /* Point-based backup */
9 k ← the number of steps to reach b from b0

10 foreach a ∈ A do
11 νa ← ∅, avalid ← true
12 foreach o ∈ O do
13 boa ← TB(b, a, o) /* Successor */
14 Γ← ∅
15 foreach γ ∈ π do
16 if Ωγ,boa ⊆ ΩG then /* valid γ */
17 Γ← Γ ∪ {γ}

18 if Γ = ∅ then /* No γ is valid */
/* Invoke BPS to explore */

19 πoa ← BPS(P, boa,G, h− k − 1)
20 if πoa = ∅ then /* a is invalid */
21 avalid ← false, break
22 else

/* Add πoa for improvement */
23 π′ ← π′ ∪ πoa, γoa ← πoa(boa)

24 else
25 γoa ← argmax

γ∈Γ
αγ · boa

26 νa(o)← γoa /* Record γoa in νa */

27 foreach s ∈ S do
28 αa(s)← r(s, a) +∑

o∈O

∑
s′∈S
Z(s′, a, o)T (s, a, s′)αγoa(s′)

29 a← argmax
a∈A and avalid

αa · b

30 γ ← (a, νa), π′ ← π′ ∪ {γ} /* γ is best */

31 if

(
1
|Bπ|

∑
b∈Bπ

(Vπ′(b)− Vπ(b))

)
≤ ε then

/* termination condition satisfied */
32 return π′

33 π ← π′

by construction and thus b ∈ Bπ′ . Next, we describe each
component (Fig. 3) of the PBPS algorithm (Algorithm 1).

Bounded Policy Synthesis: For a POMDP P , an initial
belief b0, a safe-reachability objective G = (Dest ,Safe) and
a horizon bound h, we first apply the same BPS algorithm
presented in [16] to compute a valid k-step (k ≤ h) policy π
(Line 1). For completeness, we provide a brief summary of
BPS. See [16] for more details. BPS first symbolically encodes
the goal-constrained belief space over a bounded horizon k as
a compact logical formula Φk, based on the encoding from
Bounded Model Checking [32]. Φk compactly represents the
requirement of reaching a goal belief safely in k steps. Then
BPS computes a valid plan by checking the satisfiability of the
constraint Φk through an SMT solver [33]. If Φk is satisfiable,
the SMT solver returns a valid plan σk (the dashed green path
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in Fig. 2). σk only covers a particular observation oi at step i.
BPS tries to generate a valid policy π based on this valid plan
σk by considering all other observations, i.e., other branches
following the rectangle node at each step. If Φk is unsatisfiable,
BPS increases the horizon and repeat the above steps until a
valid policy is found or a given horizon bound is reached.

A. Policy Iteration

Once a valid k-step policy π is found, we try to improve
π by adapting the PBPI algorithm presented in [4]. PBPI
considers infinite-horizon policies represented as finite-state
controllers while PBPS focuses on bounded-horizon policies
represented as a set of conditional plans. Moreover, PBPI
only deals with quantitative objectives while PBPS considers
both boolean (safe-reachability) and quantitative objectives.
Therefore, we cannot directly apply PBPI to compute an
improved policy. Instead, we adapt the policy evaluation and
the policy improvement steps in PBPI for policy iteration.

1) Policy Evaluation: For a valid k-step policy π =
{γ1, γ2, . . . }, we recursively compute the α-vector αγ for
each conditional plan γ = (a, ν) in the policy π:
• If γ is a conditional plan associated with a terminal belief,

αγ(s) = r(s, a).
• If γ is a conditional plan associated with a non-terminal

belief, we compute the α-vector αγ based on Eq. 2.
Then the value function of π can be represented as a set of

α-vectors Vπ = {αγ1 ,αγ2 , . . . } (Line 5).
2) Policy Improvement: In the policy improvement step, we

compute an improved policy π′ based on the value function Vπ
of the current policy π. This policy improvement step applies
the point-based backup algorithm [3], [5] to the finite set Bπ
of beliefs visited by the current policy π (Line 8).

Since we consider not only a quantitative objective as in the
standard point-based backup, but also a boolean objective that
defines valid policies, we cannot directly apply the standard
point-based backup. There are two important differences
between PBPS and the standard point-based backup.

First, the standard point-based backup loops over all α-
vectors in the value function Vπ of the current policy π to
find the best α-vector αoa = argmax

α∈Vπ
α · boa for the successor

belief boa = TB(b, a, o). Conceptually, this step applies each
conditional plan γ in the policy π to the belief boa and finds the
best conditional plan for boa. However, not every conditional
plan γ in the policy π is valid starting from the belief boa.
Therefore, PBPS performs an additional filtering step (Lines
15, 16, 17) to construct a subset Γ ⊆ π of valid conditional
plans starting from the belief boa. Then PBPS selects the best
conditional plan from these valid ones (Line 25).

Second, after the above filtering step, it is possible that the
current policy π does not contain a valid conditional plan for
the successor belief boa (Line 18). In this case, PBPS invokes
BPS again to compute a valid policy πoa for boa (Line 19) and
add πoa to the new policy π′ so that in later iterations, we can
improve the value of πoa (Line 23). By constructing this new
policy πoa, we can explore new belief regions that have not been
reached by previous policies. This exploration step together
with point-based backup (when a different action becomes

more optimal) expands the belief set Bπ. As pointed out by
previous works [3]–[5], this expansion of the representative
beliefs Bπ is crucial to the quality of the constructed policy.

In the worst case, each policy iteration of PBPS requires
O(|Bπ||A||O|) calls to BPS since PBPS performs point-based
backup over the representative beliefs Bπ instead of the
reachable set. The experiment results show (Section IV) that Bπ
is much smaller than the reachable belief space, which contains
beliefs exponential to the horizon. Therefore, by applying point-
based backup and focusing on the representative beliefs Bπ,
PBPS significantly reduced the number of calls to BPS.

B. Algorithm Analysis

In this section, we provide two theorems to address the
important properties of PBPS. Theorem 1 shows that PBPS
maintains validity and keeps improving the value of the policy
at each iteration before termination. Theorem 2 shows that the
error introduced by PBPS due to approximation is bounded.

Theorem 1. At each iteration before termination, PBPS
transforms a policy π to a new policy π′ (Note that Bπ ⊆ Bπ′
as discussed at the beginning of Section III). For each belief
b ∈ Bπ , the conditional plan γ specified by the new policy π′

for the belief b is valid and Vπ′(b) ≥ Vπ(b). For at least one
belief b ∈ Bπ , Vπ′(b) > Vπ(b).

Proof. Each iteration of PBPS consists of two steps:
• In policy evaluation, PBPS computes the exact value

function Vπ of the current policy π (Line 5).
• In policy improvement, PBPS constructs a conditional

plan γ for each belief b ∈ Bπ . According to Algorithm 1,
for each observation o, PBPS selects the best conditional
plan γoa from the subset Γ ⊆ π of valid conditional plans
starting from the successor belief boa (Line 25). When
Γ = ∅, PBPS invokes BPS to construct a new valid
conditional plan γoa for the belief boa (Lines 19, 23). PBPS
selects the best action a for the belief b (Line 29) and
construct the best conditional plan γ (Line 30) w.r.t. the
value function Vπ of the current policy π. By construction,
γ is also valid starting from the belief b.

Thus, PBPS cannot cause a reduction in the value of any belief
b ∈ Bπ and always produces a valid policy π′. According to
the termination condition (Line 31), π′ improves the value for
at least one belief b ∈ Bπ before termination.

PBPS is an approximation method that performs point-based
backup on the representative set Bπ of beliefs visited by the
policy π rather than the entire goal-constrained belief space
BG . As a result, PBPS implicitly prunes conditional plans for
every belief b ∈ BG \ Bπ. This implicit pruning may remove
conditional plans that are part of the valid and optimal policy
π∗G , producing a suboptimal policy.

Note that π∗G is different from the optimal policy π∗ without
the requirement of satisfying the safe-reachability objective
(π∗ may be invalid). As PBPS continues improving π, the
value Vπ is getting closer to the value Vπ∗G but Vπ may not
converge to the optimal value Vπ∗ due to the additional safe-
reachability objective. We define δπ = max

b∈Bπ
(Vπ∗(b)− Vπ(b))
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to be the difference between Vπ∗ and Vπ . δπ also indicates the
difference between quantitative and safe-reachability objectives.
Intuitively, if we set proper rewards for goal states and unsafe
states, δπ should not be too large since the reward function also
encodes the safe-reachability objectives to some extent, and the
difference between quantitative and safe-reachability objectives
is small. However, as discussed in [16], there exist domains
where no reward function exactly encodes the safe-reachability
objective and δπ may always be greater than 0.

Theorem 2. PBPS produces a policy π with error η =
Vπ∗G (b0) − Vπ(b0) ≤ h(rmax − rmin)dBπ + δπ, where b0 is
the initial belief, h is the horizon bound, rmax = max

s,a
r(s, a),

rmin = min
s,a

r(s, a), dBπ = max
b′∈BG

min
b∈Bπ

‖b′ − b‖1 is the

maximum distance from any b′ ∈ BG to Bπ .

Proof. Let γ∗ = (a∗, ν∗) be the optimal conditional plan
specified by π∗G for the belief b0 and γ = (a, ν) be the
conditional plan specified by π for the belief b0.

η = Vπ∗G (b0)− Vπ(b0) = Vγ∗(b0)− Vγ(b0)

=

(∑
s∈S

r(s, a∗)b(s) +
∑
o∈O

Pr(o|b0, a∗)Vπ∗G (boa∗)

)

−

(∑
s∈S

r(s, a)b(s) +
∑
o∈O

Pr(o|b0, a)Vπ(boa)

)
Eq. 1

=

(∑
s∈S

r(s, a∗)b(s) +
∑
o∈O

Pr(o|b0, a∗)Vπ∗G (boa∗)

)

−

(∑
s∈S

r(s, a)b(s) +
∑
o∈O

Pr(o|b0, a)Vπ(boa)

)

+

(∑
s∈S

r(s, a∗)b(s) +
∑
o∈O

Pr(o|b0, a∗)Vπ(boa∗)

)

−

(∑
s∈S

r(s, a∗)b(s) +
∑
o∈O

Pr(o|b0, a∗)Vπ(boa∗)

)
add 0

=
∑
o∈O

Pr(o|b0, a∗)
(
Vπ∗G (boa∗)− Vπ(boa∗)

)
+

(∑
s∈S

r(s, a∗)b(s) +
∑
o∈O

Pr(o|b0, a∗)Vπ(boa∗)

)

−

(∑
s∈S

r(s, a)b(s) +
∑
o∈O

Pr(o|b0, a)Vπ(boa)

)
(3)

Since π specifies γ for the belief b0, γ should be best
for b0 w.r.t. the value function Vπ. Thus the last two
terms in Eq. 3:

(∑
s∈S

r(s, a∗)b(s) +
∑
o∈O

Pr(o|b0, a∗)Vπ(boa∗)

)
−(∑

s∈S
r(s, a)b(s) +

∑
o∈O

Pr(o|b0, a)Vπ(boa)

)
≤ 0, and η ≤∑

o∈O
Pr(o|b0, a∗)

(
Vπ∗G (boa∗)− Vπ(boa∗)

)
. Let b′ ∈

⋃
o∈O
{boa∗} be the

successor where PBPS makes its worst error, γ∗o ∈ π∗G be the
optimal conditional plan for b′, γo ∈ π be the best conditional
plan for b′ and b ∈ Bπ be the belief associated with γo. Then

η ≤
∑
o∈O

Pr(o|b0, a∗)(αγ∗o · b
′ −αγo · b

′)

≤ αγ∗o · b
′ −αγo · b

′
∑
o∈O

Pr(o|b0, a∗) = 1

= (αγ∗o −αγo) · (b′ − b) + (αγ∗o −αγo) · b add 0 (4)

Following the derivations in [3], for the first term in Eq. 4

(αγ∗o −αγo) · (b′ − b)
≤ ‖αγ∗o −αγo‖∞‖b

′ − b‖1 Hölder’s inequality
≤ ‖αγ∗o −αγo‖∞dBπ definition of dBπ
≤ h(rmax − rmin)dBπ

The last inequality holds since α-vectors represent the reward
starting from some state within the horizon bound h. For the
second term in Eq. 4, since γ∗o may be invalid starting from
b, αγ∗o · b ≤ Vπ∗(b) where π∗ is an optimal policy without the
requirement of satisfying the safe-reachability objective and
may be invalid. According to the definition of δπ , (αγ∗o −αγo) ·
b ≤ δπ. Therefore, η ≤ h(rmax − rmin)dBπ + δπ.

As we expand the set Bπ through the exploration step (Line
19) and point-based backup, Bπ covers more beliefs from the
goal-constrained belief space BG . Therefore, the first term
h(rmax−rmin)dBπ in the error bound converges to 0 since the
distance dBπ converges to 0. As discussed before, the value
of the second term δπ in the error bound is closely related to
the reward function. How to design a proper reward function
that minimizes δπ is beyond the scope of this work.

IV. EXPERIMENTS

We test PBPS on the kitchen domain [16] (horizon bound
h = 20) and the Tag domain [3] (h = 30). We also validate
PBPS on a Fetch robot for the domain shown in Fig. 1 (h = 20).
We use Z3 [33] as our SMT solver. All experiments were
conducted on a 2.9 GHz Intel R© processor with 16 GB memory.

Kitchen Domain: In the kitchen domain [16], a robot needs
to pick up a cup from the storage while avoiding collisions with
M uncertain obstacles. This domain is an example scenario
where we desire a correctness guarantee of accomplishing tasks,
and POMDPs with boolean objectives offer a better guarantee
than quantitative POMDP models [16].

The kitchen is discretized into N = 36 regions. The actuation
and perception of the robot are imperfect, modeled as ten
uncertain actions: move and look in four directions, pick-up
using the left hand and pick-up using the right hand. The
robot starts at a known initial location. However, due to the
robot’s imperfect perception, the location of the robot and the
locations of uncertain obstacles are all partially observable
during execution. The number of states in the kitchen domain
is |S| = C(N,M) · N , where C(N,M) is the number of
M -combinations from the set of N regions. In the largest test
(M = 3) there are more than 105 states. We use the same
safe-reachability objective G = (Dest ,Safe) as in [16]:

Dest = {b ∈ B |
∑

b(target cup in hand) > 1− δ1}

Safe = {b ∈ B |
∑

b(robot in collision) < δ2}

where δ1 and δ2 are small values that represent tolerance.
For the quantitative objective, the robot should avoid certain

regions if possible. We assign a reward of −10 for states where
the robot is in these regions and a reward of −1 for each action.

Tag Domain: In the Tag domain [3], the task for the robot
is to search for and tag a moving agent in a grid with 29
locations. The agent follows a fixed strategy that intentionally
moves away from the robot. Both the robot and the agent
can move in four directions or stay. The robot’s location is
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TABLE I: Performance of PBPS with and without the exploration
step for different problems.

Domain Reward Time (s) |Bπ |
w. exp. no exp. w. exp. no exp. w. exp. no exp.

Kitchen (M = 1) -9.350 -9.350 18.166 10.321 147 94
Kitchen (M = 2) -13.040 -24.296 347.281 33.798 396 73
Kitchen (M = 3) -16.882 -31.801 3611.684 290.019 474 64

Tag (δ = 0.5) -6.987 -9.070 509.235 21.352 370 109
Tag (δ = 0.6) -6.871 -9.108 1132.996 21.985 811 107

fully observable while the agent’s location is unobservable
unless the robot and the agent are in the same location. The
safe-reachability objective G = (Dest ,Safe) we specify for
this domain is: (1) Dest contains beliefs where the robot can
tag the agent with a probability at least δ; (2) Safe = B since
there are no unsafe states and all beliefs are safe beliefs.

Results: The performance results of PBPS are summarized
in Table I, which shows the rewards achieved by following
the policies, the computation time and the size (the number of
beliefs) of the representative belief set |Bπ|. To evaluate how
the quality of constructed policies is affected by the exploration
step (Line 19) of PBPS (Algorithm 1) where we invoke BPS
to explore new belief regions, we test PBPS in two settings:
with and without the exploration step.

As we can see from Table I, PBPS with exploration achieves
much better reward compared to PBPS without exploration for
large problems. However, this exploration step is expensive and
requires more computation time. The results also demonstrate
the advantage of approximate policies against exact policies:
computing exact policies requires exhaustively exploring the
whole goal-constrained belief space, which is intractable in
practice since exploration is costly as shown in Table I. On the
contrary, PBPS produces approximate policies by performing
the point-based backup, and only explores belief regions of
the goal-constrained belief space that are promising based on
the current value function. Moreover, as we can see from the
experiment results, Bπ for the tests only contains hundreds
of beliefs, while the reachable belief space contains beliefs
exponential to the planning horizon. Therefore, by applying
point-based backup and focusing on the representative belief
set Bπ , PBPS significantly reduced the number of calls to BPS.

Comparison with Existing POMDP methods: Previous
work [15] on POMDPs with boolean and quantitative objectives
are restricted to almost-sure satisfaction. The domains in the
experiments cannot be modeled as almost-sure satisfaction
problems due to the probability threshold constraints in the
boolean objectives. The objectives of the tested domains can
be implicitly encoded as POMDPs with only quantitative
objectives (unconstrained POMDPs) or C/RS/CC-POMDPs.
Our previous work [16] have shown that, in certain domains
such as the kitchen domain in our experiments, using the
implicit representations (unconstrained/C/RS/CC-POMDPs)
does not provide the same guarantee as using our formulation
of POMDPs with explicit boolean and quantitative objectives.

To evaluate the policy quality generated by PBPS, we run a
state-of-the-art POMDP solver SARSOP [5] on the Tag domain.
The policy produced by SARSOP achieves an expected reward
of −6.02 but only visits beliefs where the probability of tagging
the agent is at most 0.539. The policy generated by PBPS

for the Tag domain with δ = 0.6 guarantees that the robot
eventually visits a belief where the probability of tagging the
agent is at least 0.6. For the kitchen domain, since PBPS
considers both safe-reachability and quantitative objectives,
PBPS offers a better guarantee of accomplishing tasks than
solvers for quantitative POMDP models as discussed in [16].

Physical Validation: We validate PBPS on a Fetch robot
for the domain in Fig. 1. The setup of this domain is similar to
the kitchen domain. The Fetch needs to pick up the blue can
on the table while avoiding collisions with uncertain obstacles
such as floor signs and file cabinets, which can be placed in
different locations. There are two regions marked with red tape
that the robot should avoid if possible. We assign the reward
of −10 for states where the robot is in these regions. We also
assign a reward of −1 for each action.

The POMDP’s state space consists of the locations of robot
and object. We use a Vicon system to detect object locations,
which is usually accurate but can still produce false negative
and false positive due to occlusion or inappropriate Vicon
marker configurations on objects. We estimate the false negative
and false positive probabilities by counting the false negative
and false positive events during 100 Vicon detections. The
POMDP’s probabilistic observation function is defined based
on the false negative and false positive probabilities. Sometimes
the Fetch may fail to move its base when given a move action
command and stay in the same place. We estimate the failure
probability of these move actions by counting the failure events
during 100 move action executions. The POMDP’s probabilistic
transition function is defined based on this failure probability.

We evaluate BPS and PBPS in this office domain. Fig. 4a,
4b, 4c, 4d, and 4e show the execution of the policy constructed
by BPS. Fig. 4f, 4g, 4h, 4i, and 4j show the execution of the
policy constructed by PBPS. As shown in these figures, both
executions accomplish the task safely. However, the execution
for BPS visits both red regions (Fig. 4b and 4d) that the
robot should avoid while the execution for PBPS visits zero
red regions. Therefore, PBPS produces a policy that is more
optimal than that produced by BPS by considering both boolean
and quantitative objectives. We also run the physical experiment
on the Fetch ten times. We notice that in one run execution
failure happens. The cause of the failure is a false negative
observation of the wet-floor sign resulting in an unsafe state,
which is rare but could still happen due to uncertain perception.
However, the probability of visiting unsafe states is still below
the given threshold, thanks to the guarantee of PBPS.

V. DISCUSSION

We presented a new policy synthesis approach called PBPS
for POMDPs with both safe-reachability and quantitative
objectives. Our approach combines BPS [16] and Point-Based
Policy Iteration [4]: we apply BPS to efficiently explore the
goal-constrained belief space and perform the point-based
backup on a finite subset of representative beliefs from the
goal-constrained belief space to compute good approximate
policies that satisfy safe-reachability objectives. We prove that
PBPS maintains validity and guarantees improved policies at
each iteration before termination. Moreover, we prove that the
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)
Fig. 4: Executions of policies constructed by BPS (first row) and PBPS (second row) for the domain shown in Fig. 1.

error introduced by PBPS is bounded. Both simulation and
physical experiments demonstrate that the policies constructed
by PBPS achieve the safe-reachability objective and are of
high quality with respect to the quantitative objective.

Our approach assumes a discretized environment and a
bounded horizon, and focuses on safe-reachability objectives.
These assumptions are likely to hold in certain domains where
we want the robot to safely accomplish the task in finite time,
e.g., the corridor domain in [34] and the underwater navigation
problem in [5]. While many robot tasks can be specified using
safe-reachability objectives, there are settings in robotics such
as patrolling and surveillance that require general temporal
properties to specify the tasks. Investigating how to extend
PBPS for general temporal properties is a promising future
direction. Another important ongoing question is how to extend
PBPS for continuous POMDPs [8]–[11].
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