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ABSTRACT
Planning robust executions under uncertainty is a fundamental

challenge for building autonomous robots. Partially Observable

Markov Decision Processes (POMDPs) provide a standard frame-

work for modeling uncertainty in many applications. In this work,

we study POMDPs with safe-reachability objectives, which require

that with a probability above some threshold, a goal state is eventu-

ally reached while keeping the probability of visiting unsafe states

below some threshold. This POMDP formulation is different from

the traditional POMDP models with optimality objectives and we

show that in some cases, POMDPs with safe-reachability objectives

can provide a better guarantee of both safety and reachability than

the existing POMDPmodels through an example. A key algorithmic

problem for POMDPs is policy synthesis, which requires reasoning

over a vast space of beliefs (probability distributions). To address

this challenge, we introduce the notion of a goal-constrained be-
lief space, which only contains beliefs reachable from the initial

belief under desired executions that can achieve the given safe-

reachability objective. Our method compactly represents this space

over a bounded horizon using symbolic constraints, and employs

an incremental Satisfiability Modulo Theories (SMT) solver to effi-

ciently search for a valid policy over it. We evaluate our method

using a case study involving a partially observable robotic domain

with uncertain obstacles. The results show that our method can

synthesize policies over large belief spaces with a small number of

SMT solver calls by focusing on the goal-constrained belief space.
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1 INTRODUCTION
Partially Observable Markov Decision Processes (POMDPs) [38]

provide a principled mathematical framework for modeling a va-

riety of problems in the face of uncertainty [5, 11, 22, 29]. As an

example, in robotics, accounting for uncertainty is a fundamental
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Figure 1: An example of a safe-reachability objective: a ro-
bot with uncertain actuation and perception needs to navi-
gate through the kitchen and pick up a green cup from the
black storage area (reachability), while avoiding collisions
with uncertain obstacles (e.g., chairs) modeled as cylinders
in the yellow “shadow” region (safety).

challenge for deploying autonomous robots in the physical world.

Many applications in uncertain robotic domains can be modeled as

POMDP problems [5, 6, 15, 22].

A key algorithmic problem for POMDPs is the synthesis of poli-
cies [38]: recipes that specify the actions to take under all possible
events in the environment. Typically, the goal in policy synthesis is

to find optimal solutionswith respect to quantitative objectives such

asmaximizing discounted reward [1, 12, 15–17, 25, 26, 39, 40].While

the purely quantitative formulations of the problem are suitable for

many applications, there are, settings that demand synthesis with

respect to boolean requirements. For example, consider the scenario

shown in Figure 1 where we want to guarantee that a robot can

accomplish a task safely in an uncertain domain. This goal is natu-

rally formulated as policy synthesis from a high-level requirement

written in a temporal logic. Moreover, in some cases, formulating

boolean requirements as quantitative objectives by assigning nega-

tive rewards for states that violate the boolean requirements and

positive rewards for states that satisfy the boolean requirements,

leads to policies that are overly conservative or overly risky [43],

depending on the particular reward function chosen. Therefore,

new models and algorithms are required for handling POMDPs

with boolean requirements explicitly. In Section 4, we discuss an

example that shows in some scenarios, handling boolean require-

ments explicitly in POMDPs provides a better guarantee of both

safety and reachability than the traditional quantitative POMDP

formulations.

Policy synthesis in POMDPs with respect to boolean require-

ments has been studied before. Specifically, inspired by applications



in robotics, the qualitative analysis problem of almost-sure satis-
faction of POMDPs with temporal logic specifications was first

introduced in [6]. In their work, the goal is to find policies that

satisfy a temporal property with probability 1.

A more general quantitative analysis problem of POMDPs with

temporal logic specifications is to synthesize policies that satisfy a

temporal property with a probability above some threshold. In this

work, we study this problem for the special case of safe-reachability
properties, which require that with a probability above some thresh-

old, a goal state is eventually reached while keeping the probabil-

ity of visiting unsafe states below some threshold. Many robot

tasks such as the one in Figure 1 can be formulated using a safe-

reachability objective.

Previous results [7, 27, 33] have shown that the quantitative anal-

ysis problem of POMDPswith reachability objectives is undecidable.

To make the problem tractable, we assume there exists a bounded
horizon h such that h is sufficiently large to prove the existence

of a valid policy, or the user is not interested in plans beyond the

bounded horizon h. This assumption is particularly reasonable for

robotic domains because robots are often required to accomplish

a task in bounded steps due to some resource constraints such as

energy/time constraints. Figure 1 shows an example of such a sce-

nario: a robot with uncertain actuation and perception needs to

navigate through a kitchen to pick up an object in bounded steps

while avoiding collisions with uncertain obstacles.

To the best of our knowledge, the quantitative analysis problem

of POMDPs with safe-reachability objectives has not been consid-

ered before. In this work, we present a practical policy synthesis

approach for this problem. Like most other algorithms for policy

synthesis, our approach is based on reasoning about the space of be-
liefs, or probability distributions over possible states of the POMDP.

Our primary algorithmic challenge is that the belief space is a vast,

high-dimensional space of probability distributions.

Our approach to this challenge is based on the new notion of a

goal-constrained belief space. This notion takes inspiration from re-

cent advances in point-based algorithms [25, 26, 34, 39] for POMDPs

with discounted reward objectives. These POMDP algorithms ex-

ploit the notion of the reachable belief space R(binit ) from an initial

belief binit and compute an approximately optimal policy over

R(binit ) rather than the entire belief space. Similarly, we com-

pute a valid policy over a goal-constrained belief space, which con-

tains beliefs visited by desired executions that can achieve the

safe-reachability objective. The goal-constrained belief space is

generally much smaller than the original belief space.

Our synthesis algorithm, bounded policy synthesis (BPS), com-

putes a valid policy by iteratively searching for a candidate plan in

the goal-constrained belief space and constructing a policy from

this candidate plan. We compactly represent the goal-constrained

belief space over a bounded horizon using symbolic constraints. The

applicability of constraint-based methods has been already advo-

cated in several robotics planning algorithms [8, 23, 31, 44]. Many

of these algorithms take advantage of a modern, incremental SMT

solver [9] for efficiency. Inspired by this, we apply the SMT solver

to efficiently explore the symbolic goal-constrained belief space to

generate candidate plans. Note that a candidate plan is a single path

that only covers a particular observation at each step, while a valid

policy is contingent on all possible observations. Therefore, once a

candidate plan is found, BPS tries to generate a valid policy from

the candidate plan by considering all possible events at each step.

If this policy generation fails, BPS adds additional constraints that

block invalid plans and force the SMT solver to generate other bet-

ter plans. The incremental capability of the SMT solver allows BPS

to efficiently generate alternate candidate plans when we update

the constraints. If there is no new candidate plan for the current

horizon, BPS increases the horizon and repeats the above steps until

it finds a valid policy or reaches a given horizon bound.

In summary, the contributions of the paper are:

• We show that in some domains, our formulation of POMDPs

with safe-reachability objectives offers a better guarantee

of both safety and reachability than the existing POMDP

models through an example (Section 4).

• We introduce the notion of a goal-constrained belief space

to address the scalability challenge of solving POMDPs with

safe-reachability objectives. Based on this notion, we present

a novel approach called BPS for policy synthesis of POMDPs

with safe-reachability objectives.

• We evaluate the scalability of BPS using a case study involv-

ing a partially observable robotic domain with uncertain

obstacles (Figure 1). The experimental results demonstrate

that BPS can scale up to huge belief spaces by focusing on

the goal-constrained belief space.

2 RELATEDWORK
POMDPs [38] provide a principled mathematical framework for

modeling a variety of robotics problems in the face of uncertainty.

Many POMDP algorithms [1, 15, 25, 26, 39, 40] for robot applications

focus on discounted reward objectives. Recent work [5, 6, 42] has

investigated almost-sure satisfaction of POMDPs with temporal

logic specifications, where the goal is to check whether a temporal

logic objective can be ensured with probability 1. Our approach can

be seen as synthesizing policies for large POMDP problems with

basic temporal logic objectives (safe-reachability), but not limited

to almost-sure satisfaction analysis. Though we may formulate a

safe-reachability objective as an optimization problem by assigning

negative rewards for unsafe states and positive rewards for goal

states, this formulation does not always yield good policies [43].

Recently, there has been a large body of work that extends the

traditional POMDP model with notions of risk and cost, including

constrained POMDPs (C-POMDPs) [21, 24, 36, 43], risk-sensitive

POMDPs (RS-POMDPs) [20, 28] and chance-constrained POMDPs

(CC-POMDPs) [37]. There are two major differences between their

models and our formulation of POMDPs with safe-reachability ob-

jectives. First, the objective of these models is to maximize the

cumulative expected reward while keeping the expected cost/risk

below some threshold, while in our case, the objective is to sat-

isfy a safe-reachability objective in all possible executions includ-

ing the worst case, providing a better safety guarantee than the

formulation of expected cost/risk threshold constraints. Second,

C/RS/CC-POMDPs typically need to assign a proper positive reward

for goal states to ensure reachability and do not have direct control

over the probability of reaching goal states (e.g., reach a goal state

with a probability greater than some threshold), while our safe-

reachability objective can directly encode this probability threshold



constraint as a boolean requirement, providing a better reachability

guarantee than the quantitative formulation of C/RS/CC-POMDPs.

While C/RS/CC-POMDPs are suitable for many applications, there

are domains in robotics such as autonomous driving and disaster

rescue that demand synthesis of policies that can provide such

strong guarantee of reaching goal states safely.

Task and Motion Planning (TMP) [2, 8, 13, 14, 18, 19, 23, 41, 44]

describes a class of challenging problems that combine low-level

motion planning and high-level task reasoning. Most of these TMP

approaches focus on deterministic domains, while several of them

apply to uncertain domains with uncertainty in perception [18, 23].

The main difference is that, the above works perform online plan-
ning with a determinized approximation of belief space dynamics

[35] assuming the most likely observation will be obtained, while

our approach synthesizes a valid policy offline contingent on all

possible events.

Our method computes a valid policy by iteratively searching for

a candidate plan that is likely to succeed with determinized obser-

vations in the goal-constrained belief space, and then constructing

a policy from this candidate plan by considering other possible

observations. This idea has been shown to improve the scalability

of algorithms for a variety of uncertain domains [4, 10, 30]. The

scalability of our approach also relies on exploiting the notion of

a goal-constrained belief space. This idea resembles efficient point-

based POMDP algorithms [25, 26] based on (optimally) reachable

belief space.

We apply techniques from Bounded Model Checking (BMC) [3]

to compactly represent the goal-constrained belief space over a

bounded horizon. BMC verifies whether a finite state system satis-

fies a given temporal logic specification. Thanks to the tremendous

increase in the reasoning power of practical SMT (SAT) solvers,

BMC can scale up to large systems with hundreds of thousands

of states. Our approach efficiently explores the goal-constrained

belief space by leveraging a modern, incremental SMT solver [9]. It

has been shown that the incremental capability of the SMT solver

leads to an efficient planning algorithm for TMP [8]. Inspired by

this result, we now leverage incremental SMT solvers for belief

space policy synthesis.

3 PROBLEM FORMULATION
In this work, we consider the problem of policy synthesis for

POMDPs:

Definition 3.1 (POMDP).
A Partially Observable Markov Decision Process (POMDP) is a tuple

P = (S,A,T ,O,Z):

• S is a finite set of states.
• A is a finite set of actions.
• T is a probabilistic transition function T(s,a, s ′) = p(s ′ |s,a),
which defines the probability of moving to state s ′ ∈ S after

taking an action a ∈ A in state s ∈ S.
• O is a finite set of observations.
• Z is the probabilistic observation function Z(s ′,a,o) =
p(o |s ′,a), which defines the probability of observing o ∈ O
after taking an action a ∈ A and reaching state s ′ ∈ S.

Due to uncertainty in transition and observation, the actual state

is partially observable and typically we maintain a belief, which is a

probability distribution over all possible states b : S → [0, 1] with∑
s ∈S

b(s) = 1. The set of beliefs B = {b : S → [0, 1] |
∑
s ∈S

b(s) = 1}

is known as belief space. Note that a transition TB in belief space is

a deterministic function b ′ = TB (b,a,o), i.e., given an action a ∈ A
and an observation o ∈ O, the updates to beliefs are deterministic

based on the formula:

b ′(s ′) = αZ(s ′,a,o)
∑
s ∈S

T(s,a, s ′)b(s) (1)

where α is a normalization constant.

Definition 3.2 (Plan).
A plan in belief space is a sequence σ = (b0,a1,o1,b1,a2,o2,b2, . . . )
such that for all i > 0, the belief updates satisfy the transition

function TB , i.e., bi = TB (bi−1,ai ,oi ), where ai ∈ A is an action

and oi ∈ O is an observation.

Definition 3.3 (Policy).
A policy π : B → A is a function that maps a belief b ∈ B to

an action a ∈ A. A policy π defines a set of plans in belief space:

Ωπ = {σ = (b0,a1,o1, . . . ) | ∀i > 0,ai = π (bi−1) and oi ∈ O}. For
each plan σ ∈ Ωπ , the action ai at each step i is chosen by the

policy π .

3.1 Safe-Reachability Objective
In this work, we consider POMDPs with safe-reachability objectives:

Definition 3.4 (Safe-Reachability Objective).
A safe-reachability objective is a tuple G = (Dest, Safe):

• Safe is a set of safe beliefs
• Dest is a set of goal beliefs. In general, goal beliefs are safe

beliefs, i.e., Dest ⊆ Safe.

A safe-reachability objective G compactly represents the set ΩG
of satisfiable plans in belief space:

Definition 3.5 (Satisfiable Plan).
A plan σ = (b0,a1,o1, . . . ) satisfies a safe-reachability objective

G = (Dest, Safe) if there exists a belief bk at step k in the plan σ
that is a goal belief bk ∈ Dest and all the beliefs bi (i < k) visited
before step k are safe beliefs bi ∈ Safe.

Note that safe-reachability objectives are defined using sets of

beliefs (probability distributions). The quantitative analysis prob-

lem of POMDPs with requirements of a goal state is eventually

reached with a probability above some threshold while keeping the

probability of visiting unsafe states below some threshold, can be

easily formulated as a safe-reachability objective G = (Dest, Safe)
defined as follows:

Dest = {b ∈ B | ©«
∑

s is a goal state

b(s)
ª®¬ > 1 − δ1} (2)

Safe = {b ∈ B | ©«
∑

s violates safety

b(s)
ª®¬ < δ2} (3)

Where δ1 and δ2 are a small values that represents tolerance.
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Figure 2: An example to show the difference between our for-
mulation of POMDPs with safe-reachability objectives and
unconstrained/C/RS/CC-POMDPs. There are 3 states: start
state sready, unsafe state sunsafe and goal state sgoal. Dashed
green edges represent transitions of executing left-hand
pick-up action aL in state sready and solid red edges repre-
sent transitions of executing right-hand pick-up action aR
in state sready. For each edge, the first line is the transition
probability and the second line is the tuple of observation
probabilities (popos ,poneg ).

3.2 Goal-Constrained Belief Space
It is intractable to compute a full policy that satisfies a given safe-

reachability objective for POMDPs, even under the assumption of

bounded horizon, due to the curse of dimensionality [32]: the belief

space B is a high-dimensional, continuous space that contains an

infinite number of beliefs.

However, the reachable belief space [25] R(binit ) that contains
beliefs reachable from the given initial belief binit , is much smaller

than B in general. Moreover, the safe-reachability objective G de-

fines a set ΩG of plans that satisfy G. Combining R(binit ) and ΩG ,
we can construct a goal-constrained belief space R∗(binit ,G) that
contains beliefs reachable from the initial belief binit under satisfi-
able plans σ ∈ ΩG . The goal-constrained belief space R∗(binit ,G)
is usually much smaller than the reachable belief space R(binit ).
Thus, computing policies over the goal-constrained belief space

R∗(binit ,G) can lead to a substantial gain in efficiency.

3.3 Problem Statement
Given a POMDP P = (S,A,T ,O,Z), an initial belief binit and
a safe-reachability objective G, our goal is to synthesize a valid
policy πR∗ over the corresponding goal-constrained belief space

R∗(binit ,G):

Definition 3.6 (Valid Policy).
A valid policy πR∗ : R

∗(binit ,G) 7→ A over a goal-constrained

belief space is a function that maps a belief b ∈ R∗(binit ,G) to
an action a ∈ A. Therefore, the set ΩπR∗ of plans defined by the
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Figure 3: The belief space transition for the POMDP in
Figure 2. Blue nodes (psready ,psunsafe ,psgoal ) represent beliefs
(probability distribution over states) and red nodes repre-
sent observation. The edges from blue nodes to red nodes
represent actions and the edges from rednodes to blue nodes
represent observations and the corresponding probabilities.

policy πR∗ is a subset of the set ΩG defined by the safe-reachability

objective G. i.e., ΩπR∗ ⊆ ΩG .

4 RELATION TO UNCONSTRAINED POMDPS
AND C/RS/CC-POMDPS

There are two distinct approaches that can model safe-reachability

objectives implicitly using the existing POMDP models in the liter-

ature. The first approach is to incorporate safety and reachability

constraints as negative penalties for unsafe states and positive re-

wards for goal states in unconstrained POMDPs with quantitative

objectives. However, the authors of [43] have shown a counterex-

ample that demonstrates formulating constraints as unconstrained

POMDPs with quantitative objectives does not always yield good

policies. The second approach is to encode safe-reachability objec-

tives implicitly as C/RS/CC-POMDPs that extend unconstrained

POMDPs with notions of risk and cost [20, 21, 24, 28, 36, 37, 43].

In this section, we show the differences between POMDPs with

safe-reachability objectives and unconstrained/C/RS/CC-POMDPs

through an example.

In Figure 1, after the robot passes the yellow “shadow” region

and moves to the position where it is ready to pick up a green cup

from the black storage area (start state s
ready

), it needs to decide

how to pick up the object. There are two action choices: pick-

up using the left hand (action aL) and pick-up using the right

hand (action aR ). Both aL and aR are uncertain, and the robot

may hit the storage while executing aL or aR , which results in an

unsafe collision state s
unsafe

. There are two possible observations

after executing aL or aR : observation opos representing the robot
observes a cup in its hand and observation oneg representing the

robot observes no cup in its hand (Note that the actual state may

be different from the observation due to uncertainty). The task

objective is to reach a goal state s
goal

where the robot holds a cup

in its hand with a probability greater than 0.8 (reachability) while
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keeping the probability of visiting unsafe state s
unsafe

below the

threshold 0.2 (safety). The probability transition and observation

functions are shown in Figure 2. Based on Formula 1, we can get

the transition in the corresponding belief space (see Figure 3).

If we model this problem as an unconstrained POMDP by as-

signing a negative penalty −P (P > 0) for unsafe state s
unsafe

and a

positive reward R (R > 0) for goal state s
goal

, the optimal action for

s
ready

that achieves the maximum reward is always aL , no matter

what values of P and R are. This is because the expected reward

of action aL (0.9R − 0.1P ) is greater than the expected reward of

aR (0.85R − 0.1P ). However, action aL does not satisfy the original

safe-reachability objective in the worst case where the robot ob-

serving oneg after executing action aL and the resulting belief state

(0, 0.28, 0.72) violates the original safety-reachability objective.

If we model this problem as a C/RS/CC-POMDP by assigning a

positive reward R for goal state s
goal

and a cost 1 for visiting unsafe

state s
unsafe

, the best action for s
ready

will be aL since both aL and

aR satisfies the cost/risk constraint (expected cost/risk 0.1 < 0.2)

and the expected reward of aL (0.9R) is greater than the expected

reward of aR (0.85R). However, action aL violates the original safe-

reachability objective for the same reason explained above.

On the other hand, using our formulation of POMDPs with safe-

reachability objectives, the best action for s
ready

will be aR . This
is because, as shown in Definition 3.6, a valid policy in our formu-

lation should satisfy the safe-reachability objective in all possible

executions and only aR satisfies the safe-reachability objective in

every possible execution.

The intent of this simple example is to illustrate that in some

domains where we want the robot to safely accomplish the task,

our formulation of POMDPs with safe-reachability objectives can

provide a better guarantee of both safety and reachability than the

existing POMDPmodels. While the formulations of cost/risk as neg-

ative penalties in unconstrained POMDPs and expected cost/risk

threshold constraints in C/RS/CC-POMDPs are suitable for many

applications, there are domains such as autonomous driving and

disaster rescue that demand synthesis of policies that can provide

such strong guarantee of reaching goal states safely as in our for-

mulation, especially when violating safety requirements results in

irreversible damage to robots.

5 BOUNDED POLICY SYNTHESIS
The core steps of BPS (Algorithm 1) are shown in Figure 4. BPS

computes a valid policy by iteratively searching for a candidate plan

in the goal-constrained belief space R∗(binit ,G) and constructing
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Figure 5: An example run of BPS. The black box repre-
sents the goal-constrained belief space R∗(binit ,G) over the
bounded horizon k , blue nodes represent beliefs, red nodes
represent observations, and the dashed green path repre-
sents one candidate plan σk found by the incremental SMT
solver. BPS constructs a policy tree from this candidate plan
by considering other branches following the red observation
node for each step.

a valid policy from this candidate plan. Figure 5 graphically depicts

one example run of BPS.

First BPS compactly encodes the goal-constrained belief space

R∗(binit,G) (the black box in Figure 5) w.r.t. the given POMDP

P = (S,A,T ,O,Z), the initial belief binit and the safe-reachability
objective G over a bounded horizon k as a logical formula Φk (Al-

gorithm 1, lines 2, 6, 8). We describe the details of the constraints

that encode the goal-constrained belief space in Section 5.1.

Then BPS computes a candidate plan by checking the satisfia-

bility of the constraint Φk (line 10) through a modern, incremental

SMT solver [9]. Note that the horizon k restricts the length of the

plan and thus the robot can only execute k actions.

If Φk is satisfiable, the SMT solver returns a candidate plan

(the dashed green path in Figure 5) and BPS tries to generate a

valid policy from the candidate plan by considering all possible

observations, i.e., other branches following the red observation node

at each step (line 14). If this policy generation succeeds, we find a

valid policy. Otherwise, BPS adds additional constraints that block

this invalid plan (line 16) and forces the SMT solver to generate

another better candidate.

IfΦk is unsatisfiable and thus there is no new plan for the current

horizon, BPS increases the horizon by one (line 21) and repeats the

above steps until a valid policy is found (line 18) or a given horizon

bound h is reached (line 3).

This incremental SMT solver [9] can efficiently generate alter-

nate candidate plans by maintaining a stack of scopes, where each
scope is a container for a set of constraints and the corresponding

“knowledge” learned from this set of constraints. For fast repeated

satisfiability checks, when we update constraints (lines 2, 6, 8, 16),

rather than rebuilding the “knowledge” from scratch, the incre-

mental SMT solver only changes the “knowledge” related to the

updates by pushing (line 7) and popping (line 20) scopes. Thus

the “knowledge” learned from previous satisfiability checks can be

reused.



Algorithm 1: BPS
Input:
POMDP P = (S,A,T ,O,Z)
Initial Belief binit
Safe-Reachability Objective G

Start Step s
Horizon Bound h
Output: A Valid Policy π

1 k ← s; /* Initial horizon */

2 Φk ← (bs = binit ) ; /* Initial belief */

3 while k ≤ h do
4 σk ← ∅; /* σk : Candidate plan */

/* Add transition at step k if k > s */

5 if k > s then
6 Φk ← Φk ∧ (bk = TB (bk−1,ak ,ok ));

7 push(Φk ); /* Push scope */

/* Add goal constraints at step k (Formula 4) */

8 Φk ← Φk ∧ G(σk ,G,k);

9 while ∅ = σk do
/* Candidate generation */

10 σk ← IncrementalSMT(Φk );

11 if ∅ = σk then /* No new plan */

12 break;
13 else

/* ϕ: constraints for blocking invalid plans */

14 π ,ϕ = PolicyGeneration(P ,G,σk , s + 1,k);

15 if ∅ , ϕ then /* Generation failed */

16 Φk ← Φk ∧ ϕ;

17 else
18 return π ;

19 σk ← ∅;

/* Pop scope: pop goal and ϕ at step k */

20 pop(Φk );

21 k ← k + 1 ; /* Increase horizon */

22 return ∅;

5.1 Constraint Generation
In the first step, we use an encoding from Bounded Model Check-

ing (BMC) [3] to construct the constraint Φk representing the

goal-constrained belief space R∗(binit,G) w.r.t. the POMDP P =
(S,A,T ,O,Z), the initial belief binit and the safe-reachability ob-

jective G over the bounded horizon k . The idea behind BMC is to

find a finite plan with increasing horizon that satisfies the given

safe-reachability objective.

The constraint Φk contains three parts:

(1) Starting from the initial belief (line 2): bs = binit.
(2) Unfolding of the transition up to the horizon k (line 6):∧k

i=s+1(bi = TB (bi−1,ai ,oi )).
(3) Satisfying the safe-reachability objective G (line 8).

We can translate a safe-reachability objective to the constraint

G(σk ,G,k) on bounded plans σk = (bs ,as+1,os+1, . . . ,ak ,ok ,bk )

Algorithm 2: PolicyGeneration
Input:
POMDP P = (S,A,T ,O,Z)
Safe-Reachability Objective G

Candidate Plan σk = (b
σk
s ,a

σk
s+1,o

σk
s+1,b

σk
s+1 . . . )

Start Step s
Horizon Bound h
Output: A Valid Policy π and Constraints ϕ for blocking

invalid plans if the input candidate plan is invalid

23 π ← ∅;

24 for i = h downto s do
25 foreach observation o ∈ O − {oσki } do

/* Try observation o */

26 b ′i ← TB (b
σk
i−1,a

σk
i ,o);

/* Call BPS to construct the branch */

27 π ′ ← BPS(P ,b ′i ,G, i,h);

28 if ∅ = π ′ then /* Construction failed */

29 Construct ϕ using Formula 5

30 return ∅, ϕ;

31 π ← π ∪ π ′; /* Combine policy */

/* Record action choice for belief b
σk
i−1 */

32 π (b
σk
i−1) ← a

σk
i ;

33 return π , ∅;

using the rules provided by BMC [3] as follows:

G(σk ,G,k) =
k∨
i=s
(bi ∈ Dest ∧ (

i−1∧
j=s
(bj ∈ Safe))) (4)

For a safe-reachability objective G with a set Dest of goal beliefs
and a set Safe of safe beliefs, a finite plan that visits a goal belief

while staying in the safe region is sufficient to satisfy G. There-

fore, we only need to specify that a bounded plan with length k
eventually visits a belief bi ∈ Dest while staying in the safe region

(
∧i−1
j=s (bj ∈ Safe)), as shown in Formula 4.

5.2 Plan Generation
The next step is to generate a candidate plan σk of length k that

satisfies the constraint Φk . We apply an incremental SMT solver to

efficiently search for such a candidate in the goal-constrained belief
space R∗(binit,G) defined by Φk (line 10). If Φk is unsatisfiable,

there is no bounded plan σk for the current horizon. In this case, we

need to increase the horizon (line 21). If Φk is satisfiable, the SMT

solver will return a satisfying model that assigns concrete values

b
σk
i , a

σk
i+1 and o

σk
i+1 for the belief bi , action ai+1 and observation

oi+1 at each step i respectively, which can be used to construct the

candidate plan σk = (b
σk
s ,a

σk
s+1,o

σk
s+1,b

σk
s+1 . . . ,a

σk
k ,o

σk
k ,b

σk
k ).

5.3 Policy Generation
After plan generation, we get a candidate plan σk (the dashed green

path in Figure 5) that satisfies the safe-reachability objective G.

This candidate plan is a single path that only covers a particular

observation o
σk
i at each step i . To construct a valid policy, we

should also consider other possible observations o′i , o
σk
i , i.e.,



other branches following the red observation node for each step

i . Policy generation (Algorithm 2) tries to construct a valid policy

from a candidate plan by considering all possible observations at

each step.

For a candidate plan σk , we process each step of σk , starting
from the last step (Algorithm 2, line 24). For each step i , since the
set of observations O is finite, we can enumerate every possible

observation o′i , o
σk
i (line 25) and compute the next belief b ′i using

the transition function (line 26). To ensure the action a
σk
i also works

for this different observation o′i , we need to compute a valid policy

for the branch starting from b ′i , which is another BPS problem and

can be solved using Algorithm 1 (line 27).

If we successfully construct the valid policy π ′ for this branch,
we can add π ′ to the policy π for the original synthesis problem

(line 31). Otherwise, this candidate plan σk can not be an element

of a valid policy σk < Ωπ . In this case, we know that the prefix

of the candidate plan (b
σk
s ,a

σk
s+1,o

σk
s+1, . . . ,b

σk
i−1,a

σk
i ) is invalid for

current horizon k and we can add additional constraints ϕ to block

all invalid plans that have this prefix (line 29):

ϕ = ¬ ((bs = b
σk
s ) ∧ (ai = a

σk
i ) ∧( i−1∧

m=s+1
(am = a

σk
m ) ∧ (om = o

σk
m ) ∧ (bm = b

σk
m )

)
) (5)

Note that ϕ is only valid for current horizon k and when we

increase the horizon, we should pop the scope related to the ad-

ditional constraints ϕ from the stack of the SMT solver (line 20)

so that we can revisit this prefix with the increased horizon. If we

successfully construct policies for all other branches at step i , we
know that the choice of action a

σk
i for belief b

σk
i−1 is valid for all

possible observations. Then we record this choice for belief b
σk
i−1

in the policy (line 32). This policy generation terminates when it

reaches the start step s as stated in the for-loop (line 24) or it fails

to construct the valid policy π ′ for a branch (line 28).

5.4 Algorithm Complexity
The reachable belief space R(binit) can be seen as a tree where the

root node is the initial beliefbinit and at each node, the tree branches
on every action and observation. The given horizon bound h limits

the height of the tree. Therefore, the reachable belief spaceRh (binit)

of height h containsO(|A|h |O|h ) plans, where |A| and |O| are the
size of action set A and the size of observation set O respectively.

To synthesize a valid policy, a naive approach that checks every plan
in the reachable belief space Rh (binit) requires O(|A|

h |O|h ) calls

to the SMT solver. This exponential growth of the reachable belief

space Rh (binit) due to branches on both action and observations is

a major challenge for synthesizing a valid policy.

In our case, BPS exploits the notion of goal-constrained belief
space R∗(binit,G) and efficiently explores the goal-constrained be-
lief space R∗(binit,G) by leveraging an incremental SMT solver to

generate a candidate plan σ of length at most h. This candidate
plan fixes the choice of actions at each step and thus the policy

generation process only needs to consider the branches on obser-

vations for each step, as shown in Figure 5. Therefore, BPS requires

O(I |O|h ) calls to the SMT solver, where I is the number of inter-

actions between plan generation and policy generation, while the

naive approach described above requires O(|A|h |O|h ) SMT solver

calls. In general, I is often much smaller than |A|h , which leads to

much faster policy synthesis. Therefore, we expect our method to

be effective for POMDPs with a high-dimensional action space and

a restricted partially observable component, but would not scale

well for POMDPs with high-dimensional/continuous observation

space.

6 EXPERIMENTS
We evaluate BPS in a partially observable kitchen domain (Figure

1) with a PR2 robot andM uncertain obstacles placed in the yellow

“shadow” region. The task for the robot is to safely pass the yellow

“shadow” region avoiding collisions with uncertain obstacles and

eventually pick up a green cup from the black storage area.

We first discretize the kitchen environment into N cells. We

assume that the locations of the obstacles are uniformly distributed

among the cells in the yellow “shadow” region and there is at most

one obstacle in each cell. We also assume the robot starts at a known

initial location. However, due to the robot’s imperfect perception,

the locations of the robot, the locations of uncertain obstacles, and

the location of the target cups are all partially observable during

execution.

In this domain, the actuation and perception of the robot are

imperfect. There are ten uncertain robot actions (|A| = 10):

(1) Four move actions that move the robot to an adjacent cell in

four directions: includingmove-north,move-south,move-west
andmove-east.Move actions could fail with a probabilityp

fail
,

resulting in no change in the state.

(2) Four look actions that observe a cell to see whether there is

an obstacle in that cell, including look-north, look-south, look-
west, look-east (look at the adjacent cell in the corresponding

direction). When the robot calls look to observe a particular

celli , it may either make an observation o = opos repre-
senting the robot observes an obstacle in celli or o = oneg
representing the robot observers no obstacle in celli . The

probabilistic observation functionZ(s ′,a,o) for look actions
is defined based on the false positive probability p

fp
and the

false negative probability p
fn
.

(3) Two pick-up actions that pick up an object from the black

storage area: pick-up using the left hand aL and pick-up

using the right hand aR . The model of pick-up actions is the

same as what we discussed in Section 4 (see Figure 2).

The task shown in Figure 1 can be specified as a safe-reachability

objective with a set Dest of goal beliefs and a set Safe of safe beliefs,
defined as follows:

Dest = {b ∈ B |
(∑

b(target cup in robot’s hand))

)
> 1 − δ1}

Safe = {b ∈ B |
(∑

b(robot in collision))

)
< δ2} (6)

where δ1 and δ2 are small values that represent tolerance. The

reachability objective specifies that in a goal belief, the probability

of having the target cup in the robot’s hand should be greater than

the threshold 1 − δ1. The safety objective specifies that in a safe

belief, the probability of the robot in collision (the robot and one

obstacle in the same cell) should be less than the tolerance δ2.



1 2 3 4

10
0

10
1

10
2

10
3

Number of obstaclesM

P
o
l
i
c
y
S
y
n
t
h
e
s
i
s
T
i
m
e
(
s
)

BPS (with inc.)

BPS (no inc.)

Figure 6: Performance of BPS as the number of obstacles
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with incremental solving and the plot of squares shows the
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We evaluate the performance of BPS using test cases of the

kitchen domain with various numbers of obstacles. We use Z3

[9] as our backend incremental SMT solver. All experiments were

conducted on a 3.0GHz Intel
®
processor with 32GB memory. For

all the tests, the horizon bound is h = 20 and the number of cells in

the kitchen environment is N = 24.

To evaluate the gains from incremental solving, we test BPS in

two settings: with and without incremental solving. Note that when

incremental solving is disabled, each call to the SMT solver requires

solving the SMT constraints from scratch, rather than reusing the

results from the previous SMT solver calls. Figure 6 shows the per-

formance results of BPS with and without incremental solving. As

we can see from Figure 6, enabling incremental solving in BPS leads

to a performance improvement in policy synthesis. This is because

the BMC encoding [3] used in BPS is particularly suitable for incre-

mental solving since increasing horizon and blocking invalid plans

correspond to pushing/popping constraints.

To demonstrate the gains from utilizing the goal-constrained

belief space compared to a naive exhaustive search in the reachable

belief space, we first estimate the number of plans in the reachable

belief space. There is no observation branching for the four move
actions and there are two observation branches for the four look
actions. We ignore the two pick-up actions since these two actions

are not available in every step and can only be performed when

the robot is fairly confident that it is in the position where it is

ready to pick up a cup from the black storage area. Therefore, the

approximate lower bound of the number of plans in the reachable

belief space with at most h = 20 steps is (4 + 4 × 2)20 ≈ 10
21
.

However, as we can see from Figure 7 where we show the number

of plans checked by BPS during policy synthesis, for the largest

test, the number of plans checked (around 120) in BPS is very small

compared to the number of plans in the reachable belief space.

These results show that BPS can solve problems in huge reachable

belief spaces with a small number of SMT solver calls by focusing

on the goal-constrained belief space.
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Figure 7: The number of plans checked (i.e, the number of
SMT calls) by BPS during policy synthesis as the number of
obstaclesM varies.

However, Figure 6 also shows that the synthesis time grows

exponentially as the number of obstacles increases, which matches

our complexity analysis in Section 5.4. This is because the current

implementation of BPS operates on an exact tree representation
of policies with all the observation branches. As the number of

obstacles increases, both the horizon bound (the height of the policy

tree) and the size of the state space (the belief space dimension)

increase, which leads to an exponential growth of plans in the

policy tree and makes the policy synthesis problem much harder.

7 CONCLUSION AND DISCUSSION
We present a novel policy synthesis method called BPS for POMDPs

with safe-reachability objectives. We exploit the notion of a goal-

constrained belief space to improve computational efficiency. We

construct constraints in a way similar to Bounded Model Checking

[3] to compactly represent the goal-constrained belief space, which

we efficiently explore through an incremental Satisfiability Modulo

Theories solver [9]. We evaluate BPS in an uncertain robotic domain

and the results show that our method can synthesize policies for

large problems by focusing on the goal-constrained belief space.

The current implementation of BPS operates on an exact repre-
sentation of the policy (the tree structure shown in Figure 5). As

a result, BPS suffers from the exponential growth as the horizon

increases. An important ongoing question is how to approximately

represent the policy while preserving correctness. Another issue

arises from the discrete representations (discrete POMDPs) used

in our approach. While many robot tasks can be modeled using

these representations, discretization often suffers from the “curse

of dimensionality”. Investigating how to deal with continuous state

spaces and continuous observations directly without discretiza-

tion is another promising future direction for this work and its

application in robotics.
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