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Abstract 

The problem of incorporating protein flexibility in the routine in silico screening 

of large databases of small chemical compounds is still an unsolved and hard problem. 

The main reason behind this difficulty is the exponential explosion in computational 

complexity due to the inclusion of the large number of degrees of freedom that represent 

the receptor flexibility. In order to address this limitation several flexibility models for 

the receptor have been developed which try to limit the number of additional model 

parameters. These models can be roughly grouped divided into five different categories. 

These are the use of soft receptors which relax energetic penalties due to steric clashes, 

the selection of a few critical degrees of freedom in the receptor binding site, the use of 

multiple receptor structures either individually or by combining them using an averaging 

scheme, the use of modified molecular simulation methods, or the use of collective 

degrees of freedom as a new basis of representation for protein flexibility. All these 

flexible receptor models strive to balance an improvement in the accuracy of the docking 

predictions with an increase in computational cost. In addition, other challenges such as 

the development of accurate solvation models and scoring functions make the receptor 

flexibility problem even harder. 
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Introduction 

The ability to predict the bound conformations and interaction energy between 

small organic molecules and biomacromolecules such as proteins and DNA is of extreme 

physiological and pharmacological importance. Hence, there has been a considerable 

effort from both academia and industry to develop computational methods that can be 

used to determine the affinity with which a ligand will bind a target receptor. These 

methods usually include docking algorithms that compute the three dimensional structure 

of the complex as would be determined experimentally using X-ray crystallography or 

Nuclear Magnetic Resonance (NMR) methods. This procedure entails not only 

determining the identity and three dimensional structure of the bound ligand, but also 

determine how the binding process affects the conformation of the receptor. In this paper 

we review the different receptor flexibility representations that have been explored to 

study receptor conformational changes in the context of structure based drug design. 

A central paradigm which was used in the development of the first docking 

programs was the lock-and-key model first described by Fischer [1]. In this model the 

three dimensional structure of the ligand and the receptor complement each other in the 

same way that a lock complements a key. According to this model, one could find a good 

drug candidate by searching a database of small molecules for one that complemented the 

three dimensional structure of a given receptor. This rigid matching was supported by 

several studies of complexes of proteolytic enzymes with small protein inhibitors [2-4] 

and from the first example of an antibody-protein complex [5]. However, subsequent 

work has confirmed that the lock-and-key model is not the most correct description for 

ligand binding. A more accurate view of this process was first presented by Koshland [6] 



 4

in the induced fit model. In this model the three dimensional structure of the ligand and 

the receptor adapt to each other during the binding process. It is important to note that not 

only the structure of the ligand is changed but also the structure of the receptor changes 

during the binding process. This occurs because introduction of a ligand changes the 

chemical and structural environment of the receptor. As such, the unbound protein 

conformational substates, corresponding to the low energy regions of the protein energy 

landscape, are likely to change due to the introduction of the ligand in the environment of 

the receptor. The induced fit model is supported by multiple observations in different 

proteins such as streptavidin [7], HIV-1 protease [8], DHFR [9], aldose reductase [10] 

and many others. The qualitative and quantitative effects of ligand-induced changes in 

proteins have been described previously [11-15] and explain the ability of a protein to 

bind multiple drugs with considerably different three dimensional shapes [8, 16]. 

A more modern, but not contradictory, model for protein/ligand binding is to 

think of the binding process as a selection of a particular receptor conformation from an 

ensemble of metastable states [17-20]. The protein exists as a family of similar 

conformations in a hierarchical energy landscape [21]. Successful binding shifts the 

dynamic population equilibrium in favor of the bound receptor conformation. This model 

of ligand binding suggests that for the design of novel inhibitors we may need to explore 

receptor conformations located outside the narrow scope of the conformational ensemble 

presently determined using experimental methods. This is important for drug design 

because it clearly illustrates the need to consider protein flexibility and the existence of 

multiple receptor conformations. It also provides a justification for higher affinity 

inhibitors that do not mimic substrates at their transition state. Additionally, if a protein 
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exists in a population of states as discussed in [18, 22] then one could either design a 

moderate affinity ligand for a highly populated conformer (lower energy) or a high 

affinity ligand for a less populated conformer (higher energy). 

Although it has been clearly established that a protein is able to undergo 

conformational changes during the binding process, most docking studies consider the 

protein as a rigid structure. The reason for this crude approximation is the extraordinary 

increase in computational complexity that is required to include the degrees of freedom 

of a protein in a modeling study. Pioneer efforts in the docking area [23, 24] were limited 

not only in methodology but mainly in computational capability. In the 1980s Kuntz and 

coworkers developed the program DOCK [25] which made structure-based drug design a 

staple of current pharmaceutical research methods. Currently, researchers have the ability 

to use not only improved versions of the original DOCK program but also other docking 

software such as FlexX [26] or Autodock [27], among many others, to computationally 

predict the spatial conformation and affinity of bound complexes between a flexible 

ligand and a rigid receptor. These programs use different search methods and scoring 

functions. A review of these is beyond the scope of this paper. For recent reviews in 

general structure based drug design, docking methods and scoring functions see  [28-32].  

The three dimensional conformation of a molecule can be represented by the 

values corresponding to its degrees of freedom. These are usually the Cartesian 

coordinates of its individual atoms or alternatively the values for its internal degrees of 

freedom. These are bond lengths, bond angles and dihedral angles (i.e., torsions around 

single bonds). A common approximation when modeling organic molecules is to consider 

that bond lengths and bond angles are constant and only dihedral angles are free to 
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change. Even using this approximation a protein can have thousands of degrees of 

freedom whereas a small organic molecule can be usually modeled using only five to 

twenty degrees of freedom. In the last decade, with the advent of improved computational 

capabilities, researchers have been trying to solve the high dimensional problem of 

modeling protein flexibility in docking applications. The effect of protein flexibility on 

structure based drug design has been reviewed by Carlson et al. [22, 33, 34]. 

There is currently no computationally efficient docking method that is able to 

screen a large database of potential ligands against a target receptor by considering the 

full flexibility of both ligand and receptor. In order for this process to become efficient it 

is necessary to find a representation for protein flexibility which avoids the direct search 

of a solution space comprised of thousands of degrees of freedom. Here we review the 

different representations that have been used to incorporate protein flexibility in the 

modeling of protein/ligand interactions. A common theme behind all these approaches is 

that the accuracy of the results is usually directly proportional to the computational 

complexity of the representation. We tried to group the different types of flexibility 

representations models into different categories that illustrate some of the key ideas that 

have been presented in the literature in recent years. However it is important to note that 

the boundaries between these categories are not rigid and in fact several of the 

publications referenced below could easily fall in more than one category. 
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Flexibility Representations 

Soft Receptors 

Perhaps the simplest solution to represent some degree of receptor flexibility in 

docking applications is the use of soft receptors. Soft receptors can be easily generated by 

relaxing the high energy penalty that the system incurs when an atom in the ligand 

overlaps an atom in the receptor structure. By reducing the van der Walls contributions to 

the total energy score the receptor is in practice made softer thus allowing, for example, a 

larger ligand to fit in the same binding site as determined experimentally for a smaller 

molecule ( see Fig. (1) ). The rationale behind this approach is that the receptor structure 

has some inherent flexibility which allows it to adapt to slightly differently shaped 

ligands by resorting to small variations in the orientation of binding site chains and 

backbone positions. If the change in the receptor conformation is small enough, it is 

assumed that the receptor is capable of such a conformational change, given its large 

number of degrees of freedom, even though the conformational change itself is not 

modeled explicitly. It is also assumed that the change in protein conformation does not 

incur a sufficiently high energetic penalty that it offsets the improved interaction energy 

between the ligand and the receptor. The main advantage of using soft receptors is ease of 

implementation (docking algorithms stay unchanged) and speed (the cost of evaluating 

the scoring function is the same as for the rigid case). 

 The first use of a soft docking approach was by Jiang et al. [35]. Their method 

consisted of constructing a three dimensional cube representation of the molecular 

volumes and surfaces. These were matched geometrically in a first phase. In a second 
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phase they were scored in accordance to the favorable energetic interactions in the buried 

surface areas. Schnecke et al. [36] also allowed for some tolerance when calculating van 

der Walls overlaps between atoms. 

 Another use of soft docking models is to improve convergence during energy 

minimization and avoid becoming trapped in local minima. Apostolakis et al. [37] 

developed a docking approach which is based on a combination of minimization with 

shifted nonbonded interactions and Monte Carlo minimization. In the initial stages of the 

conformational search the ligand is allowed to overlap with the receptor and nonbonded 

energy terms are modified to avoid high energy gradients. During the course of the 

minimization the interactions are then gradually restored to their original values 

simulating a ligand that is gradually exposed to the field of the receptor. This allows for 

initial ligand/receptor conformations, which due to steric clashes would result in a very 

high energy penalty, to slowly adapt to each other in a complementary conformation 

without overlaps. One potential pitfall of this approach is the possibility that the ligand 

may become interlocked with the protein leading to failure of the docking procedure. 

Although the use of soft receptors presents a number of advantages such as ease 

of implementation and computation speed, it also makes use of conformational and 

energetic assumptions which are difficult to verify. This can easily result in errors 

especially if the soft region is made excessively large to account for larger 

conformational changes on the part of the receptor. 

Selection of Specific Degrees of Freedom 

In order to reduce the complexity of modeling the very large dimensional space 

representing the full flexibility of the protein, is it possible to obtain an approximate 
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solution by selecting only a few degrees of freedom to model explicitly. The degrees of 

freedom chosen usually correspond to rotations around single bonds ( see Fig. (2) ). The 

reason for this choice is that these degrees of freedom are usually considered the natural 

degrees of freedom in molecules. Rotations around bonds lead to deviations from ideal 

geometry that result in a small energy penalty when compared to deviations from ideality 

in bond lengths and bond angles. This assumption is in good agreement with current 

modeling force fields such as CHARMM [38] or AMBER [39]. Selection of which 

torsional degrees of freedom to model is usually the most difficult part of this method 

because it requires a considerable amount of a priori knowledge of alternative binding 

modes for a given receptor. This knowledge usually is a result of the availability of 

different experimental structures obtained under different conditions or using different 

ligands. If multiple experimental structures are not available some insight can be obtained 

from simulation methods such as Monte Carlo (MC) or molecular dynamics (MD). The 

torsions chosen are usually rotations of aminoacid side chains in the binding site of the 

receptor protein. It is also common to further reduce the search space by using rotamer 

libraries for the aminoacid side chains [40-42]. 

The first application of using select degrees of freedom to model receptor flexibility 

was carried out by Leach [43]. This work made use of the Dead End Elimination (DDE) 

[44] and the A* algorithm [45] to explore the conformational space for the degrees of 

freedom for both ligand and receptor. The DDE states that a rotamer r of residue i (ir) is 

incompatible with the global energy minimum structure if it satisfies the following 

inequality: 

∑∑ +>+
j

jisrigidi
j

jisrigidi sttsrr
EE ,,,, maxmin εε , 
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where rigidir
E ,  is the interaction energy between ir and the rigid part of the protein, 

sr jis ,minε is the minimum interaction energy between rotamer r of residue i with all 

permitted rotamers s of residue j, and
st jis ,maxε is the corresponding maximum value for 

rotamer it. The A* (pronounced "A star") algorithm is a well known and well studied 

best-first search algorithm that works by expansion of nodes, always expanding the 

current fringe node that looks like it is along the best path from the start node to the goal 

node. Besides using these two methods Leach also introduced an energy threshold to the 

global minimum and returned all structures under this threshold as potential binding 

candidates. The purpose of the threshold is to take into account the fact that the true 

global energy minimum of the bound complex does not necessarily correspond to that of 

the force field. This work was later extended by Leach and Lemon [46] to explore the 

conformational space of whole proteins. Schaffer et al. [47] also used DDE to perform 

flexible docking of two HIV-1 protease inhibitors with mutants of this protein. The DDE 

algorithm was applied using a rotamer library to perform discrete optimization of all 

possible side chain conformation combinations in the binding site. The best solutions 

were later optimized in conjunction with the ligand using a Monte Carlo simulated 

annealing technique. This two step method leads to a solution which is not restricted to 

the dihedral values present in the rotamer library and is also of lower energy. More 

recently Althaus et al. [48] used two alternative combinatorial optimization methods to 

also solve the side chain conformation problem. The first method consists of a heuristic 

multi-greedy approach, which is faster but does not necessarily produce an optimal 

solution. The second method is able to find the global minimum energy conformation and 

is based on a branch-and-cut algorithm and integer linear programming. 
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 In the program GOLD Jones et al. [49] use a genetic algorithm (GA) to dock a 

flexible ligand to a semi-flexible protein. GAs are an optimization method which derives 

its behavior from a metaphor of the process of evolution. A solution to a problem is 

encoded in a chromosome and a fitness score is assigned to it based on the relative merit 

of the solution. A population of chromosomes then goes through a process of evolution in 

which only the fittest solutions “survive”. This program takes into account not only the 

position and conformation of the ligand but also the hydrogen bonding network in the 

binding site. This was achieved by encoding orientation information for donor hydrogen 

atoms and acceptors in the GA chromosome. This type of conformational information is 

very important because if the starting point for a docking study is a rigid crystallographic 

structure, the orientations of hydroxyl groups will be undetermined. Being able to model 

these orientations explicitly removes any bias that may result from positioning hydroxyl 

groups based upon a known ligand. One limitation of this work is that the binding site 

still remained essentially rigid because protein conformational changes are limited to a 

few terminal bonds. This program performed very well for hydrophilic ligands but 

encountered some difficulties when trying to dock hydrophobic ligands due to the 

reduced contribution of hydrogen bonding to the binding process. 

 In SPECITOPE Schnecke et al. [36] also make use of side chain rotations in the 

late stages of docking to remove steric overlaps between the protein side chains and the 

ligand. If an overlap clash is detected the program attempts to remove it by rotating the 

side chain through the minimal angle that resolves the clash. The single bond closest to 

the bumping atoms in the side chain is used first to resolve the overlap. If a bump free 

conformation cannot be generated with this rotation, the next rotatable bond closer to the 
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ligand backbone is rotated. This procedure will miss potential combinations of side chain 

conformations that do not overlap with the ligand and is not capable of finding the 

minimum energy conformation. Nevertheless, it will successfully resolve many cases of 

overlap. 

 Anderson et al. [50] introduced the algorithm SOFTSPOTS that addresses the 

problem of knowing which rotational degrees of freedom should be selected to represent 

receptor flexibility. Using a single protein structure, this algorithm is capable of 

identifying regions of high flexibility. The results were combined with a second 

algorithm named PLASTIC that provides a collection of possible conformations based on 

rotamer libraries effectively reducing the bias caused by structures of proteins co-

crystallized with inhibitors. More recently, Kayrys et al. [51] have improved the Mining 

Minima optimizer method, first described by David et al. [52], to include select side 

chain degrees of freedom in the docking simulation of several proteins and ligands. 

 A common theme among the work described in this section is that receptor side 

chain conformations are modeled using torsional degrees of freedom. In order to make 

the calculation of interactions energies more efficient it would be desirable to work with a 

force field which is also described in terms of internal coordinates to avoid repeated 

conversion between two coordinate systems. Use of internal coordinate force fields also 

leads to more efficient convergence of energy optimizations. Abagyan et al. described a 

method to carry out flexible protein-ligand docking by global energy optimization in 

internal coordinates [53] and more recently described a method to accurately "project" a 

Cartesian force field onto an internal coordinate molecular model with fixed-bond 

geometry [54]. 
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Multiple Receptor Structures 

One possible way of representing a flexible receptor for drug design applications 

is the use of multiple static receptor structures ( see Fig. (3) ). This concept is supported 

by the currently accepted model that proteins in solution do not exist in a single minimum 

energy static conformation but are in fact constantly jumping between low energy 

conformational substates [55-57]. In this way the best description for a protein structure 

is that of a conformational ensemble [20, 58] of slightly different protein structures 

coexisting in a low energy region of the potential energy surface. Moreover the binding 

process can be thought of as not exactly an induced fit model as described by Koshland  

in 1958 [6] but more like a selection of a particular substate from the conformational 

ensemble that best complements the shape of a specific ligand [17]. 

The use of multiple static conformations for docking poses two critical questions: 

“How can we obtain a representative subset of the conformational ensemble typical of a 

given receptor?” and “What is the best way of combining this large amount of structural 

information for a docking study?”. Currently there exist only a limited set of means to 

generate the three dimensional structure of macromolecules. The structures can be 

determined experimentally either from X-ray crystallography or NMR or generated via 

computational methods such as MC or MD simulations. Simulations typically use as a 

starting point a structure determined by one of the experimental methods. Ideally we 

would like to use the method that is able to provide the greatest conformational sampling 

of the structure space. Comparisons done between the experimental and computational 

techniques [59, 60] seem to indicate that X-ray crystallography and NMR structures seem 

to provide better coverage. However this balance can potentially change due to advances 
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in computational methods [61]. Another limitation in choosing data sources is 

availability. Although experimental data is preferable, the monetary and time cost of 

determining multiple structures experimentally is significantly higher than obtaining the 

same amount of data computationally. The second critical question also remains open and 

current approaches use diverse ways of combining multiple structures. 

The first use of multiple structures for a drug design applications was by Pang and 

Kozikowski [62] to study the binding of huperzine A (HA) to acetylcholinesterase 

(AChE). In this study the authors ran a short MD simulation (40 ps) of AChE from which 

they extracted 69 conformations which were docked using rigid docking to HA. This 

study successfully predicted that HA binds to the bottom of the binding cavity of AChE 

(the gorge). More recently, other studies [63, 64] have exploited similar approaches but 

used a larger number of structures, longer MD sampling, and more accurate simulation 

conditions. Instead of resorting to computational methods to derive structural data 

Knegtel et al. [65] used a family of structures from an NMR structural determination or, 

as an alternative, several crystal structures of the same protein system. In that study the 

authors combined the different structures into a single interaction energy grid to be used 

for rigid receptor docking by the DOCK program. Interaction energy grids are calculated 

by placing a probe atom at discrete points in the space around a target protein and 

assigning to the grid point the value of the interaction energy between the probe and 

protein. This grid is then utilized as a fast lookup table for interaction energy calculations, 

effectively reducing the cost of computation from quadratic to linear. The averaged grids 

were constructed using energy-weighted and geometry-weighted averaging methods. The 

main limitation of these averaging approaches is that they can lead to loss of geometric 
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accuracy. The binding energies computed from the composite grid are also less favorable 

than for individual grids for each protein in the ensemble. In the case of geometry-

weighted averaging the binding site can become too permissive in terms the size of the 

ligand that it can accommodate. Sudbeck et al. [66] superimposed the crystal structures of 

nine inhibitor complexes of HIV reverse transcriptase to generate a composite binding 

site which summarized its unique critical features. The overlaid coordinates of the nine 

different inhibitors were used to generate a combined molecular surface defining an 

enlarged binding pocket which represented the plasticity of the receptor. The combined 

binding pocket was used to verify the results obtained from the docking of small 

molecules to a single structure of reverse transcriptase through a conjugate gradient 

minimization method for the ligand and all residues within 5 Å. This study resulted in the 

development of two new inhibitors. Multiple crystal structures of HIV-1 protease were 

also utilized by Bouzida et al. [67] to account for receptor flexibility. Broughton et al. 

[68] used different conformation snapshots from a short MD simulation of dihydrofolate 

reductase to generate interactions grids which were also combined into a single grid by 

means of a weighted average method. Before calculation of the grids the structures were 

superimposed using the bound inhibitors as a reference. 

As mentioned earlier one of the methods of combining multiple receptor 

structures is to create an average grid for the protein/ligand interaction potential [65]. 

Osterberg et al. [69] analyzed this problem in depth by using HIV-1 protease as a model 

system and comparing four different grid averaging methods. The fist two naïve methods 

consisted of a mean grid that takes a simple point-by-point average across all the grids, 

and a minimum grid takes the minimum value across all the grids. These two methods 
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performed poorly. The third approach is similar to that described by Knegtel et al. [65] 

and consists of a weighted averaging scheme. In this case if one or more of the grids 

contain a favorable, negative value, their weights will dominate the average. On the other 

hand, if all the grids contain unfavorable positive values, all will have identical small 

weights resulting in an unfavorable region representing all grids. The fourth averaging 

scheme is similar to the previous one but uses a Boltzmann assumption to calculate the 

weight based on the interaction energy. The last two averaging schemes were able to 

efficiently represent multiple structures in a single grid and the docking results were 

satisfactory. However, as the authors point out this method for incorporation of 

conformational flexibility can introduce potential dangerous artifacts such as positive 

interaction regions for mutually exclusive solutions. 

A rather different way of considering protein flexibility as represented in 

interaction grids for multiple static structures is GRID/CPCA (Consensus Principal 

Component Analysis). This method, introduced by Kastenholz et al. [70] in the study of 

serine proteases, is an extension of GRID/PCA [71], and can be used to identify 

selectivity features for a receptor. One of the main advantages of this method versus its 

predecessor is that it allows the inclusion of more that two structures in the PCA 

calculation. Moreover, when several structures are used, it allows for some averaging of 

the individual structures reducing differences which might be due to experimental 

variations but which are not relevant to the specificity features of the receptors. 

In the program FlexE, Claussen et al. [72] introduced a new method of combining 

multiple receptor structures to represent a flexible binding site. The algorithm starts by 

superimposing the set of conformations available for a given receptor and merging 
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similar parts of the structures. Dissimilar substructures are treated as independent 

alternatives and FlexE selects the combination of substructures which complements best 

a given ligand with respect to the scoring function. In practice, this results in the 

generation of alternative receptor conformations which were not present in the initial set 

but may constitute valid docking targets. 

More recently Moreno and León [73] introduced a new receptor representation 

that allows the use of an ensemble of protein structures as input to DOCK instead of a 

single rigid structure. In this approach, an ensemble of protein/inhibitor complex 

structures is used to construct a set of templates of attached points (one for each type of 

amino acid) located in positions suitable for interactions with ligand atoms. The 

combination of templates gives a description of a flexible binding site. The authors 

propose the method of attached points as an alternative to SPHGEN [74, 75] or 

SURFSPH [76] to generate a binding site descriptor. 

Multiple protein structures can be used not only to generate flexible receptor 

representations for docking purposes, but also to generate pharmacophores. A 

pharmacophore is a template for the desired ligand. The pharmacophore is represented by 

a set of features that an effective ligand should possess and a set of spatial constraints 

among the features. The features can be specific atoms, positive or negative charges, 

hydrophobic or hydrophilic centers, hydrogen bond donors or acceptors, and others. The 

spatial arrangement of the features represents the relative 3D placements of these features 

in the docked conformation of the ligand. Carlson et al. introduced the concept of a 

dynamic pharmacophore by combining sets of structures derived by either X-ray 

crystallography [77] or snapshots of a MD simulation [78]. Potential sites of interest in 
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the receptor binding site are determined by running a multi-unit MC minimization using 

probe molecules for the different features of interest. The results of these simulations for 

each conformer are then overlaid. This procedure then reveals conserved binding regions 

that are highly occupied during the MD simulation despite the flexibility of the receptor. 

The conserved features define the dynamic pharmacophore. Studies similar to dynamic 

pharmacophore identification were performed by Stultz and Karplus [79] using a 

combination of the Multiple Copy Simultaneous Search (MCSS) and Locally Enhanced 

Sampling (LES) methods. This protocol uses quenched MD to identify energetically 

favorable positions and orientations of small functional groups in a flexible binding site. 

In this method multiple copies of the functional groups are distributed in the binding site 

and quenched to find energy minima. These functional groups can later be used as 

building blocks for larger ligands. 

One of the main advantages of using multiple structures instead of using a 

selection of degrees of freedom to represent protein flexibility is that the flexible region is 

not limited to a specific small region of the protein. This kind of representation allows the 

protein to be fully flexible without the exponential blow up in terms of computational 

cost that would derive from including all the degrees of freedom of the protein. On the 

other hand flexibility is modeled implicitly and as such only a small fraction of the 

conformational space of the receptor is represented. In addition, the method by which the 

multiple receptor structures are combined has a drastic influence on the possible results 

of the docking computation. 
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Molecular Simulations 

 To simulate the binding process with as much detail as possible and avoid some 

of the limitations of previous flexibility models one can use force field based atomistic 

simulation methods such as MC or MD ( see Fig. (4) ). Whereas MD applies the laws of 

classical mechanics to compute the motion of the particles in a molecular system, MC 

methods are so called because they are based on a random sampling of the 

conformational space. The main advantage of these types of flexibility representations in 

docking studies is that they are very accurate and can model explicitly all degrees of 

freedom of the system including the solvent if necessary. Unfortunately, the high level of 

accuracy in the modeling process comes at the expense of a very high computational cost. 

For example, in the case of molecular dynamics, state of the art protein simulations can 

only simulate periods ranging from 10 to 100 ns, even when using large parallel 

computers or clusters. Given that diffusion and binding of ligands to proteins is a slower 

process it is clear that the use of these simulations techniques cannot be used as a general 

method to screen large databases of compounds at least in the near future. However, it is 

possible to carry out approximations that reduce the computational expense and lead to 

insight which would be impossible to gain using less flexible receptor representations. 

The cost of carrying out the computational approximations is usually a loss in accuracy. 

 In order to solve the time sampling limitations of traditional molecular dynamics 

Di Nola et al. [80] used a modified temperature coupling scheme to perform the docking 

of phosphocholine onto immunoglobulin McPC603. Instead of coupling the whole 

system to the same temperature bath, Di Nola used a regular coupling temperature to the 

internal degrees of freedom of the ligand and a very high temperature (1300-1700 K) for 
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the translational modes. In practice this allows the ligand to sample the surface of protein 

receptor much faster without disturbing internal motions. This method was extended later 

by Mangoni et al. [81] to also include the flexibility of the receptor which was also 

coupled to the lower temperature bath (300 K). In order to further reduce the 

computational cost of the simulation, the protein simulation was restricted to a sphere of 

20 Å around the chain oxygen of the phosphocholine molecule in the crystallographic 

position. The remaining part of the protein was kept rigid. The same approach of 

restricting the full molecular simulation to the vicinity of the binding site was used by 

Luty et al. [82] to simulate the docking of benzamidine to trypsin and by Wasserman et 

al. [83]  to simulate the docking of  L-leucine hydroxamic acid to thermolysin. Given and 

Gilson [84] also restricted flexibility to the binding site area of HIV-1 protease within the 

context of a hierarchical docking protocol. In this method conformations are evolved in 

stages, with the lowest energy conformations from one stage serving as starting points for 

the next. The focus of this study was not to develop a computationally efficient method 

but rather generate a picture of the ligand-binding energy surface using different energy 

functions. 

A different approach to enhance the sampling rate of force field based simulations 

methods is to smooth the potential energy surface in order to increase the rate of 

transition between metastable conformations. Nakajima et al. [85, 86] used the method of 

multicanonical molecular dynamics simulation based on the work of Berg et al. [87] to 

simulate the binding of a short proline-rich peptide to a Src homology 3 (SH3) domain. In 

this method the simulation is carried out in a deformed energy surface characterized by a 

flatter energy distribution and resulted in much faster sampling of the conformational 
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space of the ligand and the binding site of SH3. Pak and Wang [88] applied the Tsallis 

transformation to the non bonded interaction potential of the CHARMM force field and 

ran dynamics simulations with infrequent q-jumping and q-relaxation between the normal 

and the smooth energy surface. By combining potential smoothing and by restricting the 

flexibility of the receptor to aminoacid side chains in the binding site it was possible to 

successfully simulate the formation of streptavidin/biotin and protein kinase C/phorbol-

13-acetate complexes. More recently Zhu et al. [89] introduced the program F-

DycoBlock that performs the docking of a flexible ligand to a flexible receptor using 

multiple-copy stochastic molecular dynamics. In this method several copies of the ligand 

molecule are simulated simultaneously. These copies are constructed in a special way 

because they do not interact with each other. The protein moves in the mean field of all 

ligand copies. In this study the authors also used four different types of receptor 

flexibility: all-atom restrained, backbone restrained, intramolecular hydrogen-bond 

restrained and active-site flexible. 

The alternative to the use of MD is the use of MC based methods. In [90] Caflisch 

et al. extended the MC minimization approach to take into account receptor flexibility by 

the use of a flexible enzyme binding site, whose side chains are submitted to random 

perturbations. This work used the Metropolis MC method as a global optimization 

method combined with a conjugate gradient minimization scheme for local optimization. 

Solute-solvent energies were calculated by solving the finite-difference linearized 

Poisson-Boltzmann equation. Trosset and Scheraga developed PRODOCK package for 

docking [91]. The global optimization method used in this tool is the scaled collective 

variables Monte Carlo method developed by Noguti and Go [92] with energy 
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minimization after each MC step. The minimization step was greatly improved by the use 

of a grid based energy evaluation technique using Bezier splines [93, 94] and the use of 

collective degrees of freedom. One of the main problems with conventional simulation 

methods is the propensity for the system to get trapped in local minima leading to a 

computationally inefficient sampling of the energy landscape. In order to minimize this 

problem, Verkhivker et al. [95] made use of parallel simulated tempering dynamics to 

investigate the specificity of binding and mechanisms of inhibitor resistance in HIV-1 

protease. Parallel tempering is a replica-exchange Monte Carlo method that simulates 

several copies of the protein simultaneously using different temperatures and periodically 

exchanges conformations at neighboring temperatures. This process enhances 

conformational sampling by facilitating the escape from local minima. 

An innovative approach to predicting the binding conformation of a flexible 

ligand in a flexible binding pocket was recently introduced by Ota and Agard [96] by 

combining the simulated annealing and the crystallographic refinement search methods. 

This scheme starts by using a shrunken ligand for which the bond lengths and the non 

bonded interactions have been greatly reduced. The ligand is then grown in the binding 

site using a simulated annealing protocol to search for a bound conformation. This 

procedure is repeated several times and an averaged pseudo electron density map is 

calculated by averaging amplitudes and phases calculated from each structure. The final 

bound conformation is determined by conventional crystallographic refinement using the 

calculated structure factors. This method has the advantages of being able to model 

individual water molecules relevant to the binding configuration and providing a series of 

crystallographic measures, such as B-factors, that facilitate the comparison with X-ray 
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crystallographic data. Unfortunately, due to the high computational cost, this technique is 

not suitable for large scale database screening but could be useful in the late stages of a 

docking study. 

Collective Degrees of Freedom 

An alternative representation for protein flexibility is the use of collective degrees 

of freedom. This approach enables the representation of full protein flexibility, including 

loops and domains, without a dramatic increase in computational cost. Collective degrees 

of freedom are not native degrees of freedom of molecules. Instead they consist of global 

protein motions that result from a simultaneous change of all or part of the native degrees 

of freedom of the receptor. 

Collective degrees of freedom can be determined using different methods. One 

method is the calculation of normal modes for the receptor [97-99]. Normal modes are 

simple harmonic oscillations about a local energy minimum which depends on the 

structure of the receptor and the energy function. For a purely harmonic energy function, 

any motion can be exactly expressed as a superposition of normal modes. In proteins, the 

lowest frequency modes correspond to delocalized motions, in which a large number of 

atoms oscillate with considerable amplitude. The highest frequency motions are more 

localized such as the stretching of bonds. By assuming that the protein is at an energy 

minimum we can represent its flexibility by using the low frequency normal modes as 

degrees of freedom for the system. Zacharias and Sklenar [100] applied a method similar 

to normal mode analysis to derive a series of harmonic modes that were used to account 

for receptor flexibility in the binding of a small ligand to DNA. This in practice reduced 

the number of degrees of freedom of the DNA molecule from 822 (3 × 276 atoms – 6) to 
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approximately 5 to 40. Keserû and Kolossváry [101] also used a normal mode based 

model [102, 103] to study inhibitor binding to HIV integrase. 

An alternative method of calculating collective degrees of freedom for 

macromolecules is the use of dimensional reduction methods. The most commonly used 

dimensional reduction method for the study of protein motions is principal component 

analysis (PCA). This method was first applied by Garcia [104] in order to identify high-

amplitude modes of fluctuations in macromolecular dynamics simulations. It has also 

been used to identify and study protein conformational substates [105-107], as a possible 

method to extend the timescale of molecular dynamics simulations [108-110] and as a 

method to perform conformational sampling [110-112]. The most significant principal 

components have a direct physical interpretation. They correspond to a concerted motion 

of the protein where all the atoms move in specific spatial directions and with fixed ratios 

in overall displacement. The directions and ratios are indicated by the direction and size 

of the arrows in Fig. (5). Recently, we have presented a protocol [113] to derive a 

reduced basis representation of protein flexibility which can be used to reduce the 

complexity of modeling protein/ligand interactions. By considering only the most 

significant principal components as the valuable degrees of freedom of the system, it is 

possible to reduce an initial search space of thousands of degrees of freedom to less than 

fifty. This is achievable because the fifty most significant principal components usually 

account for 80-90% of the overall conformational variance of the system. We applied this 

protocol to two different model systems: HIV-1 protease and aldose reductase. Although 

there is inevitably some loss in accuracy, we show that we can obtain good 

approximations to experimentally determined conformations while working in a 
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drastically reduced search space. Moreover, in the case of HIV-1 protease we were able 

to identify biological relevant motions such as the flap opening for the binding site. The 

PCA approach avoids some of the limitations of normal modes such as deficient solvent 

modeling and existence of multiple energy minima during a large motion. The last 

limitation contradicts the initial assumption of a single well energy potential. 

An alternative representation using a concept similar to collective degrees of 

freedom is based on the concept of molecular hinges [114-116]. This research is based on 

methods used in the fields of computer vision and robotics. The hinge-bending approach 

was originally used to model flexibility for the ligand, but the roles of the ligand and the 

protein can be swapped since the mathematical problem is symmetrical. Hinges are 

articulation points placed at specific places in the protein which allow for relative 

movement of domains or substructural parts. Several simultaneous hinges can be 

modeled. These hinge points do not correspond to single degrees of freedom of the 

original model but are instead hinges which are allowed to rotate in three dimensions, 

representing implicitly rotations about consecutive or nearby bonds. The ligand is also 

considered flexible and the search for a docking conformation is done simultaneously 

mimicking the induced fit process. Like pliers closing on a screw, the receptor adapts its 

shape to that of the ligand. This method does not model conformational changes for 

sidechains explicitly. However, it models large conformational changes efficiently and 

can be easily combined with some of the methods described above in order to model 

conformational changes for specific areas of the receptor at an atomistic level. One of the 

main problems of the molecular hinges approach is determining the location of the 

hinges. Recently, Jacobs et al. [117] introduced a flexibility prediction algorithm based 
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on graph theory which can help solve this problem. The algorithm computes a constraint 

network for the protein defined by the bonds (covalent and hydrogen) and salt bridges 

and identifies all the rigid and flexible substructures in the protein, including 

overconstrained regions and underconstrained or flexible regions. 

Using collective degrees of freedom as a flexibility representation has a number 

of advantages and disadvantages. One advantage is that protein flexibility is not limited 

to a specific small region of the protein as was the case when using only select degrees of 

freedom (such as binding site torsional angles). Furthermore, since only a few 

independent degrees of freedom are used in the optimization procedure the computational 

cost is similar to using only select degrees of freedom and is much less than the cost of 

techniques which consider all degrees of freedom such as traditional MD or MC. On the 

other hand, the degrees of freedom that are searched during the drug design procedure are 

not the native degrees of freedom of the protein, but collective modes of motion that try 

to account for most of the variance observed during protein motion. This may result in a 

loss of accuracy and difficulty in obtaining exact solutions. For example, there may not 

exist a combination of values for the reduced basis formed by the most significant 

collective degrees of freedom that results in the exact placement of all binding site 

sidechains as observed in an experimentally determined structure. However, this is 

probably a minor problem since exact solutions are rarely obtained using other methods, 

and as shown in [113] it is possible to obtain very good approximations using only a 

small number of collective degrees of freedom. Furthermore, in order to avoid high 

energy penalties that might result from van der Walls clashes it is possible to combine 
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collective modes of motion either with a soft receptor representation or with a post 

processing minimization procedure. 

Other challenges 

The docking problem poses many other challenges. In addition to the problem of 

modeling protein flexibility in current docking methodologies, there are other critical 

problems which still need to be addressed. Two of the most important are developing 

better solvation models and improving scoring functions. If solvation is not handled 

correctly, the results of a docking study usually include candidate ligands which are too 

highly charged or too large. The second problem is even more critical and the best search 

procedure can be rendered useless if matched to a bad scoring function. 

The problem of modeling the solvent can be further subdivided into two different 

components. The first issue is the placement of discrete water molecules during the 

docking procedure. This issue is analogous to the protein flexibility problem because the 

consequence of including water molecules in the simulation procedure is also an increase 

in the number of degrees of freedom. The number of degrees of freedom introduced in 

the computation depends on the level of detail at which the water is modeled. It can range 

from three degrees of freedom, if the water is modeled as a sphere, to nine, if it is 

modeled using the Cartesian coordinates of its constituent atoms. The increase is also 

directly proportional to the number of water molecules explicitly modeled. This explains 

the high cost of including even a reduced number of waters in the modeling process. 

Raymer et al. [118] used a K-nearest-neighbors genetic algorithm to predict conserved 

waters in protein/ligand interactions. This method is useful because it can help to identify 

sites favored to be occupied by a mediating water molecule or a polar ligand atom, as 
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well as water molecules likely to be displaced by the ligand. Rarey et al. [119] also 

extended the program FlexX to include the placement of single water molecules during 

the incremental construction approach. The results were mixed and showed an 

improvement in 27.5% of test cases and worsening in 23%. The results obtained are 

illustrative of the difficulty of this problem. The second issue critical to solvent modeling 

is calculating the contribution of the solvation energy to the overall affinity of binding. 

Current results [120-122] indicate that the use of continuum electrostatic models can be 

efficiently used to address this problem. 

Besides the representation of receptor flexibility and the subsequent 

conformational search for the docked conformation, another critical aspect of molecular 

docking is the ability to correctly score potential binding candidates. Ideally these would 

be scored according to their binding free energy. Unfortunately the process of accurately 

deriving the interaction energy between a receptor and a ligand is complicated by the 

need to add large energy contributions of opposite signs to compute a small energy value. 

Furthermore, some of the steps for accurate energy calculation such as entropy estimation 

and complete conformational sampling are still problematic. Methods such as free energy 

perturbation [123] are too computationally expensive to use routinely to screen a large 

number of drug candidates. As an alternative to an accurate calculation of the free energy 

of binding current docking methods use scoring functions. For reviews on this topic see 

[30, 32, 124-128].   

Current scoring methods can be roughly divided into four categories. These are 

shape and chemical complementary, force field based, empirical, and knowledge based. 

All these scoring schemes have advantages and disadvantages. The main difficulty in 
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designing good scoring functions for docking purposes is achieving a balance between 

accuracy and computational cost. Some of the current methods available can be very 

accurate, but they take more time than what is computationally feasible. One solution that 

addresses some of the limitations of specific scoring schemes is to combine the scores 

using different methods and use this information as a new score. This is the underlying 

principle for consensus scoring [129]. Presently, the most practical solution is the use of a 

fast scoring function for the early stages to eliminate potential drug candidates which are 

clearly inappropriate and a more accurate method for estimating the free energy of 

binding which his able to correctly rank different ligand candidates. 

Conclusions 

The problem of incorporating protein flexibility in routine screening of chemical 

databases is still an unsolved and hard problem. One of the main reasons for this is the 

exponential explosion in complexity due to the inclusion of the flexibility parameters for 

the receptor. In order to address this limitation several flexibility models for the receptor 

have been developed which try to limit the number of additional model parameters. These 

models can be roughly grouped divided into five different categories. These are the use of 

soft receptors, the selection of a few critical degrees of freedom in the receptor binding 

site, the use of multiple receptor structures either individually or by combining them 

using an averaging scheme, the use of traditional molecular simulations, or the use of 

collective degrees of freedom as a new basis of representation for protein flexibility. All 

the flexible receptor models presented in this paper strive to balance an improvement in 

the accuracy of the docking predictions with an increase in computational cost.  
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 Currently the most promising solution to include protein flexibility in a drug 

design effort is to use a combination of methods. Docking should proceed in a 

hierarchical fashion. In an initial phase, a large number of possible drug candidates are 

eliminated using simpler and faster schemes not only in terms of the conformational 

search procedure but also in regard to the scoring function. In later stages protein 

flexibility can be taken into account using more elaborate and computationally expensive 

methods. These types of hierarchical schemes will also benefit greatly in the future from 

advances in the field of parallel computation. The increasing availability of parallel 

systems will also result in the development of a new generation of docking algorithms to 

make the best use of these machines and clusters. 
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