
A Heuristic Approach to Finding Diverse Short Paths

Caleb Voss, Mark Moll, and Lydia E. Kavraki

Abstract— We present an algorithm that seeks to find a set of
diverse, short paths through a roadmap graph. The usefulness
of a such a set is illustrated in robotic motion planning
and routing applications wherein a precomputed roadmap of
the environment is partially invalidated by some change, for
example, relocation of obstacles or reconfiguration of the robot.
Our algorithm employs the heuristic that nearby configurations
are likely to be invalidated by the same change. To find diverse
short paths, the algorithm finds the shortest detour avoiding a
collection of balls imposed on the graph as simulated obstacles.
Different collections yield different short paths. Paths may then
be checked for validity as a cheap alternative to checking
or reconstructing the entire roadmap. We describe a formal
definition of path set diversity and several measures on which
to evaluate our algorithm. We compare the speed and quality of
our heuristic algorithm’s results against an exact algorithm that
computes the optimally shortest set of paths on the roadmap
having a minimum diversity. We show that, with tolerable loss
in shortness, we produce equally diverse path sets orders of
magnitude more quickly.

I. INTRODUCTION

The problem of robotic motion planning, how to move
a robot between two configurations along a collision free
path through an environment, is often approached through the
techniques of sampling-based planners. These methods rely
on building a data structure of valid motion segments through
the configuration space, thereby reducing the problem to a
graph search [1]. It is often the case that a robot needs to plan
many successive queries through the same environment, but
with different start and goal configurations. The probabilistic
roadmap (PRM) [2] and algorithms based on it, like SPARS2
[3], are suited to this problem as they build a graph of valid
segments throughout the entire environment. This is done
offline in preparation for future queries. Online, the start
and goal configurations are connected to the graph. Motion
planning problems can then be solved using a graph search
between the start and goal [4]. Because of the nature of such a
roadmap, there can be many paths satisfying the same query.

Consider a problem in which the robot plans multiple
times in the same environment using a roadmap, but in which
the free space is subject to modifications between plans. As
such, some edges and vertices in the roadmap graph may
not always be valid. As a motivating example, a robotic
arm on a mobile base is asked to move objects of various
sizes through a cluttered space. It will find itself in a more
constricted free space when the object is large, and relocation

Work by Caleb Voss has been supported in part by NSF 1317849. Work by
Mark Moll and Lydia Kavraki has been supported in part by NSF 1317849,
1139011, and ARL/ARO W911NF-09-1-0383.

The authors are with the Department of Computer Science at Rice
University, Houston, TX, USA. {cav2, mmoll, kavraki}@rice.edu

of objects may occlude some paths from plan to plan. If such
a robot plans its motion using a precomputed roadmap, it
is expensive to update the roadmap by collision-checking
every edge to determine which of them are invalidated by the
changes. Instead, we anticipate that much of the space remains
unchanged and propose to find a number of alternative and
diverse routes that achieve the goal according to the original
roadmap. Finding a valid path among this limited set is
less expensive than fixing the entire roadmap graph because
there are many fewer edges to check. Moreover, the set of
alternative paths needs only to be computed once, without
depending on information about the various objects to be
carried and possible changes in clutter. In contrast, a replan-
from-scratch approach cannot begin until the object is known,
and must be run again for each one. Finally, these alternatives
can even be used as online contingencies in a scenario where
the precise effect of a change is not known until the robot
encounters it.

We present an algorithm that heuristically seeks to generate
a set of diverse short paths through a graph. Our work
considers a roadmap embedded in the configuration space of
a robot; however, we will show that our algorithm does not
actually require an embedding if the metric used is based
on graph distance. An algorithm for finding diverse short
paths should find paths that explore different regions of
the configuration space, not paths that differ by just a few
edges. A change in the environment, like the introduction
of a new obstacle, is likely to invalidate not just a single
edge, but multiple edges located near to one another. Another
kind of change is to the robot itself, like having it carry
a package. This may dilate obstacles and occlude narrow
passages. In this case, all paths through the newly blocked
passage are invalidated. Our heuristic is that similar paths
are likely to fail together as a result of a change in the set
of valid configurations. Not only do paths that share too
many edges in common suffer this weakness, but also paths
that otherwise remain near each other in the configuration
space. This summarizes our intuitive concept of diverse paths
through a space. Later we will formally define diversity. It
is also an objective of our work to consider short paths. It
is easy to find very different paths by making them very
long, but unnecessarily long paths are undesirable for typical
applications in motion planning.

Our contribution is more general than this motivating
problem: diverse, short paths through an existing graph are
useful in solving a broader range of problems. For example,
as discussed in [5], there are algorithms that seek to deform
a given path to optimize some property, but are limited to
finding the local optimum because a continuous deformation

To appear in the Proceedings of the IEEE International Conference on Robotics and Automation, 2015.



can only produce a homotopically equivalent path. However,
we are able to provide many paths which often represent
different homotopies, and, starting from this set, such an
approach can then find multiple optima and select the best.

Routing a vehicle through a busy city is another application
for our algorithm. This problem is fundamentally different
from the typical planning problem because a change in traffic
does not often change the set of valid paths, but merely alters
the cost of the paths. When congestion drastically alters
travel time on nearby roads, we do not need to determine the
updated weight for every edge in the roadmap if we can find
just a small selection of paths to check.

In the next section we examine existing works on finding
multiple paths through a graph and motion planning in a
dynamic environment, as well as works on the diversity of
paths. After formalizing our terminology, we present the
algorithm and techniques we have developed to solve the
diverse short paths problem. We proceed to make theoretical
guarantees for our algorithm, then evaluate its performance
and illustrate some useful applications. Finally, we conclude
with a discussion of areas of future study.

II. RELATED WORK

There is much research toward the development of algo-
rithms that solve several variations of the multiple-path graph
search problem, beginning with one of the most fundamental:
Eppstein’s k shortest paths algorithm [6]. For any query from
a start to a goal vertex in a graph, it finds exactly the k
shortest paths satisfying this query. The resultant paths are
not suitable for our problem as they are often too similar to
one another. However, we can filter these paths for diversity to
form a baseline for our experiments. A heuristic improvement
on Eppstein’s algorithm is K* [7]. Whereas Eppstein prepares
a data structure from which the paths may be extracted in
order, K* delays the processing on areas of the graph which
are far from the shortest path until it is necessary, so that
computation is avoided for paths which are certainly longer
than the k shortest. One can even begin K* before the graph
is fully known. Since we are interested in diverse paths, it
is necessary to examine large areas of the graph, away from
the shortest path. This means we need a very large k and
will not benefit from K*.

If one already has a large explicit set of paths, the work in
[8] provides an algorithm to pass to a subset which is robust
to local failure, i.e., for which an obstacle occluding one path
is unlikely to occlude many others. Another algorithm [9]
finds a subset of n paths optimized for dispersion, thereby
covering the space of all paths. Achieving diversity in these
ways is attractive, but our motivation starts from a graph,
which implicitly defines a prohibitively large set of paths, and,
moreover, we are also interested in short or, more generally,
low cost paths.

In network routing, it is important to find multiple paths
not relying on the same edges of the network graph [10].
However, there is a key difference between that problem and
ours. Our graphs are embedded in a configuration space, so
we have a concept of proximity between vertices in this space

regardless of how they are connected in the graph. This is
important because local changes in the environment can affect
multiple vertices that are near each other in the configuration
space. Network routing problems are thus typically concerned
with paths that share the fewest number of edges or nodes, for
example, by using algorithms based on Suurballe’s k shortest
disjoint paths [11], and not with paths that traverse different
areas of the space.

Several different definitions of path set diversity that take
the configuration space into account have been employed,
including simple measures like the minimum of the distance
between any two paths [12], or more involved measures like
the average probability that at least one path remains valid
over all possible environments [13]. Moreover, there are many
ways to define the distance between two paths, including the
Hausdorff, Levenshtein, and Fréchet measures [14]–[16]. We
will examine these three, but focus our attention on one of
them in our experiments.

One approach to motion planning in a changing environ-
ment is the dynamic roadmap (DRM) [17], which discretizes
the space into cells. The objective of that algorithm is to
find a path through a precomputed roadmap, given a set of
cells that are obstructed by a change in the environment. The
implementation in [18] can quickly determine the obstructed
cells because its obstacle sensor returns a point cloud that
can be mapped to invalid configurations. This is a reactive,
local approach. We are instead proposing an offline solution
to maximize use of previously computed information in
preparation for the changing environment.

III. DEFINITIONS

Consider a metric space (C, δ), a weighted undirected graph
G = (V,E) embedded in C via the mapping ψ : V → C, and
edge weight function w : E → [0,∞] with

w(e) = δ(ψ(u), ψ(v)), where e = {u, v}.

That is, the weight of an edge is the distance between its
endpoints in the embedding. There is a standard concept of
shortest path length between two vertices, but we would like
to extend the idea to “virtual vertices” along an edge. For
an edge e ∈ E and t ∈ [0, 1], arbitrarily call one endpoint u
and the other v, and we imagine the virtual vertex e(t) to be
the point along e at time t. We also suppose the existence of
corresponding virtual edges (u, e(t)) and (e(t), v), weighted
as t · w(e), (1− t) · w(e), respectively. Now let

V̂ = {e(t) : e ∈ E, t ∈ [0, 1]},
Ê = {(u, e(t)) : e = {u, v} ∈ E, t ∈ [0, 1]}

define a graph Ĝ which includes all the virtual vertices and
edges. The extended graph distance function dg : V̂ × V̂ →
[0,∞] is defined as the length of the shortest path in Ĝ.

We also define an extended mapping ψ̂ : V̂ → C so that
ψ̂(e(t)) is a linear interpolation between ψ(e(0)) and ψ(e(1))
at time t for t ∈ [0, 1] and e ∈ E. Now we may define a
second distance function dc : V̂ × V̂ → [0,∞] with respect
to C as dc(u, v) = δ(ψ̂(u), ψ̂(v)) for all u, v ∈ V̂ . We refer
to dg as graph distance and dc as C-space distance.



In this paper, we will consider as a path distance metric
the discrete Fréchet distance evaluated at the vertices [16].
For brevity, we refer to it simply as Fréchet distance or
df . Let p, q be paths with vertex sequences p1, . . . , pn and
q1, . . . , qm, respectively. The Fréchet distance between p, q
is given as df (p, q) = frep,q(n,m) where

frep,q(−1,−1) = 0,
frep,q(i,−1) = frep,q(−1, j) =∞ for i, j ≥ 0, and

frep,q(i, j) = max


dc(pi, qj)

min


frep,q(i, j − 1)

frep,q(i− 1, j)

frep,q(i− 1, j − 1)

for all 0 ≤ i ≤ n, 0 ≤ j ≤ m. The computation lends itself
to a dynamic programming algorithm.

For a set of paths, P , we define the “diversity” of P as

min
p1,p2∈P,p1 6=p2

df (p1, p2).

The “robust diversity” of P with respect to df is defined as

1

|P |
∑
p1∈P

min
p2∈P,p1 6=p2

df (p1, p2).

Both measurements are useful, as the first gives a worst-case
indication of the nearness of paths, while the second is not
sensitive to a close pair of paths in an otherwise diverse set.

We also considered two other path distance metrics. The
first is Levenshtein edit distance [15], with edits weighted by
the distance between corresponding vertices. We empirically
determined it to be too generous in a test discussed later. The
second is a discrete version of the Hausdorff [14] metric,
which is given by

dh(p, q) = max{max
i

min
j
dc(pi, qj),max

j
min
i
dc(pi, qj)}.

It may not be apparent from the definition, but the rationale
of Fréchet distance is to consider all possible continuous,
monotonic parameterizations of the two paths and to take
the max-min of the distance between corresponding pairs of
points. Hausdorff can be viewed as doing the same, except it
does not require that the parameterizations be continuous and
monotonic. Thus Fréchet is stricter than Hausdorff. Ultimately,
we chose to use the Fréchet-based diversity measure in our
experiments, since it is more discriminating.

IV. ALGORITHMS

We present an algorithm to heuristically search for a
collection of paths all satisfying the same query in a graph,
while seeking to ensure the robustness of the path set against
failures in the graph. It does so by simulating obstacles
in order to explore diverse regions of the space while still
favoring shorter paths. A shortest path search is performed on
variants of the original graph designed to encourage deviation
from known paths by removing groups of edges near the paths.
We are not concerned with finding precisely the next best
path to add to our set. This freedom allows us to quickly yield
paths that are much more diverse. The pseudocode is given

in Algorithm 1. The first four inputs, G, s, g, k, specify the
graph, the start and goal vertices, and the requested number
of paths for the query, respectively. The final two parameters,
b and ρ, called the branching factor and ball radius, tune the
performance of the algorithm by specifying (informally) its
thoroughness and the size of the simulated obstacles.

In this section we also discuss an existing algorithm in
the literature that, with slight alterations, produces a baseline
output for the same problem. It is important that we can show
to what degree our algorithm outperforms this solution.

Algorithm 1 Diverse Short Paths
KDiverseShort(G, s, g, k, b, ρ)
Input: A graph G = (V,E) having virtual vertex set V̂ with
distance function d : V̂ × V̂ → [0,∞]; start and goal vertices
s, g ∈ V ; number of paths requested, k ≥ 1; branching factor
b ≥ 1; ball radius ρ > 0.
Output: A set S of at most k diverse, short paths in G from
s to g.

1: U ← EmptyQueue
2: S ← ∅
3: p← SHORTESTPATH(G, s, g)
4: if p not empty then
5: enqueue(U, (p,G))
6: S ← {p}
7: while U not empty do
8: (p,G)← dequeue(U)
9: for i← 1, b do

10: x← SAMPLEUNIFORM(p)
11: E′ ← {e ∈ E : d(x, e(t)) ≥ ρ ∀t ∈ [0, 1]}
12: G′ ← (V,E′)
13: p′ ← SHORTESTPATH(G′, s, g)
14: if p′ not empty then
15: enqueue(U, (p′, G′))
16: if ACCEPTABLE(p′) then
17: S ← S ∪ {p′}
18: if |S| = k then
19: return S
20: return S

A. Graph Modification

Since we want short paths that satisfy the same query from
vertex s to vertex g, but that are different from one another,
we develop a method to modify the graph, G = (V,E),
on which the query is performed to create a new graph
G′ = (V,E′) ⊂ G such that the shortest path, p′, from s
to g in G′ is different from the shortest path, p, from s to
g in G. Then, both p and p′ are valid paths from s to g in
G. Furthermore, though p′ is not the shortest in G, it is the
shortest subject to a constraint, namely that it not traverse
any edge in E\E′.

We look first at the core of our algorithm, in which we
create such a G′ and p′ (lines 10–13). First, we sample
x = e(t) ∈ V̂ uniformly from p (line 10). This is done by
selecting an edge e from p with probability proportional to
w(e)/w(p) where w(p) is the sum of the weights of the



edges comprising p, and by sampling t uniformly from [0, 1].
We then select a subset E′ from E consisting only of those
edges that do not intersect the open ball of radius ρ centered
at x, with respect to a distance function d (line 11). Later
we will see what happens if we choose d = dg or d = dc.
This open ball can be thought of as a simulated obstacle.
We then find the shortest path through the modified graph
using an A* search and the triangle inequality with respect
to the C-space embedding as the heuristic (lines 12–13). In
our implementation, the modified graph G′ is represented
by the same data structure instance as G and simply uses a
modified edge weight function, rather than copy G.

B. Random Avoidance

The process of finding multiple paths using these modified
graphs operates on a queue of known path-graph pairs. We
begin by initializing this queue and the set of result paths
with the shortest path through the unmodified graph G from
s to g (lines 1–6). The algorithm enters a loop that repeatedly
retrieves the next path and graph from the queue into p and
G (line 8). We use them in the graph modification method
described above b times to independently produce new path-
graph pairs (line 9). Empty paths, which indicate failure of
the shortest path query, are thrown out, but the rest are added
to the queue (lines 14–15). Each of the remaining paths
is considered for addition to the result set subject to some
filtering criteria (lines 16–17). This filtration is application
specific: It may trivially accept any path, it may reject a path
that is too close to a previously accepted path, it may reject
a path that is too long, or reject a path failing some other
quality check. The loop repeats until the queue is empty or
the result set is large enough (lines 7, 18–20).

C. Notes on Parameters

For the sake of scalability, rather than use a constant ρ,
which may be difficult to select, we will use the function
ρ(r) = r · w(p) for a constant r in (0, 1] and p the shortest
path. Intuitively, the larger the value of r, the farther p′ must
deviate from its ancestor because a larger collection of edges
along and near the ancestor path are removed.

When selecting a value for the branching factor b, it
is important to understand the trade-off. If the algorithm
terminates with fewer than k paths due to exhaustion of
the queue, increasing b may increase the number of paths
ultimately returned, but only after a much longer execution
time. Likewise, decreasing b may decrease the number of
paths found before the queue is exhausted. This is why we
say b controls the thoroughness of the algorithm. In all
our experiments, we set b = 2, which we found to give
a reasonable balance for our test graphs.

D. Eppstein’s k Shortest Paths

For comparison with our algorithm, we examine the k
shortest paths algorithm due to Eppstein, with two small
modifications. We introduce a filter on the paths that are
ultimately returned—the same one our algorithm uses—so
that we may compare the quality of outputs subject to some

constraint. The second modification is one that allows us
not to specify k upfront. Rather, we repeatedly invoke one
iteration of the algorithm at a time. This is necessary because
we do not know a priori how many we need to analyze to
find the desired number after filtering. This refactoring makes
no effective difference to the execution of the algorithm. We
will utilize the filtering to constrain the result set to have
a diversity above some threshold. In that case, Eppstein’s
algorithm will greedily select the shortest paths satisfying the
diversity requirement.

V. THEORETICAL GUARANTEES

For the following proofs, consider G = (V,E) a finite,
undirected, connected graph embedded in a metric space
(C, δ) via the mapping ψ : V → C, with edge weight function
w({u, v}) = δ(ψ(u), ψ(v)). Suppose that no edge has weight
0, and that every pair of edges intersects in C-space only
finitely many times. In an abuse of notation, let

e(T ) = {e(t) : t ∈ T} and ψ̂(X) = {ψ̂(x) : x ∈ X}.

Theorem 1. There exists a ρ > 0 such that for each e1 ∈ E,
if t is sampled uniformly from [0, 1] we have B(ψ̂(e1(t)), ρ)∩
ψ̂(e2) = ∅ for all e2 6= e1, with nonzero probability.

Proof. Let I ⊂ C be the set of intersections of all edges, and
let e ∈ E be given. Since I is finite, we may associate with
e an interval (a, b) ⊂ [0, 1] such that e((a, b)) ∩ I = ∅. Let
N(e) be the set of the shortest distance between e((a, b))
and each of the other edges:

N(e) = {inf{dc(e(s), e′([0, 1])) : s ∈ (a, b)} : e′ ∈ E \ {e}}.

Since E is finite, N(e) is finite, and moreover the set
N =

⋃
e∈E N(e) is finite. Thus minN exists and is

strictly positive, since otherwise ψ̂(e((a, b))) ∩ I 6= ∅ for
some e. Put 0 < ρ < minN . The reader may now verify
that for each e1 ∈ E, there exists an associated subinterval
(a, b) of [0, 1] such that B(ψ̂(e1(s)), ρ) ∩ ψ̂(e2([0, 1])) = ∅
for all s ∈ (a, b) and e2 ∈ E. Since (a, b) has finite measure,
the statement of the theorem holds.

Theorem 2. Take s, g ∈ V to be start and goal vertices,
and let b ≥ 1. There exists a ρ > 0 such that for
any simple path q in G from s to g, the probability that
q ∈ KDIVERSESHORT(G, s, g, k, b, ρ) approaches 1 as k
approaches the total number of simple paths.

Proof. Let q, s, g be given. Though b ≥ 1, we will trace
the evaluation of only one branch in the loop at line 9, and
when the generated graph G′ is enqueued, we will await
its reappearance at the dequeue step in line 8. Choose a
ρ according to Theorem 1. By the result of that theorem,
lines 10-12 generate a new G′ that is equal to the old G
minus exactly one edge with nonzero probability. Let p be
the shortest path satisfying the query in the old G, as in
line 8. Note that p must be simple. While p 6= q, there exists
an edge e in p and not in q, for otherwise p could not satisfy
the query.



TABLE I: Graph parameters and statistics.

Name t δ ∆ |V | |E| Mean Degree
grid-like 1.4 .0004 .06 485 2994 6.17320

cubicles1 3.0 .0010 .25 103 414 4.01942
cubicles2 2.0 .0004 .10 242 1180 4.87603
cubicles3 1.1 .0002 .04 1533 7120 4.64449

houston — — — 5848 10393 1.77719

Suppose e is the sole edge removed in each such iteration.
After at most |E| − |q| of these iterations, the only edges
remaining are those in q, and therefore p = q, which is added
to the result set S. Since each step occurs with nonzero
probability, the final result occurs with nonzero probability.
As k approaches the number of simple paths from s to
g, the probability of q ∈ KDIVERSESHORT(G, s, g, k, b, ρ)
approaches 1.

VI. EVALUATION AND APPLICATION

A. Experiments

We measure the performance of the algorithm in three
ways: 1) diversity with respect to the ball radius, 2) diversity
with respect to graph density, and 3) execution speed and
path length with respect to diversity. We generated the graphs
using the SPARS2 algorithm on a 3D environment. We chose
SPARS2 because it gives good coverage of the space and
allows us to tune the density of the graph. It also has the
spanner property, such that between two vertices there exists
a short path approximating the shortest possible path within
some stretch factor t. The space is SE(3), with a distance
metric that sums the Euclidean distance and the quaternion
distance. The stretch factor and the dense and sparse delta
parameters for SPARS2 that yielded each graph, t, δ, ∆,
are given in Table I. In all experiments, we request a set
of 10 paths and average the results over 200 runs of our
algorithm. In experiments 1 and 2, the filtration step of the
algorithm accepts all paths, while in experiment 3 it maintains
a minimum diversity by only accepting paths sufficiently far
from previously accepted ones.

1) Our first performance measure is to compute the diversity
of the path sets for varying values of the radius factor r.
We explore two variants of our algorithm, one using graph
distance and the other using C-space distance to measure ball
radius. We use the “grid-like” environment, a 5× 5 array of
block obstacles (see Figure 1). By varying the radius factor,
we will be able to see how well the algorithm responds to
it and whether there is a significant difference in quality of
output depending on which distance measure is used.

2) In the second experiment we use three different graphs
in the “cubicles” environment of varying density (Figure 3).
We run our algorithm and Eppstein’s k shortest paths to
compare the diversity and robust diversity of the result sets
and to determine if the algorithm performs poorly on sparse
graphs, which have fewer total paths.

3) Finally, we compare the relative speed of our algorithm
and the length of paths it returns with Eppstein’s k shortest
paths, subject to a minimum diversity constraint. We use the
“grid-like” environment as in the first experiment. Since we
are interested in length, the start and goal vertices in this

Fig. 1: Comparison of two path sets with the same robust
diversity. Left: Eppstein; robust diversity 5.37296; 6 homo-
topies. Right: Voss; robust diversity 5.37087; 8 homotopies.

Fig. 2: Comparison of the two distance measures for ball
radius. The bold lines show diversity, and the faint lines show
the fraction of requested paths that were returned.

environment have been chosen near one another, rather than
at opposite ends of the graph, to open the opportunity of
finding paths much longer than the shortest.

B. Results

Before analyzing the results of the three experiments,
we will inspect the quality of path sets returned by our
algorithm and Eppstein’s. Figure 1 shows two such sets, with
filtering applied to Eppstein so that the two sets have the
same robust diversity. It is apparent that the Eppstein paths
wastefully backtrack along edges already traversed, which
is not robust against edge failure. Each of our paths is a
simple path because it is the shortest on some graph and thus
cannot exhibit this deficiency. Despite the two sets having the
same robust diversity, our path set represents more homotopy
classes. Recall that our diversity is based on Fréchet distance.
We performed this same test using weighted Levenshtein edit
distance and found Levenshtein to be too generous, allowing
the filtered Eppstein paths to exhibit even fewer homotopies.
It is difficult to programmatically count the homotopies, and
this concept loses meaning in higher dimensions. As such, we
do not rely on it as a diversity measure; however, it indicates
that our robust diversity definition could be improved.

For experiment 1, Figure 2 shows the parameter sweep
of the radius factor using both graph distance and C-space



Fig. 3: “Cubicles” environment in which the ‘L’-shaped robot
must navigate among hexagonal obstacles and through a
passage beneath the floor. We generate roadmaps of varying
density by tweaking the parameters of SPARS2.

distance. Observe that the diversity in both cases responds
well to an increase in the radius factor. When the algorithm
avoids larger regions, the returned paths are naturally farther
apart. However, we expect using a larger radius risks covering
too much of the graph so that fewer paths than requested can
be returned; we see a corresponding increase in the failure
rate on the plot for higher values of the radius factor. Note that
the graph distance variant consistently requires a larger radius
to achieve the same diversity as the C-space variant. This is
expected because dc ≤ dg due to the triangle inequality.

Now we move to experiment 2 and the “cubicles” envi-
ronment (Figure 3). Of the three graphs in Table I that are
embedded in this environment, observe that each one is more
dense than the last, with more nodes mapping into the same
area, but the average degree remains approximately the same.
We choose a fixed radius factor for each graph to be the
highest value that still yields an average of 8 out of the 10
paths requested. Looking at the bars for Eppstein’s algorithm
in Figure 4 we see very predictable behavior: the k shortest
paths in a denser graph are much more similar to each other
than those in a sparser graph, so diversity decreases with an
increase in density. Compare this to our algorithm, which
does not exhibit the same consistent decrease in diversity. In
fact, the values are higher for the second sparsest graph than
for the sparsest graph. We note that the diversity is near to the
robust diversity for the k shortest paths, but much lower than
the robust diversity for the paths returned by our algorithm.
This suggests that paths from our algorithm are typically far
apart, though a few may be close. We also observe that the
standard deviation tightens as the density increases. Thus,
our algorithm performs more consistently on denser graphs.

Finally in experiment 3, we compare the execution time
of our algorithm with that of Eppstein’s. On the problem
of k shortest paths, Eppstein’s algorithm executes extremely
quickly, but it produces poor results if we are looking for a
diverse path set. We apply greedy filtering to keep a path only
if it would not bring the diversity of the result set below a
minimum threshold. Returning to the “grid-like” environment,
we fix our radius factor at 0.1 to yield a moderate diversity
naturally. Shown in Figure 5 are the execution times for
our algorithm and Eppstein’s, both using filtering to meet
the diversity requirement. There is an exponential increase

Fig. 4: Diversity of paths for various graph densities.

Fig. 5: Speed of algorithms and path length when filtering
for minimum diversity. We set r = 0.1. Eppstein’s algorithm
is prohibitively expensive at diversities greater than 5.

in the time required for Eppstein’s algorithm to yield the
requisite paths, which becomes unmanageable for even modest
diversities. Our algorithm, on the other hand, only exhibits a
small increase in execution time and not until much higher
diversities. Our algorithm is advantageous in that selecting a
low branching factor causes it to return early with a partial
result in a situation where an unacceptable amount of time
would be required to find the full result.

Also depicted in Figure 5 is the length of the longest path
returned on any run. We do not have values for Eppstein’s
lengths at high diversities due to the prohibitive execution
time, but linear regression suggests that the lengths from both
algorithms respond to diversity at similar rates, though our
algorithm begins with longer paths.

C. Scope of Applications

We have seen our algorithm applied to graphs in some
simple motion planning problems, like navigating the “grid-
like” environment. To illustrate another application, we
acquired a graph of the streets in downtown Houston from
openstreetmap.org. Included is information about one-way
streets and speed limits. We were able to extend our algorithm



(a) Eppstein’s 20 shortest paths. Many use the same roads for most of the route. (b) Voss’ 20 diverse, short paths (r = 0.2). Very few roads are shared.

Fig. 6: Comparison of paths in downtown Houston. Orange indicates many paths sharing the road; blue indicates few.

to operate on directed graphs. We must be careful now with
graph distance over virtual vertices, since a path may only exit
an edge through its target vertex. The edge weights are set to
the C-space length of the edge divided by its speed limit, so
that “short” in this application means “fast.” When Eppstein’s
algorithm is used (Figure 6a), the amount of time multiple
paths spend utilizing the same roads is high, so unforeseen
traffic can cause wide areas of congestion, affecting too many
paths at once. Our algorithm (Figure 6b) finds alternate routes
through very different parts of the city, with none slower than
1.5 times the fastest path.

VII. CONCLUSION AND FUTURE WORK

Our approach to finding a diverse set of short paths is
highly modular. We discussed using graph distance or C-
space distance to measure the ball radius. Other distance
metrics can be easily substituted here. We looked at three
path distance functions, ultimately choosing discrete Fréchet.
However, distance between paths is still a debated subject,
and other can be appropriate. We hope to find a diversity
measure that is better still than the one we used. The filtering
criteria are also application dependent, as some problems may
have specific requirements for path quality. Future work can
explore the benefits of various choices for these configurable
parts of the algorithm. We extended the algorithm to use
directed graphs with different weights. It remains to try other
extensions like varying the ball radius or the branching factor
during evaluation. How to choose appropriate values for
these two parameters in advance or on the fly are important
questions to answer. Future work can also apply the algorithm
to higher dimensional problems and systems with differential
constraints to determine the advantage of maximizing the
use of information from one roadmap which may be very
expensive to compute.

REFERENCES

[1] S. M. LaValle, Planning Algorithms. Cambridge, England: Cambridge
University Press, 2006.

[2] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Proba-
bilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Trans. Robot. Autom., vol. 12, no. 4, pp. 566–580, 1996.

[3] A. Dobson and K. Bekris, “Sparse Roadmap Spanners for Asymptot-
ically Near-Optimal Motion Planning,” IEEE Trans. Robot., vol. 29,
no. 2, pp. 432–444, 2013.

[4] H. Choset, K. M. Lynch, S. Hutchinson, G. A. Kantor, W. Burgard,
L. E. Kavraki, and S. Thrun, Principles of Robot Motion: Theory,
Algorithms, and Implementations. Cambridge, MA: MIT Press, 2005.

[5] F. T. Pokorny, M. Hawasly, and S. Ramamoorthy, “Multiscale Topo-
logical Trajectory Classification with Persistent Homology,” in Robot.
Sci. Syst., 2014.

[6] D. Eppstein, “Finding the k shortest paths,” in 35th Annu. Symp. Found.
Comput. Sci., pp. 154–165, 1994.

[7] H. Aljazzar and S. Leue, “K*: A heuristic search algorithm for finding
the k shortest paths,” Artif. Intell., vol. 175, no. 18, pp. 2129–2154,
2011.

[8] L. H. Erickson and S. M. Lavalle, “Survivability: Measuring and
ensuring path diversity,” in IEEE Int. Conf. Robot. Autom., pp. 2068–
2073, 2009.

[9] C. J. Green and A. Kelly, “Toward optimal sampling in the space of
paths,” in Int. Symp. Robot. Res., pp. 171–180, 2007.

[10] J. P. Rohrer, A. Jabbar, and J. P. G. Sterbenz, “Path diversification:
A multipath resilience mechanism,” in 7th Int. Work. Des. Reliab.
Commun. Networks, pp. 343–351, 2009.

[11] J. W. Suurballe, “Disjoint paths in a network,” Networks, vol. 4, no. 2,
pp. 125–145, 1974.

[12] R. A. Knepper, S. S. Siddhartha, and M. T. Mason, “Toward a deeper
understanding of motion alternatives via an equivalence relation on
local paths,” Int. J. Rob. Res., vol. 31, no. 2, pp. 167–186, 2012.

[13] M. S. Branicky, R. A. Knepper, and J. J. Kuffner, “Path and trajectory
diversity: Theory and algorithms,” in IEEE Int. Conf. Robot. Autom.,
pp. 1359–1364, IEEE, 2008.

[14] R. T. Rockafellar and R. J.-B. Wets, Variational Analysis. Springer,
3rd ed., 2009.

[15] V. I. Levenshtein, “Binary codes capable of correcting deletions,
insertions, and reversals,” Sov. Phys. Dokl., vol. 10, no. 8, pp. 707–710,
1966.

[16] T. Eiter and H. Mannila, “Computing Discrete Fréchet Distance,” tech.
rep., Information Systems Dept., Technical University of Vienna, 1994.

[17] M. Kallmann and M. Mataric, “Motion planning using dynamic
roadmaps,” in IEEE Int. Conf. Robot. Autom., pp. 4399–4404, 2004.

[18] T. Kunz, U. Reiser, M. Stilman, and A. Verl, “Real-time path planning
for a robot arm in changing environments,” IEEE/RSJ Int. Conf. Intell.
Robot. Syst., pp. 5906–5911, 2010.


