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Abstract

This paper presents some of the recent improvements in sampling-based robot mo-
tion planning. Emphasis is placed on work that brings motion-planning algorithms
closer to applicability in real environments. Methods that approach increasingly
difficult motion planning problems including kinodynamic motion planning and dy-
namic environments are discussed. The ultimate goal for such methods is to generate
plans that can be executed with few modifications in a real robotics mobile platform.

1 Introduction

One of the important goals in robotics is to create a device – the robot –
that can take as input a high level specification of a simple task and execute
it [Lat91] without providing low level details on how to do so. An essential
component of the task execution is for the robot to be able to move inside its
environment. The latter typically requires the solution to a motion planning
problem, which has been one of the fundamental problems in robotics over
the last couple of decades. Loosely stated, motion planning is the problem of
deciding the set of motions that can take a robot from an initial to a final
position while avoiding collisions [Lat91]. Robots for planetary exploration,
museum tour guides, search and rescue robots, robots in surgery are just
a few out of the many examples of robotics applications that need motion
planning [CLH+05,LaV06]. Nowadays, motion planning is no longer restricted
to just robotics applications. Structural analysis in biology [CSRDA+05] and
computer graphics [FL04] are examples of developing research fields that can
greatly benefit from the use of motion planning algorithms.
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Depending on the type of robot, different difficulties need to be addressed by
a motion planning algorithm. Over the years, this has given rise to a number of
directions in the field: planning for industrial manipulators [SL02,YB06,OP07,Van07],
mobile robots [LB02,BV06,LL06b,BK07], humanoids [KNK+03], reconfigurable
robots [AP07] are a few examples. This paper will focus on recent develop-
ments in motion planning that could eventually allow the use of motion plan-
ning algorithms in real life applications for mobile robots. The principles of
the developed algorithms apply however to the aforementioned types of robots
as well.

A simplified version of the motion planning problem is planning a collision free
path for a robot made of an arbitrary number of polyhedral bodies among an
arbitrary number of polyhedral obstacles, between two collision free positions
of the robot. Complexity analysis has shown this instance of the problem to be
PSPACE-complete [Rei79,Can88]. In cases where the problem is more complex
(e.g., taking into account the physical properties, and actuator limitations in
a real robot) it is not known if the problem is even decidable except for some
particular cases [CPK07].

Some of the well known complete motion planning algorithms are cell de-
composition and visibility roadmaps [CLH+05,LaV06]. For practical purposes,
complete algorithms turn out to be computationally expensive and hard to
implement. Adding various restrictions to the problem made the use of com-
plete algorithms [HY98,HH02] possible. For the general case of the problem,
a breakthrough was achieved with the development of sampling-based mo-
tion planners [BL91,KSLO96]. These algorithms quickly became popular for
various reasons. Many previously considered hard problems could be solved
using sampling-based motion planners, while the fundamental ideas behind
these planners were in general easy to describe and implement. The increased
performance of these algorithms comes at the cost of relinquishing complete-
ness. Those algorithms can only guarantee probabilistic completeness instead.
A probabilistically complete algorithm will eventually find a solution if there
is one [KLMR98], but it will run forever if no solution exists.

In recent years, a number of review papers [LL05,Car06] have discussed issues
in motion planning. This paper attempts to continue the work and present re-
cent developments in the area of sampling-based motion planning algorithms.
The focus is on developments that may allow the application of sampling-based
motion planning algorithms on real mobile robots. Section 2 contains a formal
description of the basic motion planning problem. Section 3 presents motion
planning algorithms following the classic distinction into roadmap-based and
tree-based planners. This section covers mostly algorithmic improvements in
the fundamental modules that are present in most motion planners. Section 4
takes the ideas of the previous section one step further. New classes of mo-
tion planning problems are introduced: problems that involve several realistic
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extensions to the basic problem. Finally, Section 5 summarizes the ideas de-
scribed in the paper and discusses the future of sampling-based motion plan-
ners.

2 The motion planning problem

As mentioned in the introduction, the motion planning problem poses the
question of how a robot can move from an initial to a final position. To acquire
a formal statement of the problem, the position of the robot needs to be de-
fined.

Fig. 1. A configuration of the
robot is completely specified
by the values p and q.

A notion that has proven itself useful is that
of a configuration (see Figure 1). A configu-
ration is a complete specification of the po-
sition of all the points on the robot. The set
of all configurations forms the configuration
space, C. A robot described by a configura-
tion is just a point in C. The set of all con-
figurations in C in which the robot is in col-
lision with some obstacle in the environment
is denoted by Cobst. Similarly, the free space
is defined as Cfree = C − Cobst. The motion
planning problem can be stated as follows:

Definition. Given an initial and a goal configuration qstart, qgoal ∈ Cfree, find
a continuous path p : [0, 1]→ Cfree where p(0) = qstart and p(1) = qgoal.

This is the geometric version of the motion planning problem. The result is a
collision-free path. This is usually known as path planning, since the planning
algorithm is only asked to return a path, without considering the robot’s
ability to implement that path. This is not necessarily an issue if a robot is
moving slow enough and the dynamic constraints such as friction, gravity, etc.
can safely be ignored. As will be discussed in this paper though, there is an
increasing interest in planning problems where the dynamic constraints can no
longer be ignored. For those cases, planning algorithms need to come up not
only with a geometric path, but rather with what is called a motion plan, i.e.,
a complete description of what controls need to be applied so the robot can
execute a feasible and collision free trajectory to its goal. The term motion
planning will be used in this paper, and it will be clear from the context
whether the dynamic constraints are considered or not.
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3 Recent improvements in sampling-based motion planning

Over the last few years, there has been a lot of work in improving sampling-
based motion planning algorithms. It is hard to define a single criterion that
can classify all planners in distinct categories. The classical separation is be-
tween roadmap-based planners and tree-based planners. This section introduces
the basic ideas present in almost all sampling-based motion planners and de-
scribes improvements in the aforementioned two categories of algorithms. Al-
gorithms that deal with problems beyond purely geometric path planning are
presented in Section 4.

3.1 Roadmap-based planners

Roadmap-based planners are typically used as multi-query planners. As their
name implies, they maintain a roadmap that can be used to answer different
planning queries. The main data structure being used is a graph whose nodes
are points in the configuration space. Edges in this graph exist between con-
figurations that are close to one another, and the robot can move from one
point to the other without collisions. A typical algorithm has two phases: a
learning phase and a querying phase. In the learning phase, the roadmap is
created:

• Sampling. Pseudo-random collision-free configurations called samples are
generated. These are the vertices of the roadmap.
• Connecting. A number of attempts are made to connect each sample to its

nearest neighbors, thus adding edges to the roadmap.

To solve a particular query, the start and goal configurations are added to the
roadmap and a graph search algorithm is used to find a path. The efficiency of
the algorithm depends on how well the roadmap can capture the connectivity
of the configuration space. Moreover, the main performance bottleneck is the
construction of the roadmap, since graph search algorithms are fast.

Fig. 2. Sample roadmap.
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Algorithm 1 presents the well-known PRM [KSLO96] method. Figure 2 shows
a sample roadmap with k = 2, where k stands for number of neighbors each
sample tries to connect to. Two of the most important challenges of this
method are how to sample useful configurations that will increase the cov-
erage of the roadmap and how to connect samples in the roadmap.

Algorithm 1 BuildRoadmap(k)

V ← {}, E ← {}
loop

c← SampleValidConfiguration()
V ← V ∪ {c}
Nk ← NearestNeighbors(V , k)
for all n ∈ Nk do

E ← E ∪ {(c, n)}

3.1.1 Improving the sampling strategy

In a sampling based motion planner, one of the core issues is the sampling
strategy. Sampling is the process by which new configurations are randomly
selected to be added to the roadmap.

There are multiple possible directions for improving sampling. Some of the
previous work focuses on sampling important areas of the configuration space
using workspace information to derive what the important areas are. A well
known example is sampling in the areas of narrow passages [HJRS03,KH04].
Increasing the density of sampling around narrow passages increases the chances
of finding samples in areas that are hard to reach and are likely to be needed
for finding a solution. As an example, the bridge-test, presented in [HJRS03],
uses information from samples found in collision in the following manner: if
two samples x and x̃ are found in collision, their midpoint xm (sample between
x and x̃) is considered. If xm is not in collision, it is added to the sample set.

Different sampling strategies have different strengths. For example, the bridge
test described above is effective for sampling narrow passages. A fruitful idea
was to try and combine the usually complimentary strengths of different sam-
pling strategies. In [HSAS05] an adaptive strategy for selecting the most cost
effective sampler out of a set of already existing ones is presented. The selec-
tion depends on the sampled region of the configuration space. Another idea
is applying existing samplers in a chain-like fashion [TMTA05]. The starting
sampler is always a uniform one; the following samplers take a sample as input
and produce another one as output; a chain is formed by having the output of
one sampler be the input of the next sampler. This combination yields good
results for some sets of samplers in the sense that it combines the advantages
of multiple samplers into one. The disadvantage of this idea is the increased
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overhead for generating samples. In [RTPA06], after an initial step of uniform
sampling, the space is divided into regions. Depending on whether most sam-
ples were collision free or in collision, different regions are assigned different
region specific samplers. The region specific samplers are then used to further
sample in a more cost effective way.

Another direction along the same lines is presented in [KH06]. The authors use
different samplers for different components of the robot, where different com-
ponents here refers to specific features of the robot geometry. The intuition
behind this is that a solution – a path in the configuration space – corresponds
to a path for every point on the robot in the workspace. The workspace is typ-
ically easier to reason about since a complete representation of it is available.
Sampling according to certain features of the robot in the workspace produces
different samplers. Information from these samplers is then used to guide the
sampling process in the configuration space. The importance given to each
of the feature samplers is dynamically updated using machine learning tech-
niques.

3.1.2 Improving the connection strategy

In this section, some of the issues related to connecting samples in the roadmap
are presented. While it may seem the more samples are connected, the better,
connecting samples is a time consuming process and so a balance between
number of connections and runtime needs to be achieved.

From a performance point of view, the main drawback of PRM is that it
heavily relies on collision checking. To mitigate this effect, algorithms like
Lazy PRM [BK00] have been designed. Lazy PRM delays collision checks by
assuming edges to be valid and actually checking them only if they are part
of potential solutions. To reduce the number of collision checks even further,
and achieve better coverage of the configuration space at the same time, the
use of predictive models has been introduced [BB05]. The idea behind predic-
tive models is to compute an approximation of the configuration space using
machine learning techniques. The approximation allows inferring the proba-
bility of a certain configuration being collision free. Use of these probabilities
is made instead of collision checking when connecting samples in the roadmap.
When a potential solution is found, edges in the roadmap are validated using
a collision checker. If a collision is found, samples around the end-points of the
invalid edge are used in attempts to fix the roadmap. If fixing the roadmap
fails, the roadmap building process is resumed until a path is found.

Solution paths obtained with a PRM planner are typically jagged and quite
long (Figure 3). Typically, a post-processing – smoothing – step is applied to
them. Even with this step, the produced path may still be far from the shortest
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one. In [NO04] a method for finding shorter paths has been presented. To allow
PRM to find shorter paths in a reasonable amount of time, the connection
strategy is changed so it allows cycles in the roadmap, with the condition
that the edge that produces the cycle shortens the minimal path between the
configurations it connects. Testing whether the connection criterion is met is
done using a modified Dijkstra’s algorithm. The modification speeds up the
algorithm using the fact that the length of the minimal path is not needed
– only it being longer or shorter than the new potential edge is the required
information.

Fig. 3. Non-optimal solution found by motion planner (continuous line), optimal
solution (dashed line), in an obstacle-free environment.

These connection strategies, while they do improve the planning algorithms,
are specific for the path planning problem. It is possible however, to use similar
ideas in a motion planning framework, as will be presented in Section 4.

3.2 Tree-based planners

In many cases, quickly solving one particular planning problem instance is of
interest. For these cases, single query planners can be used. In these planners,
the main data structure is typically a tree. The basic idea is that an initial
sample (the starting configuration) is the root of the tree and newly produced
samples are then connected to samples already existing in the tree. Significant
amounts of work have been dedicated to developing sampling and connection
strategies, biasing the direction in which the tree grows and achieving better
coverage of the space. The most popular representative of tree-based planners
is the RRT algorithm [LaV98,LK01] (see also Figure 4 and Algorithm 2).
Many of the algorithmic improvements discussed in this section are using an
RRT-like algorithm as a base. There are other tree-based planners though:
EST [HLM97], SBL [SL03], utility trees [BB07], a multi-resolution version of
[BL93] algorithm in [LL06a], PDST [LK05], SRT [PBC+05] are well known
tree-based planners. Due to space limitations, not all of these algorithms are
presented, but the reader is encouraged to look at the cited papers for details.
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3.2.1 Improvements in the RRT family of planners

In the following paragraphs RRT and improvements to RRT like DDRRT
[YJSL05] or AD-RRT [JYLS05] will be presented.

Algorithm 2 BuildRRT(xinit)

Init(T , xinit)
for k = 1 to Niterations do

xrand ← RandomConfiguration()
xnear ← NearestNeighbor(xrand, T )
if xnew ← NewState(xnear, xrand) then

Insert(T , xnew)
return T

The RRT algorithm works by growing a tree starting from a given root. The
growth is performed one vertex at a time, by alternating the two steps that
are common to most tree-based planners: selection and propagation.

• Selection.
· A sample xrand is chosen uniformly at random.
· Among the samples already existing in the tree, the closest one to xrand

is selected. Let this be sample be xnear.
• Propagation.
· An edge is then extended from xnear toward xrand, not necessarily reaching

it.
· The ending vertex from the edge extended from xnear is then the new

sample added to the tree.

Fig. 4. Sample RRT.

One of the bottlenecks of RRTs is that in some environments (see Figure 5 for
an example) most of the randomly selected samples will cause the expansion
from the closest node in the RRT tree to fail. This produces a significant
increase in the runtime of the algorithm. One way to mitigate this problem is
presented in [YJSL05].
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Fig. 5. Bug trap. Starting point is inside the trap, goal is outside. Most of the
random samples will be outside the trap and will fail to produce paths that exit it.

The idea is to attach a radius to each of the samples in the built tree. If the
randomly selected sample is further away than the specified radius, another
sample is picked until the distance to the nearest sample in the tree is less than
the attached radius. This change reduces the likelihood of having a connection
failure. Samples added to the tree are initially set to infinite radius; when a
connection attempt fails from a sample, its radius is set to some workspace-
dependent constant.

An obvious issue with the method above is the workspace-dependent con-
stant. This issue is addressed in [JYLS05]. Their idea is to adapt the value
of the radius according to some other constant that is less sensitive to the
workspace. The radius is increased with every successful connection attempt
and decreased with every connection failure.

One of the newer RRT-like algorithms is based on utility trees [BB07]. The
main improvement for this type of trees is that more aspects of the tree growth
are evaluated: the utility of the node to be expanded, the expansion direction,
the expansion distance and connection attempts. The utilities of the differ-
ent aspects are evaluated using approximation techniques similar to those of
predictive models presented above.

3.2.2 Using multiple trees

When solving a motion planning problem, it is often the case that multiple
trees are used. So-called bidirectional algorithms [KL00] grow trees both from
the start and from the goal regions, one towards the other and try to connect
them (Figure 6). Another situation in which multiple trees are used is in
algorithms like SRT [PBC+05]. The idea behind SRT is to have a roadmap
of trees. Instead of connecting samples, trees are grown from each sample
and they are connected to other nearby trees to form a roadmap. This is a
generalization of roadmap-based and tree-based planners. The main advantage
of using multiple trees is the potential for parallel execution.

An important issue that arises with algorithms that use multiple trees is the
connection of the trees. Deciding which nodes in which trees need to be con-
nected is not a simple issue. In addition, connecting two nodes is also a difficult
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Fig. 6. Two trees growing one towards the other.

problem in the context of motion planning. More details about how to deal
with these difficulties follow in Section 4.1.

4 New directions in sampling-based motion planning

So far a number of different ideas that try to improve on the essential compo-
nents present in sampling-based motion planners have been described. Most
of the algorithms in the previous section have the underlying assumption that
the robot is a free-flying 3-dimensional body moving in a static workspace.
In the area of mobile robotics though, it is an interesting and challenging
goal to try and embed a sampling-based motion planner in a real robot as a
black box, that can automatically drive a robot to wherever its goal might
be. For such functionality in real life scenarios,there are various constraints
and difficulties that need to be addressed on top of the basic geometric motion
planning problem. This section tries to identify some of those issues, and show
how sampling-based planners are being adapted to deal with them.

The extensions to the basic motion planning problem that will be discussed are
summarized below. For real robots these are not the only issues that need to be
considered. Dealing with uncertainty in motion and sensors and consequently
problems in localization and mapping, are very important but are omitted in
this paper.

• Robot’s dynamics: One crucial extension towards more physical realism
is to try and take into account dynamic constraints. A real robot is not
a “free-flying” object. It has motor limitations that impose bounds on its
maximum velocity and acceleration [BL06,LK01]. These are called kinody-
namic constraints and can significantly increase the complexity of motion
planning, as the robot might be incapable of implementing certain collision-
free paths (infeasible). Furthermore, real robots are subject to other physics
based constraints such as gravity, and friction [LK05] that can and some-
times need to be taken into account.
• Workspaces that change in time: Another extension is to relax the static
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workspace assumption. This is another important extension that is neces-
sary for robots that are not restricted to operating in a highly controlled,
stationary environment. The difficulty motion planning in such cases can
vary based on what is known about the moving obstacles. In the best case,
the obstacles are executing repetitive motions and information about their
maximum velocity or acceleration is available [BO06b]. It could be though
that the moving obstacles are unpredictable or even malevolent and moving
arbitrarily fast. In these cases guaranteeing collision avoidance overall for a
robot may be impossible [PF05,BO06a].
• Real-time planning: In real life scenarios, it is frequently the case that a

robot will need to move in an only partially known environment. In those
cases, as new sensory information is obtained, the robot needs to be able
to revise its plan, i.e. to replan [FKS06]. Moreover, in environments that
are changing in time, the robot is expected to react to these changes and
replan in real-time while moving. Finally, all these considerations become
more important when the robot’s dynamics are taken also into account
[BK07,BV06,FDF01].

4.1 Kinodynamic planning and physics based constraints

Real robots have kinodynamic constraints that cannot generally be ignored.
One common way of taking those constraints into account is with the use of
an appropriate controller that can generate feasible motions. A very common
approach to solve motion planning problems is with a decoupled approach
(decoupled trajectory planning) [KS05,BV06]. First, a path planning algo-
rithm computes a collision-free trajectory ignoring system dynamics. Then, a
controller is needed to compute appropriate controls that will implement the
desired path. There is a number of issues in this approach. Typically, con-
trollers alone cannot avoid obstacles in the environment, and that is why an
obstacle free path must be found in another way first. Moreover, the produced
geometric paths may be infeasible for a real robot and even when the controller
manages to follow a desired path, this may require that the robot moves slowly
to minimize the influence of dynamic and physical constraints. Finally, con-
trollers are system specific, and as today’s robots become increasing complex
it becomes very hard to develop good controllers.

In the last few years a number of sampling-based motion planners and es-
pecially tree-based planners, have made it possible to accommodate kinody-
namic constraints and physics constraints in a computationally feasible way.
Sampling-based planners have a more unified approach as they produce feasi-
ble paths that at the same time avoid obstacles. Moreover, for a those planners
also provide the time sequence of controls that the robots needs to execute to
move on the selected path. The main idea behind sampling-based motion plan-
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ners for kinodynamic planning, is to search a higher dimensional state space
X that captures the dynamics of the system. Given a configuration q ∈ C,
a state of a robot can be simply defined as x = (q, q̇) [LK01]. The goal is to
plan in the state space similarly to planning in the configuration space. In this
way the techniques described in previous sections can be adapted to deal this
new class of problems. In the first subsection, planners that are derived from
classical tree based planners such as RRT and EST are covered. Next, a new
family of sampling-based motion planners called path directed tree planners is
described. Last, some ideas are presented on how to use bidirectional trees in
the presence of kinodynamic constraints.

Classical tree-based planners

The first fruitful attempts to incorporate kinodynamic constraints in a sampling-
based planner, were based on modifying existing tree-based planners.

In [LK01] an RRT-like planner is described. The paper explains how dynamics
can be incorporated in a sampling-based planning framework. The RRT-tree is
produced in a way similar to what was described in section 3. The difference
is that here the planner samples random controls and tries to apply them
for some amount of time in order to expand from a current state on the
towards towards the newly sampled state. In this way, any path on the tree
is a feasible and collision-free trajectory of the robot. The authors consider
complex systems such as hovercrafts and satellites in environments that are
cluttered with obstacles.

A similar way of planning under kinodynamic constraints is presented in
[HKLR02]. Planning is done in the state space × time space in a fashion
that follows another popular tree-based planner, the EST [HLM97]. The plan-
ner picks a state node already on the tree and samples a random control that
is applied for some amount of time to add a new node on the tree. The node
for the next expansion is selected in a way so as to create a tree that is not
too dense in some parts and too sparse in others. The authors provide an
analysis of the probabilistic completeness of their algorithm. Moreover, they
present experiments on non-holonomic robots both in simulation and for real
robots. Some interesting ideas are also discussed with respect to recomputing
a trajectory if there is an unexpected change in the environment that conflicts
with the current trajectory.

Along the same lines is [FDF01], which tries to show the decoupling between
the higher level motion planner and the lower level control. Their approach
is closer to RRTs but has some important differences. A state is chosen at
random, and the planner tries to expand a tree towards a new sample. Yet,
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contrary to RRT, which is expanding from the node on the tree that is closest
to the new sample, the authors evaluate the nodes of the current tree in order
of increasing cost to the new sample using some distance metric. Expansion
towards the new sample is attempted from all nodes on the tree before the
sample is considered unreachable. An optimal control policy in the obstacle-
free case is used to drive the robot. Moreover, this algorithm contains ideas
about how to deal with real-time planning where the planner only has a time
budget to produce a trajectory to the goal.

In all of the planners presented above, one of the issues that is dealt with
is the direction of growth for the tree. On one hand, coverage needs to be
eventually achieved in order to guarantee probabilistic completeness, on the
other hand, goal bias needs to be taken into account, in order to speed up
planning. DSLX [PVK07] (Discrete Search Leading Continuous eXploration)
is proposed as a method to address this issue. The idea is that the workspace
is discretized and a discrete path from start to goal is found. This path will
the be used as a hint, to lead the direction of growth of the tree. This method
achieves significant computational improvements.

Path Directed Planners

Most sampling-based planners require a distance metric in the space that is
being sampled. Metrics are typically required for biasing the search and finding
nearest neighbors to compute edges in the tree or roadmap. However, espe-
cially in state spaces, it can be hard and counter-intuitive to define a good
metric between states. Moreover, metrics are usually not general enough and
work well only for a specific system. The motivation for having a planner that
does not depend on distance metrics lead in the last few years in the devel-
opment of a new family of tree-based planners, called path directed planners.
The major difference of these planners is that the tree data structure no longer
uses single points as samples. Instead, the samples are whole path segments
that can hold useful information in order to speed up the exploration of the
planning space.

PDST [LK05] is the first planner in the family of path directed tree planners
that introduced a new idea for creating a tree which does not use a metric
to bias the search.The basic scheme is illustrated in Algorithm 3. At each
iteration, a sample γ is selected. Then a random state x on the selected sample
is chosen and a new sample is propagated from that state by applying a
newly randomly selected control u for some time δt. The innovation is that
PDST has a space subdivision scheme and does not require a metric. The
space is subdivided into cells. After a new sample is propagated, the cell in
which that sample starts, is subdivided. An invariant of the algorithm is that
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each sample is contained only in one cell. The algorithm keeps track of how
many samples are located in each space cell and can in this way estimate how
dense the sampling is in different areas of the space. The selection of samples
for expansion favors those that lead to new unexplored areas of the space.
To guarantee probabilistic completeness, each sample also has an associated
priority. Priorities are updated in a way that guarantees that eventually every
sample in the tree will be selected for propagation.

PDST has been applied to a number of systems with complex dynamics, from
cars and blimps to a weight lifting robot. An interesting idea, that has been
tried is the combination of PDST with a physics engine, that simulates the
world. In this way, the planner could be used to plan for systems even more
realistic situations where physical constraints such as gravity and frictions are
taken into account.

Algorithm 3 PDSTxinit)

for k = 1 to Niterations do
γ = SelectSample()
(x, u, δt) = SelectStateControlSuration(γ)
π = Propagate(x, u, δt)
if IntersectGoalRegion(π) then

Terminate()
UpdatePriorities()
Subdivide(GetCellOf(γ))

Another path directed tree planner is [BK07]. This planner also uses a se-
lection/propagation scheme to create new samples and generate a tree. This
algorithm tries to avoid the overhead of subdivision while still not using a
metric to bias the search. Instead, a low dimensional navigation function that
has its global minimum in the goal region is defined. This navigation function
can be computed very fast, and for any point in the workspace, it provides the
A* distance of that point to the goal. Although this distance cannot capture
the dynamics of the system, this work shows that it can bias the search to
the goal sufficiently for simulated cars with second order dynamics. Assigning
priorities to samples is used to guarantee probabilistic completeness.

Path deformation and Closing Gaps

The idea of using multiple trees exists in the case of kinodynamic motion
planning as well. However, it not possible to analytically compute the controls
needed for connecting nearby states and thus gaps may appear. In the following
paragraphs, ideas of how to close such gaps are presented.
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A possible option for closing the gaps is then perturbing the controls in the
potential solution path into ones that achieve smaller gaps. Perturbing con-
trols along such a path may require integration of potentially long sections of
the path, which is time consuming. In [CFL04], a method for replacing this
integration with translation is presented. The method relies on using group
symmetries in the system.

Another approach for closing gaps is using path deformation. The authors
of [LFV04] present a method of connecting two trees – one grown from the
goal and one grown from the source. The method deforms the paths – one
path starting at the source and the other ending at the goal – such that the
free end-points of the two paths become closer and closer. This is an iterative
process that aims to find a minimum using a potential field. The method may
get stuck in local minima but experimental results show this rarely happens
when attempting to connect reasonably close end-points.

Remarks on kinodynamic planning

The algorithms presented in this section show that the latest tree-based plan-
ners are becoming able to deal with kinodynamic constraints by planning
directly in the state space. Trees are simple and efficient data structures that
can represent temporal information in a natural way. Moreover, tree-based
planners can overcome the difficulty that controllers face in implementing a
desired path as the produced trajectories are always feasible.

The main problem that these algorithms tend to have is that the produced
paths are generally suboptimal and typically contain cusps and sharp turns.
Post-processing and smoothing those paths is an active area of research that
will not be covered in this paper.

4.2 Dynamically changing environments

With the efficiency improvements of planners, interest has grown towards plan-
ning for robots in more realistic scenarios. For example, demand has emerged
for planning amongst moving obstacles, dynamically changing environments
and/or unknown environments. In such cases, due to observed changes in the
environment, the current plan can be rendered invalid and a new plan has
to be produced. Moreover, time is an issue and the planner can only rely on
temporarily valid information obtained from its sensors to quickly come up
with a new motion plan while moving. These ideas are captured in the notions
of real-time planning and re-planning. Again, tree-based planners are proving
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to be a good framework that has been adjusted to deal with these kinds of
problems. Nevertheless, there also exist some algorithms that use roadmaps.

4.2.1 Basic re-planning algorithms

A simple re-planning framework was presented in [FKS06]. It presents an RRT
planner that is the probabilistic analog to the family of D* algorithms [KL02].
Specifically, an RRT tree is grown to cover the space until an obstacle is sensed
in the way. The paper describes how part of the tree is quickly invalidated.
The algorithm tries to expand towards the goal from what is left of the pruned
tree,. Along the same lines, but in a PRM framework, is [BFK06] which also
tries to produce paths that optimize some criterion, such as time, stealth etc.
In this work, the robot first builds a roadmap in the state × time space of the
environment and finds an initial plan that takes any known dynamic obstacles
into account. Then, as the robot starts executing the plan, it is possible that
new obstacles might be observed that invalidate the plan. In that case, a
discrete search algorithm called Anytime D*, is employed. This algorithm can
quickly repair the plan, so it no longer interferes with the moving obstacles.
The above ideas are closely related to Artificial Intelligence techniques, where
re-planning has been studied for longer time in a discrete graph search context.

4.2.2 Planning amongst moving obstacles with roadmaps

This subsection presents algorithms that dynamic environments into account
with the use of roadmaps. The robot’s dynamics is ignored so planning is
done in the configuration space. For environments where obstacles are not
necessarily static, a fixed roadmap cannot maintain information about the
connectivity of the space. There are two main directions for addressing this
problem. One assumes the movement of obstacles is predictable and then time
can be considered an extra parameter of the configuration space. This basi-
cally allows using roadmap-based algorithms in a higher dimensional space.
The other direction is to use roadmaps that permit updates. This is a more
general method but raises the problem of updating the roadmap in a useful
and efficient manner.

As an example of the first direction, planning in environments with obstacles
that have known periodic motions has been examined in [BO06b]. In order to
improve efficiency, instead of simply adding a time component, to each point
in the configuration space a period is associated – the interval at which the
point is in collision. The points that do not change from Cfree to Cobs have a
period of 0. Compared to simply augmenting the configuration space with a
time component, the presented method is more efficient.

For the second direction, ideas from [JS04,YB06] are presented. In [JS04],
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relevant portions of the roadmap are checked for collision with known dynamic
obstacles for every query. A bidirectional tree-based planner is used to attempt
restoration of the connectivity lost from edges that are in collision. If the tree-
based algorithm fails, more samples are added to the roadmap. This allows
the roadmap to be potentially updated with every query.

A similar notion is presented in [YB06]: samples in the roadmap are allowed
to move and change their connectivity – an elastic roadmap. However, the
connectivity here is defined by the ability of a feedback controller to move the
robot between connected states. Another major difference is that the roadmap
is no longer in the configuration space, but in the workspace. These changes
allow faster computation for some problems but lose the probabilistic com-
pleteness property of the planner.

4.3 Online Re-planning for robots with kinodynamic constraints

In this subsection, two algorithms that are combining many of the ideas de-
scribed above are presented. The robots considered have non-trivial kinody-
namic constraints and they move in an environment that is partially known
and/or changing. For this reason, robots have to gather new information peri-
odically, and then re-plan using the latest available information. This is one of
the most interesting and relatively newest classes of problems so the present
literature is quite limited.

In [BK07], a tree-based planner for car-like robots with second order accelera-
tion constraints is described. A robot is trying to explore an unknown environ-
ment. This work shows how previously computed trees can be reused efficiently
in the next re-planning step. More specifically, by retaining the valid part of
a previously computed tree, the planner is able to avoid redundant collision
checks. In many cases, the quality of the returned paths towards a chosen goal
is improving in consecutive re-planning steps. It is important to emphasize
that this planner is computing plans in real-time under a time budget.

Another work that deals with robots that have non-holonomic kinodynamic
constraints is presented in [LB02]. Here, an initial plan in the state space
is computed with a sampling-based motion planner. Then, the robot starts
executing that plan until it senses some change in the environment or deviation
from the specified trajectory that renders the current plan invalid. At that
point the robot has to re-plan. This is done by deforming the path in a way
that still respects the non-holonomic constraints.
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Safety

To close the section of new directions in sampling-based motion planning, it
interesting to see how all the extensions to the basic motion planning problem
can coexist in a planning problem. A robot moving in an unknown and/or
changing environment needs to change its plan rapidly, depending on the lat-
est sensor input. Yet, if the robot is limited by its dynamic constraints, it
cannot instantaneously change its behavior. All of these considerations have
bring up the issue of safety. It is no longer enough to simply produce feasible
trajectories that are collision free with respect to static or moving obstacles.
The trajectories have to also be safe. Safety has been defined in different ways
in the literature, but a simple and generic description defines as safe a plan
where the robot never finds itself in what is called an Inevitable Collision State
or ICS [FA03]. Being in ICS means that due to dynamic constraints, the robot
will collide with an obstacle in the future no matter what controls are applied
from that state on.

One recent paper that incorporates many of the issues discussed here and in
the previous section is [BV06]. This work deals with real robots that partici-
pate in the RoboCup competition. The robots move fast, so dynamics cannot
be ignored; the environment is rapidly changing since there are many other
robots (in the same or the opposing team) moving in the same area. The
robots have a very small time budget to plan their next motion. This paper
describes a three stage algorithm. First, an RRT-like planner finds a path
to the desired goal position, ignoring dynamics. Then, a controller needs to
find the appropriate controls that implement the path. There is also a third
stage, responsible for producing safe paths. Out of the possible valid solutions,
a search is performed to filter out all solutions that can potentially lead to
inevitable collisions in the future.

The notion of ICS is also used in [BK07], to define and guarantee the safety
of an exploring robot. Specifically, the algorithm accepts only the trajectories
for which after the last state of a trajectory, there exists a contingency plan.
The contingency plan, describes a plan that the robot can always execute in
that state, in order to avoid collisions in case the planner fails to produce (i.e.,
due to time limitations) any other safe trajectory to the goal.

5 Conclusion

Motion planning is an important problem in robotics and many approaches to
solving it have been examined. Even though complete algorithms are PSPACE-
complete and thus not useful for practical purposes, probabilistically complete
algorithms have been very successful in a variety of problems. These algorithms
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form the category of Sampling-Based Motion Planners.

Sampling-based motion planners have been used to solve difficult geometric
problems, but have also proven flexible enough to deal with more realistic,
hard, motion planning problems. From the mobile robotics point of view,
this work discussed planning for robots with kinodynamic constraints and
planning in dynamic environments. A detail to note is most of the algorithms
are not specifically designed for mobile robots. They are general and powerful
algorithms that are also used in other areas or robotics such as manipulators,
humanoids and reconfigurable robots. Due to space limitations, topics on these
areas are not presented in this work.

While much progress has been made over the last decades, motion planning
for real robots that can operate in everyday life scenarios, is still at its be-
ginnings. Sampling-based motions planners started mainly as offline planners
for geometric problems and static environments. Research in the last years
has shown that such planners could be a powerful alternative in planning for
real robots as well. However, there is still a number of issues that have to be
addressed before installing a sampling-based motion planner on a real robot
becomes possible. Real systems push current planners to their computational
limits as the state space can be high dimensional. Moreover, planning in the
state space is not fully understood or intuitive, as narrow passages (the main
difficulty of sampling-based planners) can appear due to dynamic constraints.
The quality of the paths produced by sampling-based motion planners is an-
other problem and it is an active area of research. Finally, there is the issue
of uncertainty in motion, which is inevitable is real systems, and is again an
area of active research in the context of sampling-based motion planning.
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