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A Sampling-Based Tree Planner for Systems with
Complex Dynamics

Ioan A. Şucan and Lydia E. Kavraki

Abstract—This paper presents a kinodynamic motion plan-
ner, Kinodynamic Motion Planning by Interior-Exterior Cell
Exploration (KPIECE), specifically designed for systems with
complex dynamics, where integration backward in time is not
possible and speed of computation is important. A grid-based
discretization is used to estimate the coverage of the state space.
The coverage estimates help the planner detect the less explored
areas of the state space. An important characteristic of this
discretization is that it keeps track of the boundary of the
explored region of the state space and focuses exploration on
the less covered parts of this boundary. Extensive experiments
show that KPIECE provides significant computational gain over
existing state-of-the-art methods and allows solving some harder,
previously unsolvable problems. For some problems KPIECE
is shown to be up to two orders of magnitude faster than
existing methods and use up to forty times less memory. A
shared memory parallel implementation is presented as well. This
implementation provides better speedup than an embarrassingly
parallel implementation by taking advantage of the evolving
multi-core technology.

Index Terms—sampling-based motion planning, kinodynamic
planning, planning with differential constraints, physics simula-
tion

I. INTRODUCTION

G IVEN A ROBOTIC SYSTEM that can be controlled
in a specific way, motion planning is the problem of

taking that system from a given starting state to a goal region
while respecting a set of constraints [1]–[3]. Over the last
two decades, this field has grown from one that considered
basic geometric problems, such as the piano movers’ problem
[4], to a field that addresses planning for complex robots with
kinematic and dynamic constraints (e.g., [5]). Although the
motion planning problem stemmed from artificial intelligence
and robotics, its applications have expanded to other domains
such as graphics, computational biology and verification [6]–
[9]. Exploration robots, tour guides, surgical robots, digital
actors and folding proteins are only a few examples of cases
where motion planning is used.

An important class of algorithms that can solve the motion
planning problem is that of sampling-based tree planners [2],
[3], [10]–[12]. These are algorithms that explore the state
space of the robotic system by growing a tree of valid motions
from the start state of the system towards a goal region, using
a model of motion.

This work focuses on the problem of motion planning under
differential constraints for complex, physical systems. Our
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interest is in general algorithms applicable to a variety of
systems, without relying on particular properties of systems.
Tree planners that address this problem have been previously
introduced (e.g., [13]–[18]). However, better planners are
needed as systems become more complex and there is a
need to account for friction, mass, inertia, etc. Many complex
systems of practical interest can be modeled by simulation
of rigid body dynamics [19]. This renders tree planners that
make use of bi-directional search or lazy collision checking
[12] inapplicable (for reasons later explained in Section II-C).
To quickly compute motion plans for systems with complex
dynamics, two approaches can be followed: (1) ignore the
complexities of the system and only compute geometric paths
(sequences of states), in the hope that a controller can follow
the paths by keeping velocities sufficiently low (e.g., [20]); (2)
improve the exploration capabilities of the tree planner through
means that only depend on forward propagating the model
of motion – numerically evaluating motions only forward in
time. While the first approach allows for the implementation of
algorithms that can make use of many techniques for speeding
up the planning process [12], including bi-directional search
and lazy collision checking, the execution of rapid motions or
of motions that must account for payload, friction, etc., cannot
be correctly planned. In consequence, the latter approach is
followed here.

This paper proposes KPIECE (Kinodynamic Planning by
Interior-Exterior Cell Exploration), a new tree sampling-based
motion planning algorithm, specifically designed for systems
with complex dynamics. KPIECE achieves significant com-
putational advantages over existing algorithms by combining
novel ideas with ones that have been shown to perform well
in previous work [12]. KPIECE is innovative in the sense
that while it is able to handle high dimensional systems
with complex dynamics, it reduces both runtime and memory
requirements by making better use of information collected
during the planning process. Intuitively, this information is
used to decrease the amount of forward propagation the
algorithm needs. Our experience has shown that it is typical
for sampling-based planners to spend more than 90% of
their computation performing forward propagation. For this
reason, significant computational improvement over previous
methods is obtained. Furthermore, with decreased amount
of forward propagation, fewer states are generated in the
tree of motions, which leads to memory savings. Conducted
experiments show that up to two orders of magnitude speedup
can be obtained when comparing to previous work. This
speedup is accompanied by significantly reduced memory
consumption: up to a factor of 40 reduction. Furthermore,
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tackling more complex problems, ones that could not be
previously addressed, becomes possible.

Contributions. The main contribution of this work is the
exploration strategy of KPIECE. The core components of this
strategy are: (1) using projections from the state space to a
lower dimensional Euclidean space that can be discretized
to help in guiding the exploration, (2) keeping track of the
boundary of the explored space efficiently, so exploration
can be further biased towards unexplored regions, (3) com-
bining collected exploration information so that regions to
be explored further can be deterministically selected and (4)
evaluating progress of exploration. As discussed in Section II,
the exploration strategy of tree planners is an issue that has
attracted a lot of attention (e.g., [13]–[18], [21]–[32]). The
presented strategy is particularly beneficial for problems with
complex dynamics. The performance of KPIECE was tested
on three different robots: a car moving in plane, a blimp mov-
ing in space and a chain modular robot. Propagation forward in
time for the models of these three robots was computed using
physics-based simulation of rigid body dynamics [19]. To the
authors’ knowledge, simulation of rigid body dynamics is a
viable alternative at this time, in terms of accuracy of modeling
(e.g., [33]). As mentioned above, the results of computing
motion plans for these robots lead to significant computational
improvements.

Since motion planning is usually part of a more complex
task, it is generally desirable to have fast methods for the
computation of motion plans. Although with core compo-
nents alone KPIECE produces excellent results, a number
of extensions that further improve performance are possible.
These include using multiple resolutions of discretization
when projecting to the lower dimensional Euclidean space,
goal biasing, and using shared-memory parallelism (taking
advantage of multiple processing cores). The combination
of speedup that can be achieved and use of physics-based
simulation could make KPIECE fast and accurate enough to be
applicable in real-time motion planning for complex reactive
robotic systems.

An initial version of this work appeared in [34]. This
paper presents a more developed version of the algorithm,
and significantly more experiments. In particular, the updated
algorithm incorporates use of random projections [35] as a
fall-back mechanism in case a projection from the state space
to a Euclidean space is not specified in the input. Goal biasing
is introduced in a manner that makes use of the algorithm’s
underlying data representations. New experiments have been
conducted. Comparisons to more existing algorithms are in-
cluded. In addition, a bi-directional version of the algorithm is
also developed and the performance of KPIECE is evaluated
when planning solely with geometric constraints as well.

Organization of the paper. Section II describes background
and related work, Section III describes the core of the proposed
algorithm and Section IV presents corresponding experiments.
Section V extends the algorithm to its general form and
includes additional experiments. Conclusions and future work
are in Section VI.

II. BACKGROUND AND PREVIOUS WORK

Two decades ago, the focus in motion planning was on plan-
ning under geometric constraints. This problem is sometimes
referred to as the piano movers’ problem, or in 2D, the sofa
movers’ problem, and it was the subject of extensive research
[4]. A number of complete algorithms were developed for
various forms of the problem and it was eventually shown
to be PSPACE-complete [36], [37]. The developed algorithms
are computationally prohibitive and difficult to implement.
Techniques such as cell decomposition methods and potential
fields [1]–[3] were studied as well, but few were successful
at solving problems where the state space is high dimen-
sional [38].

In addition to geometric constraints, planning for real
robotic systems requires accounting for dynamic constraints
(e.g., friction, gravity, limits in forces). In general it is not
known if this version of the problem, planning under dif-
ferential constraints, is even decidable [39]. However, for
the simplified case of a point mass robot, a polynomial
algorithm exists [40]; the reconfiguration of modular robots
under kinodynamic constraints is possible in Θ(

√
n) time

under certain assumptions [41].
The proven difficulty of planning under geometric con-

straints and the need to consider even more complex versions
of the problem, such as planning under differential constraints,
pushed the research in motion planning towards techniques
with weak completeness guarantees. There are multiple direc-
tions of research that investigate such techniques. This work
continues in one of these directions, namely sampling-based
motion planning, a direction in which promising results have
been shown for planning under differential constraints [2], [3].

A. Problem Definition

An instance of the motion planning problem addressed here
can be formally defined by the tuple S = (Q,U, I,G, f) where
Q is a differentiable manifold representing the state space,
Qfree ⊆ Q is the valid part of the state space, U is the control
space, I ⊂ Qfree is the set of initial states, and G ⊂ Q,
G ∩ Qfree 6= ∅ is the set of goal states. The dynamics are
described by a forward propagation routine f : Q×U → TgQ,
where TgQ is the tangent bundle of Q (f does not need to be
explicitly defined). A solution to a motion planning problem
instance consists of a sequence of controls u1, . . . , un ∈ U
and times t1, . . . , tn ∈ R≥0 such that q0 ∈ I , qn ∈ G and
qk ∈ Qfree, k = 1, . . . , n, can be obtained sequentially by
integration of f .

For the purposes of this work, the function f is computed
using the Open Dynamics Engine (ODE) [42] physics-based
simulator. Instead of providing a set of equations of motion
to be integrated, a model of a robot and its environment need
to be specified.

B. Sampling-based Motion Planning

Much of the recent progress in motion planning is attributed
to the development of sampling-based algorithms [2], [3].
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Several of these sampling-based planning algorithms are prob-
abilistically complete [2], which means that if a solution exists,
it will be eventually found.

One of the earliest and most influential algorithms
in sampling-based motion planning was the Probabilistic
RoadMap (PRM) [43]. This method provided a coherent frame-
work for many earlier works that used sampling and opened
new directions for research. Among these new directions, a
notable development is that of tree-based planners [15], [16],
[21], [23], and later efforts, such as [17], [18], [22], [24]–
[32]. As the name suggests, tree-based planners grow a tree
of motions in the state space of the robotic system. The initial
tree consists of the robot’s starting state. Newly sampled states
are connected to some already existing state in the tree. This
category of motion planners is appropriate for planning under
differential constraints because implementations that only use
forward propagation are possible. If backward propagation is
available, more efficient bi-directional tree planners can also
be used, but in this case the steering problem [44], [45] needs
to be solved as well. There are two fundamental issues tree
planners must consider in their expansion:

– In which parts of the tree expansion should continue:
There are various ways to guide the tree expansion (e.g., [15]–
[18], [21]–[23], [32], [46]). Rapidly-exploring Random Trees
(RRT) expand from states closest to randomly produced states
[16], [21], Expansive Space Trees (EST) and Single-query Bi-
directional probabilistic roadmap planner with Lazy collision
checking (SBL) attempt to detect less explored regions and
expand from them [15], [23], [24]. A more recent development
is the idea of a Path-Directed Subdivision Tree (PDST) [47].
PDST uses an adaptive subdivision of the state space and a
deterministic priority scheme to guarantee coverage, avoiding
the use of a metric.

– How this expansion should continue: RRT [16], [21]
suggests a Voronoi bias, by expanding toward random states.
However, this can become problematic when planning with
differential constraints and controls that achieve specific states
cannot be easily computed. Methods that discretize the control
set in order to achieve better coverage and reduced planning
time have been introduced as well [13], [48]. Existence of
narrow passages that need to be crossed by valid solutions can
significantly reduce the performance of planners. Techniques
that improve sampling in narrow passages [49] or identify the
direction of narrow passages [50] have also been developed.
Recently, the idea of combining two layers of planning has
been introduced (SyCLoP, presented as DSLX in earlier work)
[46]. SyCLoP is a meta-planner that uses discrete paths
(top layer) in a discretization of the workspace to guide the
continuous tree exploration (bottom layer). The planner at the
bottom layer can be chosen among many tree-based planners,
including the one presented in this paper.

In this work, we focus on the first aspect of the tree
expansion: deciding which parts of the tree merit further
expansion. Developments addressing the second aspect of tree
expansion carry over to the work presented here. KPIECE
tries to push the current limits of planning under differential
constraints. A new strategy for guiding the tree expansion,
based on a discretization of the state space, is presented. More

details about this follow in Section III.

C. Physics-Based Simulation

Physics-based simulation (of rigid body dynamics) can be
performed with libraries known as physics-based simulators.
These libraries approximate the dynamics of robots in their
environments usually assuming all bodies are rigid, Coulomb
models of friction and instantaneous impacts [19], [51].

Figure 1 shows the operation of a typical physics-based
simulator. As in the case of numerical integration of motion
models, time is discretized and the function describing the
state of the robotic system is evaluated at these discrete points
in time only. In the case of physics-based simulation, this
discretization interval typically does not vary and is referred
to as the simulation step. When the system is at a particular
state qt, applying the control ut takes the system to state
qt+1, within one simulation step. Simulating a system for
some duration T requires taking a number of simulation steps.
Large values for the simulation step will produce less accurate
results while small values for the simulation step will require
more computation time. Thus, the value of the simulation step
affects both the quality of solution paths and the runtime of
the motion planner. In this work we only use default values
for the simulation step, as indicated by the developers of the
physics simulator.

Fig. 1. The operation of a physics-based simulator: one simulation step.

One essential difference between integration of motion mod-
els and physics-based simulation is that simulation backward
in time is not always possible. For example, if an object
is dropped from a certain height, forward simulation can
correctly account for gravity and compute that the object will
fall and eventually hit the ground. Attempting to simulate
backward in time once the object is at rest is not well defined:
an infinite number of possible previous states exist. This
prevents planning with bi-directional tree planners, which are
often computationally very efficient.

An additional difference is that physics-based simulation is
significantly more computationally expensive than integration
of motion models, as contacts need to be computed for every
simulation step. The necessity of contact computation also
makes lazy collision checking unwarranted. Even so, the
benefits of simulation outweigh the costs: increased accuracy
is available since physics-based simulators take into account
more dynamic properties of the robot and constructing mod-
els of systems is easier and less error prone than deriving
equations of motion. Nevertheless, limited numerical precision
remains a problem for all known approaches.

This work uses physics-based simulation as a black box
only and does not attempt to improve simulation algorithms.
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Currently, many options exist when it comes to physics-
based simulation libraries, both commercial and free. Among
the better-known ones are NVIDIA PhysX, ODE, Vortex,
bullet, etc. For the purposes of this work, the ODE (Open
Dynamics Engine) library was used [42]. KPIECE is not tied
to ODE, and other physics simulators could have been used
instead. ODE was chosen because it is a piece of software
widely used for simulating robotic systems (e.g., [52]).

III. ALGORITHM

KPIECE is a sampling-based algorithm that explores the
state space of the robotic system by growing a tree of motions.
Each motion in the tree is defined as ν = (s, u, t), where
s ∈ Q is the starting state of the motion and u ∈ U is the
control applied at that state, for a duration t ∈ R≥0.

From a high-level perspective, KPIECE proceeds iteratively,
as described in Algorithm 1: at each iteration, an existing
motion from the tree is selected [line 3]; a new motion starting
at a state along the selected motion is produced and added to
the tree [line 4]; information gathered in the expansion process
is incorporated for future selections of motions [line 7]; this
process continues until some termination criterion is met.

The above description is intended to be solely an overview
of KPIECE. The steps Algorithm 1 are common to many
other sampling-based algorithms that use trees. What makes
such algorithms different is how these steps are carried out.
In the case of KPIECE, this accounts for up to two orders of
magnitude speedup with respect to previous work.

Various aspects of KPIECE are discussed in the following
sections. For clarity, we approach the description in an incre-
mental fashion. A more detailed description of the core of the
algorithm is given in Section III-E. Extensions to the algorithm
are presented in Section V.

Algorithm 1. KPIECE (qstart, Niterations)
1: T = INITIALIZETREE(qstart)
2: for i← 1...Niterations do
3: ν = SELECTMOTION(T )
4: EXPANDTREE(T, ν)
5: if solution is found then
6: return solution
7: EVALUATEPROGRESS()
8: return no solution

A. The Tree of Motions

The tree is initialized with a motion ν0 = (s, null, 0) that
consists of the robot’s starting state and a control that has no
effect, applied for 0 duration. Although motions are in fact
continuous segments, they are computed by a forward propa-
gation function (as in Section II-A), with fixed step size. This
means that intermediate states along each motion are generated
at a fixed resolution. We call this resolution the propagation
step size. The choice of fixing the propagation step size is
made to avoid inconsistencies that may otherwise arise when
using physics simulation. In that case, the propagation step
size is the same as the simulation step defined in Section II-C.
As a result, for every motion, the duration of the control is

t = m · r, where r ∈ R+ is the propagation step size and
m ∈ N is the number of steps.

The controls applied from s are selected uniformly at
random from U . The duration of the control is obtained by
sampling a value for m. The random selection of controls is
what is typically done if other means of control selection are
not available. This choice is not part of the proposed algorithm,
and can be replaced by other methods, if available. Different
methods of control selection are desirable for systems that
are not stable for instance, as in this case random selection
of controls will likely not lead to valid states. Using some
generic forms of control such as LQR is also possible [53].

For a motion ν, let States(ν) be the set of states along the
motion ν, at the propagation step size, as they are generated
by forward propagation. States(ν) is not stored by KPIECE,
but it is generated as needed. See Figure 2 for an example.
New motions expanded from an existing motion ν can start
at any state in States(ν). Let AS =

⋃
ν States(ν) be the set

of all states that the tree of motions consists of, with respect
to the used propagation step size. AS is not computed by
KPIECE, but it is a notion we use to explain the execution of
the algorithm.

Fig. 2. Tree of motions as grown by KPIECE. The states at the start of
motions are depicted as larger vertices. The motion is computed by forward
integration at fixed step size. Intermediate states are depicted as smaller
vertices. The intermediate states are not stored by KPIECE.

Not unlike other sampling-based planners that employ trees,
KPIECE tries to reach the goal as quickly as possible, but also
eventually explore entirely the reachable regions of the valid
state space Qfree, so that a solution is found if one exists. In
order to achieve this, KPIECE carefully selects motions for
further expansion [line 3 in Algorithm 1]. An important part
of the selection strategy is estimating the coverage of the state
space that the tree of motions achieves.

B. Estimating State Space Coverage

As Q can be high dimensional and its topology is not known
to the algorithm, we define the following continuous mapping,
to help with the estimation of coverage:

Proj : Q→ Rk.
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We call Proj a projection from Q to a Euclidean space.
This is an input to the algorithm. Rk is the projection space
and k is the dimension of the projection. We will first discuss
how to use a projection, and later how to generate it.

Define Coord : Rk → Zk, where Z is the set of integers:

Coord(p) = Coord((p1, . . . , pk))

=

(⌊
p1 − o1
d1

⌋
, . . . ,

⌊
pk − ok
dk

⌋)
= z,

where b·c denotes truncation to nearest smaller integer, p =
(p1, . . . , pk) ∈ Rk, o = (o1, . . . , ok) ∈ Rk is an arbitrary
point designated as the origin, di ∈ R+, i ∈ {1, . . . , k} and
z ∈ Zk. Coord discretizes Rk into k-dimensional cubes of
uniform size, each with sides of lengths d1, . . . , dk.

For every z ∈ Zk, define the corresponding cell in Q to be:

Cell(z) = {q ∈ Q | Coord(Proj(q)) = z}.

Motions added to the tree of motions are said to be part of a
cell if all their states are included in the cell:

Motions(z) = {ν | q ∈ States(ν) implies q ∈ Cell(z)}.

The invariant that every motion is part of a single cell
is maintained. This is achieved by splitting motions before
adding them to the tree of motions, such that they are not part
of multiple cells. When a motion ν is to be added, States(ν)
is generated. For every q ∈ States(ν), Coord(Proj(q)) is
computed. With this information, it can be decided which
parts of the motion go to which cells. Since States(ν) is an
approximation of the motion ν, this computation is not exact,
but it is sufficient for our purposes.

It is now possible to define the coverage achieved by a
tree of motions in Q. For every cell coordinate z ∈ Zk, the
coverage of Cell(z) is

Coverage(z) =
∑

ν=(s,u,t)∈Motions(z)

(
1 +

t

r

)
,

where r is the propagation step size. Since t is an integer
multiple of r, the value of the coverage represents the number
of states in Cell(z) that are also in AS: Coverage(z) =
|AS ∩ Cell(z)|, where | · | denotes the cardinality of a set.

At this point we make the assumption that coverage esti-
mates for cells are relevant for the coverage of Q. We do not
prove this is the case from a mathematical point of view, but
experimental results shown later support this hypothesis.

As the tree of motions increases, and the number of states
in AS increases, KPIECE keeps track of the minimal set of
cells that covers AS. We say C ⊂ Zk covers AS if AS ⊆⋃

z∈C Cell(z). We say C is minimal if there is no subset D (
C such that D covers AS. When the algorithm starts, AS has
only one state. One cell is sufficient to cover AS – the cell that
contains the starting state. Let Mc ⊂ Zk denote the minimal
cover of AS. Throughout the execution of the algorithm, the
cardinality of Mc increases. Cells included in Mc are called
instantiated cells. Mc is called a discretization of the space
covered by the tree of motions. In Section V we discuss how
to extend this discretization to multiple levels.

Fig. 3. Representation of a tree of motions and its minimal cover. Interior
cells are differentiated from exterior cells.

C. Distinguishing Interior and Exterior Cells

For every z = (z1, . . . , zk) ∈ Zk, the neighbors of Cell(z)
are Neighbors(z) =

{ Cell(w) ∈Mc | w = (z1, . . . , zi−1, y, zi+1, . . . zk),

for y = zi − 1 or y = zi + 1 }.

The maximum cardinality of Neighbors(z) is 2k. A distin-
guishing feature of KPIECE is the notion of interior and
exterior cells. A cell is considered exterior if it has less than
2k neighboring cells. Cells with 2k neighboring cells are
considered interior. The reason for making this distinction
is that focusing the exploration on exterior cells allows the
motion planner to cover the state space faster. As the algorithm
progresses and new cells are created, some exterior cells
become interior (see Figure 3). When larger parts of the state
space have been explored, most cells have become interior.
However, for high dimensional spaces, to avoid having only
exterior cells, the definition of interior cells can be relaxed and
cells can be considered interior before the cardinality of the
set of neighbors reaches 2k. For the purposes of this work,
this relaxation was not needed.

D. Importance of Cells

In Section III-E we show that KPIECE needs to first select
a cell in order to find motions from which to continue the
expansion of the exploration tree. This section describes the
notion of importance associated to cells, a notion used in the
selection of cells. The following pieces of information are
considered when selecting a cell Cell(z):

• The coverage Coverage(z) (work in the same spirit
suggested in e.g., [46]),

• The number of times Cell(z) was previously selected
(suggested in e.g., [23]),

• The cardinality of Neighbors(z),
• The iteration at which Cell(z) was added to Mc (sug-

gested in e.g., [47]),
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• A measure of the progress in exploration achieved when
expanding from Cell(z) (work in the same spirit sug-
gested in e.g., [32]).

KPIECE prefers expanding from cells that are less covered
rather than from cells that are well covered. Cells that have
been selected for expansion fewer times are preferred over
cells that have been selected many times. Cells that have
fewer neighbors and cells that have been instantiated more
recently are preferred, as these are more likely to be closer
to unexplored areas of the space. Cells that have led to good
progress in exploration are preferred over cells that have led
to slower progress (e.g., if a cell contains many motions that
place the robot in front of a wall, it is possible expanded
motions will often hit the wall).

The considerations mentioned above for selecting cells are
heuristics that have been shown to work well in practice.
KPIECE combines their use in the notion of importance, since
no one heuristic can be identified as better than the others. The
importance of a cell Cell(z) is defined as:

Importance(z) =
log(I) · score

S · (1 + |Neighbors(z)|) · Coverage(z)
,

where I is the number of the iteration at which Cell(z)
was added to Mc, S is the number of times Cell(z) was
selected for expansion (initialized to 1) and score reflects the
exploration progress achieved when expanding from Cell(z)
(initialized to 1). The definition we propose for importance
represents what worked well in our experiments. However, it
is possible that other definitions can lead to better performance
for certain applications. KPIECE prefers expanding from
cells with higher importance. With careful bookkeeping, the
importance of a cell can be computed in constant time, since
all the values it depends on can be made readily available.

To make the definition of importance complete, the use of
score needs to be explained. Adding a motion to the tree of
motions may increase the coverage of the space. The update
to score proceeds as follows:
• Assume a motion was selected for expansion from
Motions(z) (Algorithm 1, line 3).

• Let total coverage Cbefore =
∑

z∈Mc
Coverage(z), and

Tbefore = current time.
• Algorithm 1 proceeds with lines 4 through 6.
• Let total coverage Cafter =

∑
z∈Mc

Coverage(z), and
Tafter = current time.

• Line 7 of Algorithm 1 consists of the following steps:

P = α+ β ·
(
Cafter − Cbefore
Tafter − Tbefore

)

score = score ·min(P, 1),

for score corresponding to Cell(z).
The purpose of score is to reflect how much progress

has been made when expanding from Cell(z). Based on the
increase in total coverage and the time spent achieving this
increase in coverage, a penalization value P is computed. P is
used as a multiplicative factor for score. To avoid entering an
infinite loop where the cell with highest importance is always
the same, score must never be multiplied by a value larger

than 1, hence the use of min(P, 1). α and β are implementation
specific constants that help defining P . P is intended to be
smaller than 1 for expansions that did not provide significant
increase in coverage. If P ≥ 1, the score is not be changed.
If the coverage increase is 0, P = α, so α must always be
larger than 0 so that the score does not become 0. β ∈ R+

is chosen such that P ends up being larger than 1 only for
expansions that have led to significant progress. More details
on the selection of parameters introduced in this section follow
in Section III-G.

E. KPIECE Algorithm

A more detailed description of KPIECE is given in Al-
gorithm 2. The algorithm begins by initializing the tree of
motions with a motion of 0 duration that consists solely of the
robot’s starting state [lines 1–3]. This motion is added to a spe-
cial data structure called Grid. Grid associates Motions(z)
to every z ∈Mc and takes care of the bookkeeping necessary
to update the importance of cells as the algorithm is running.

In order to expand the tree of motions, KPIECE needs to
select an existing motion from that tree. Grid is used to iden-
tify areas of the state space that are considered more important
– using the notion of importance defined in Section III-D
[line 5].
KPIECE randomly decides whether to expand from an

interior or exterior cell from Mc. A strong bias towards
exterior cells is usually employed (75% of the time, in this
paper). This decision effectively separates Mc in two disjoint
sets: Mc,int and Mc,ext (the set of interior cells and the
set of exterior cells, respectively). Subsequently, KPIECE
deterministically selects the cell Cell(c) with maximum im-
portance from either Mc,int or Mc,ext. This operation can be
performed quickly by maintaining Mc,int and Mc,ext as heaps.
A motion ν from Motions(c) is then picked according to a
half-normal distribution. The half-normal distribution h(σ2)
is used because motions that have been added more recently
are preferred for expansion [line 6]. h(σ2) corresponds to the
normal distribution (mean = 0 and variance = σ2) folded about
the y-axis at 0; it returns a value larger than 0, with a high
probability of being close to 0. For a set Motions(c) with m
motions, numbered from 0 to m− 1, where the 0th motion is
the most recently added one, a randomly selected motion ν is
the bh((m/3)2)cth motion. A state s along ν is then chosen
uniformly at random from States(ν) [line 7]. Expanding the
tree of motions continues from s [line 9]. Because States(ν)
is not stored it may be necessary to recompute s, but the
memory savings outweigh the computational costs.

If the tree expansion was successful, the newly obtained
motion is added to the tree of motions and the discretization is
updated [lines 11,13]. Information gained during the expansion
step is incorporated in the score of the selected cell c, as
described in Section III-D [lines 14,15].

F. Selection of Projections

So far we have described how projections are used by
KPIECE. How this projection is defined is left to the user.
Our experience has shown that projections are easy to specify,
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Algorithm 2. KPIECE(qstart, Niterations)
1: Let ν0 be the motion of duration 0 containing solely qstart
2: Create an empty Grid data-structure G
3: G.ADDMOTION(ν0)
4: for i← 1...Niterations do
5: c = G.SELECT(0.75)
6: Select ν ∈Motions(c) using a half-normal distribution
7: Select s along ν
8: Sample random control u ∈ U and simulation time t ∈ R+

9: Check if any motion (s, u, t◦), t◦ ∈ (0, t] is valid (forward
propagation)

10: if a motion is found then
11: Construct the valid motion ν◦ = (s, u, t◦) with t◦ maximal
12: If ν◦ reaches the goal region, return path to ν◦
13: G.ADDMOTION(ν◦)
14: P = α + β · (ratio of increase in coverage to time spent in

simulation)
15: Multiply the score of Cell(c) by min(P ,1)
16: return no solution

as KPIECE is robust to multiple projections for each of
the problems considered. In Section IV-A we show some
example projections used in our experiments. The purpose of
the projection is to provide a space in which coverage is to be
estimated, such that the space is representative for the problem
being solved. For example, if we are planning for a car moving
in plane, a representative space for estimating coverage is the
plane in which the car is moving (2-dimensional projection).
For a manipulator arm, the position in space of the tip
of the arm is representative (3-dimensional projection). For
systems where velocity is important, for example an inverted
pendulum, a representative space is that of the velocity of
the pendulum and its angle (2-dimensional projection). If the
pendulum has multiple links, the projection can consist of the
norm of angular velocities and the position of the tip of the
pendulum in the plane of motion (3-dimensional projection).

Most of the time, finding an input projection can be very
intuitive. As already mentioned, multiple different projections
work well. For example, for a manipulator arm, the projection
that only considers the first two angles of the arm (closest
to base) also leads to good results. In some cases however,
for example in the case of reconfigurable robots, defining a
projection can be hard. In such cases, or when the user is
simply unwilling to set a projection, random projections can be
used as a fall-back. The inspiration to use random projections
comes from a theorem by Johnson and Lindenstrauss [54]
which states:

For any ε > 0, any n points from a l2 metric can be
embedded in a l2 metric of dimension O(log n/ε2), with (1+ε)
distortion.

This means that distances between states in the state space
with the l2 norm are approximately preserved in the projection
space with the l2 norm. Since l2 norm is usually not an
appropriate metric for the state space Q, we do not rely on the
mathematical foundation provided by this theorem. Random
projections have been empirically shown to work well in the
context of estimating state space coverage: it was shown that
finding a random projection that leads to good performance is
easy for systems with state spaces of moderate dimension (up
to 10 dimensions) [35].

In this paper, a random projection is sampled every time
planning needs to be performed and a user-defined projection
is not available. To generate a random projection from an
n-dimensional state space Q to Rk, k vectors in Rn are
randomly sampled element by element according to a normal
distribution (with mean 0 and variance 1). The vectors are
made orthonormal, as suggested in [35]. For a state x ∈ Q
and a random linear projection V,

V = (v1, ...,vk), vi ∈ Rn,

the projection of x is p ∈ Rk, with

p = VTx,

assuming all vectors are column vectors.

G. Selection of Parameters

In the description of KPIECE a number of parameters have
been introduced:
• The α and β parameters for progress evaluation,
• The sizes of cells in the discretization.
Parameters for progress evaluation. The value for α repre-

sents the penalization of a cell’s score, as a multiplicative
factor, if no progress is made from that cell. This suggests
α should be lower than 1 but not close to 0. A value of
α = 0.7 worked well in our implementation and we believe
this can be considered constant for other implementations as
well. The value for β depends on how the coverage of the cell
is computed. β is used to scale the increase in coverage so that
it can be added to α. For our experiments β = 5 worked well.

Sizes of cells. The sizes of cells depend on the projection
used. We have identified a set of guidelines for determining
cell sizes. While KPIECE is running, it can keep track
of averages of how many motions per cell there are, how
many parts a motion is split into before it is added to the
discretization, and the ratio of interior to exterior cells. While
we do not know how to compute optimal values for these
statistics (if they even exist), there are ranges that work better
than others. In particular, it was observed that for good runtime
performance the following should hold:
• Less than 10% of the motions cover more than 2 cells in

one simulation time-step. This value should be in general
less than 1% as the event occurs only when the velocity
of the robotic system is very high.

• At least 50% of the motions need to be 3 simulation
time-steps or longer.

• The average number of parts in which a motion is split
should be relatively small. In this work values between 1
and 4 were observed for well performing projections.

• As the algorithm progresses, at least some interior cells
need to be created.

• The average number of samples per cell should be in the
range of tens to hundreds.

Based on collected statistics and these observations, it can
be automatically decided whether the cell sizes used are good,
too large or too small. This information is reported for each
dimension of the projection space. If the used cell size is
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too small or too large in some dimension, the size in that
dimension is increased or decreased, respectively, by a factor
larger than 1 and the algorithm is restarted. This process
usually converges in 2 or 3 iterations. To start the iteration,
an initial guess is needed. A simple way to compute an initial
guess is to sample a number of states from the state space (e.g.,
1000) and compute the bounding box for the corresponding
projections. A simple initial guess would be to set the cell sizes
to be 10% of the size of the bounding box, in each dimension.

IV. EXPERIMENTS

In this section we present experimental results for dif-
ferent planning problem instances. We begin by describing
the employed robot models and the experimental setup (Sec-
tions IV-A and IV-B). We then compare the implementation
of KPIECE as presented thus far, using a discretization with
automatically computed parameters as shown in Section III-G,
against a number of existing algorithms (Section IV-C). Fur-
ther experiments show the influence of using random projec-
tions (Section IV-D). Various components of KPIECE are then
disabled to expose their importance in the overall algorithm
(Section IV-E). The results of running KPIECE in a kinematic
context are then presented (Section IV-F).

A. Robot Models
Three different robots were used in benchmarking KPIECE,

to show its generality: a modular robot, a car, and a blimp.
These robots have been chosen to be different in terms of the
difficulties they pose to a motion planner. Details on what these
difficulties are follow in the next paragraphs. ODE version 0.9
was used to model the robots. The used simulation step size
was 0.05s.

a) Modular Robot: The model1 characterizes the CKBot
modules [55]. Using these modules, different robots can be
constructed. Each CKBot module contains one motor. An ODE
model for serially linked CKBot modules has been created
[33]. The task is to compute the controls for lifting the robot
from a vertical down position to a vertical up position for
varying number of modules, as shown in Figure 4. Each
module adds one degree of freedom. The controls represent
torques that are applied by the motors inside the modules. The
difficulty of the problem lies in the high dimensionality of the
control and state spaces as the number of modules increases,
and in the fact that at maximum torque, the motors in the
modules are only able to statically lift approximately 5 mod-
ules. Consequently, the planner has to find swinging motions
to solve the problem. The state space for a chain modular robot
with m modules is Q = {x | x = ((x1, ẋ1), ..., (xm, ẋm))},
where xi is the angle position of module i, i ∈ {1, ..,m}. The
employed projection was Proj : Q → R3. In the evaluation
of Proj, the first two dimensions are the (x, z) coordinates
of the last module (x, z is the plane observed in Figure 4) and
the third dimension, the square root of the sum of squares of
the rotational velocities of all the modules. The environments
the system was tested in are shown in Figure 4.

1This model was created in collaboration with Mark Yim, GRASP Labora-
tory of Robotics Research and Education, yim@grasp.upenn.edu.

Fig. 4. Left: start and goal configurations. Right: environments used for the
chain robot (7 modules). Experiments were conducted for 2 to 10 modules.
In the case without obstacles, the environments are named chain1-x where x
stands for the number of modules used in the chain. In the case with obstacles,
the environments are named chain2-x.

b) Car Robot: A model of a car [2] was created. The
model is fairly simple and consists of five parts: the car body
and four wheels. Since ODE does not allow for direct control
of accelerations, desired velocities are given as controls for
the forward velocity and steering velocity (as recommended
by the developers of the library). The desired velocities
indicate what velocities the car is intended to achieve and
go together with a maximum allowed force. The end result is
that the car will not be able to achieve the desired velocities
instantly, due to the limited force. In effect, this makes the
system a second order one. The state space for this model
is Q = {x | x = (x, y, θ, v, θ̇)}, where (x, y) denote the
center of the car chassis, θ is the car’s orientation and v is the
velocity along the orientation. The employed projection was
Proj : Q → R2. Proj evaluates to the (x, y) coordinates of
the center of the car body. The environments the system was
tested in are shown in Figure 5.

Fig. 5. Environments used for the car robot (car-1, car-2, car-3). Start and
goal configurations are marked by “S” and “G”. The small cubes represent
obstacles.

c) Blimp Robot: The third robot that was tested was a
blimp robot [17]. The motion in this case is executed in a
3D environment. This robot is particularly constrained in its
motion: the blimp must always apply a positive force to move
forward (slowing down is caused by friction), it must always
apply an upward force to lift itself vertically (descending is
caused by gravity) and it can turn left or right with respect to
the direction of forward motion. Since ODE does not include
air friction, a Stokes model of drag was implemented for the
blimp (the drag force is Fdrag = −bv where v is the linear
velocity of the blimp and b is the drag coefficient). The state
space for this model is Q = {x | x = (x, y, z, θ, v, ż, θ̇)},
where (x, y, z) denote the center of the blimp, θ is the blimp’s
orientation and v is the forward velocity along the orientation.
The employed projection was Proj : Q→ R3. Proj evaluates
to the (x, y, z) coordinates of the center of the blimp. The
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environments the system was tested in are shown in Figure 6.

Fig. 6. Environments used for the blimp robot (blimp-1, blimp-2, blimp-
3). Start configurations are marked by “S”. The blimp has to pass between
the walls and through the hole(s), respectively. The small cubes represent
obstacles.

B. Experimental Setup and Compared Motion Planners

KPIECE was benchmarked against general well-known
efficient algorithms (RRT, EST, PDST) with three different
robotic systems, in different environments. All these algo-
rithms are implemented using uni-directional exploration –
single trees, since backward exploration is not possible with
physics engines. For the implementations of RRT [16], EST
[15] and PDST [47], the OOPSMP framework was used [56].
A plugin for linking OOPSMP with the ODE simulator was
developed. Every effort was made to tune the parameters of
both RRT and EST. For RRT, a number of different metrics
were tested for each robot and experiments are presented
with the metric that performed best. Random controls were
selected instead of attempting to find controls that take the
robotic system toward a desired state, as this strategy seemed
to provide better results. In addition, placing of intermediate
states along motions as they were added in the exploration
tree has also been attempted (this variant of the algorithm is
marked as RRTi). For EST, the nodes to expand from were
selected based on a grid subdivision of the state space, as this
strategy has been shown to work well [24].
KPIECE was implemented by the authors. A projection

was defined for each robot and the same projection was used
for EST, PDST and KPIECE. In addition to the projection,
KPIECE needs a discretization to be defined for each robot.
When comparing with other algorithms, discretizations with
cell sizes computed as shown in Section III-G were used.

All implementations are in C++ and were tested on the Rice
Cray XD1 Cluster, where each machine runs at 2.2 Ghz and
has 8 GB RAM. For each system and each of its environments,
each algorithm was executed 50 times. The best two and worst
two results in terms of runtime were discarded and the results
of the remaining 46 runs were averaged. The time limit was
set to one hour and the memory limit was set to 2 GB. We
only average results for successful runs and we also report the
success rate.

C. Comparative Analysis

Table I shows significant computational gains for KPIECE
in terms of runtime, when compared to other algorithms such
as RRT, EST, and PDST. The success rate of KPIECE is
also better than for the other algorithms – 100% for almost
all experiments, even when the other algorithms drop to 0%.
Figure 7 and Figure 10 show actual runtimes from the data
in Table I. As the dimensionality of the problem increases,
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Fig. 7. Averaged runtimes (50 runs) of different algorithms on some of the
tested models. The achieved speedup is shown in Table I.
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Fig. 8. Averaged number of simulation steps (50 runs) for different
algorithms. Notice the similarity to Figure 7. This similarity serves to prove
that the runtime of sampling-based planning algorithms is dominated by
physics-based simulation, so minimizing the number of simulation steps leads
to speedup.
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Fig. 9. Average memory usage for different algorithms (50 runs). Notice
the similarity to Figure 8. Since for every simulation step it is likely a new
state is produced, and the number of motions in the built tree is directly
proportional to the number of states, the fewer simulation steps there are, the
fewer motions will need to be stored in memory.
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TABLE I
COMPARISON OF ALGORITHMS FOR FOUR DIFFERENT PROBLEMS. spd DENOTES AVERAGE SPEEDUP OF KPIECE WITH RESPECT TO A PARTICULAR

ALGORITHM, mem DENOTES AVERAGE MEMORY USAGE IN MB AND suc DENOTES SUCCESS RATE.
N/A STANDS FOR UNAVAILABLE AVERAGES (0% SUCCESS RATE).

RRT RRTi EST PDST KPIECE
Problem spd mem suc spd mem suc spd mem suc spd mem suc spd mem suc

car-1 3.91 255 1.00 5.38 232 1.00 17.75 1074 1.00 30.66 665 1.00 1.00 23 1.00
car-2 4.60 670 1.00 5.65 530 1.00 9.10 1301 0.63 16.27 834 0.76 1.00 35 1.00
car-3 5.95 1790 0.11 7.87 1513 0.30 N/A N/A 0.00 N/A N/A 0.00 1.00 64 1.00

blimp-1 3.07 171 1.00 4.01 179 1.00 5.34 309 1.00 19.13 535 1.00 1.00 46 1.00
blimp-2 7.21 502 1.00 14.46 729 0.91 12.32 864 0.89 24.21 779 0.72 1.00 76 1.00
blimp-3 1.43 1645 0.24 1.71 1458 0.15 1.38 1613 0.13 N/A N/A 0.00 1.00 347 1.00

chain1-2 0.54 0 1.00 0.57 0 1.00 0.62 0 1.00 1.32 0 1.00 1.00 3 1.00
chain1-3 0.49 0 1.00 0.54 0 1.00 0.59 0 1.00 1.25 0 1.00 1.00 3 1.00
chain1-4 0.88 0 1.00 0.89 0 1.00 1.45 0 1.00 2.00 0 1.00 1.00 4 1.00
chain1-5 4.00 21 1.00 3.62 21 1.00 4.00 22 1.00 6.05 32 1.00 1.00 4 1.00
chain1-6 10.29 173 1.00 6.47 107 1.00 10.60 211 1.00 6.76 91 1.00 1.00 11 1.00
chain1-7 10.28 1000 0.33 11.23 1073 0.52 5.14 610 0.26 13.27 903 0.89 1.00 46 1.00
chain1-8 N/A N/A 0.00 N/A N/A 0.00 N/A N/A 0.00 N/A N/A 0.00 1.00 150 1.00
chain1-9 N/A N/A 0.00 N/A N/A 0.00 N/A N/A 0.00 N/A N/A 0.00 1.00 726 0.96
chain1-10 N/A N/A 0.00 N/A N/A 0.00 N/A N/A 0.00 N/A N/A 0.00 1.00 1970 0.36

chain2-5 23.49 73 1.00 36.84 84 1.00 149.38 392 1.00 74.55 141 1.00 1.00 6 1.00
chain2-6 62.40 568 0.96 51.78 407 1.00 125.41 1555 0.15 152.74 927 0.67 1.00 13 1.00
chain2-7 12.45 1146 0.57 22.06 1148 0.48 3.01 560 0.04 25.65 1164 0.17 1.00 73 1.00
chain2-8 N/A N/A 0.00 N/A N/A 0.00 N/A N/A 0.00 3.24 1083 0.02 1.00 718 0.96
chain2-9 N/A N/A 0.00 N/A N/A 0.00 N/A N/A 0.00 N/A N/A 0.00 1.00 1621 0.14
chain2-10 N/A N/A 0.00 N/A N/A 0.00 N/A N/A 0.00 N/A N/A 0.00 N/A N/A 0.00
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Fig. 10. Averaged runtimes (50 runs) of different algorithms on the modular
robot model with no obstacles, using varying number of modules (chain1-x).
The achieved speedup is shown in Table I.

KPIECE does better and speedups of up to two orders
of magnitude are observed (e.g., for chain2-6). For simple
problems however, other algorithms can be faster (e.g., RRT
and RRTi for chain1-4). In fact, it is not recommended that
a more elaborate algorithm such as KPIECE is used when
simple algorithms such as RRT are sufficient.

As robots become more complex, the size of a state in-
creases and many sampling-based planners reach the memory
limit. Table I and Figure 9 show that the memory footprint of
KPIECE is reduced by as much as 10 to 40 times, compared
to that of the other algorithms.

The presented speedup values are consistent with the time
spent performing simulations, as shown in Figure 8, which
serves to prove that the computational improvements are

obtained by minimizing the usage of the physics-based sim-
ulator. Since physics-based simulation takes up around 90%
of the execution time, computational gain will be observed
in the case of purely geometric planning as well, where
simulation is replaced by collision detection. With less time
spent performing simulations, there are fewer samples to store
in the built tree. This leads to significant savings in memory
consumption, as indicated in Figure 9.

D. Using Random Projections

The experiments shown in the previous section employed
user-defined projections, as described above. In Section III-F it
was discussed that if a user-defined projection is not available,
random projections can be used as an alternative. To exhibit
the behaviour of KPIECE when using random projections, we
repeat some of our experiments, with random projections set
instead of user-defined projections.

We show the results of using 2-, 3- and 4-dimensional
projections in Table II. On one hand, the performance of the
algorithm degrades as the dimension of the projection becomes
larger. For instance, for the car model, a 4-D projection
performs worse than a 3-D projection. On the other hand,
for systems that are higher dimensional, the increased costs of
maintaining a projection with more dimensions are outweighed
by the better approximation of coverage, which leads to better-
informed exploration and thus lower runtimes, as shown by the
blimp model. For the CKBot model we only show experiments
for up to 8 modules as for 9 or more modules the failure rate
is more than 90% when using random projections.

The experimental results indicate that user-defined projec-
tions may lead to better performance. This is expected as some
user intuition and knowledge about the problem is inserted in
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TABLE II
SLOW-DOWN (sld) AND SUCCESS RATE (suc) OF KPIECE WHEN USING

RANDOM PROJECTIONS, AS OPPOSED TO USING USER-DEFINED
PROJECTIONS. REGARDLESS OF THE PROJECTION, AUTOMATICALLY

COMPUTED DISCRETIZATIONS ARE USED, AS DESCRIBED IN
SECTION III-G. N/A STANDS FOR UNAVAILABLE AVERAGES

(0% SUCCESS RATE).

2D 3D 4D
Problem sld suc sld suc sld suc

car-1 1.14 1.00 1.22 1.00 1.27 1.00
car-2 1.30 1.00 1.21 1.00 1.72 1.00
car-3 7.80 0.76 2.28 1.00 3.83 1.00

blimp-1 1.87 1.00 0.89 1.00 0.99 1.00
blimp-2 13.17 0.96 1.12 1.00 0.98 1.00
blimp-3 4.35 0.39 2.14 0.87 1.46 1.00

chain1-5 1.09 1.00 1.10 1.00 1.18 1.00
chain1-6 5.78 0.98 3.34 1.00 7.00 1.00
chain1-7 29.61 0.28 15.87 0.85 15.70 0.76
chain1-8 N/A 0.00 17.55 0.33 22.24 0.28
chain1-9 N/A 0.00 5.33 0.02 5.63 0.02

chain2-5 4.52 0.72 4.84 1.00 3.39 1.00
chain2-6 16.12 0.72 9.94 0.98 7.78 1.00
chain2-7 15.75 0.09 7.36 0.63 17.51 0.83
chain2-8 16.45 0.02 4.04 0.41 4.89 0.33
chain2-9 N/A 0.00 N/A 0.00 2.50 0.07

the choice of the projection. For the cases when user-defined
projections are not specified, random projections can be used
without significant degradation of performance for systems of
moderate dimension (up to 10).

E. Discussion on Algorithm Components

In the previous sections, we have shown the computational
benefits of using KPIECE over other algorithms. Two features
of KPIECE that can be easily disabled are the grouping of
cells into interior and exterior, and the progress evaluation
based on increase in coverage (updates to score). Disabling
these components allows us to evaluate their contribution
individually.

Figure 11 shows that both progress evaluation and cell
distinction contribute to reducing the runtime of KPIECE.
While these components do not seem to help for easier
problems (blimp-1), their contribution is important for harder
problems (car-3, blimp-3). In particular, the cell distinction
seems to be the more important component as the problems get
harder. This is to be expected, since the distinction allows the
algorithm to focus exploration on the boundary of the explored
space, while ignoring the larger, already explored interior
volume. However, due to the randomized nature of sampling-
based algorithms it is difficult to make absolute statements
about the performance of such algorithms in general.

F. Planning in a Kinematic Context

KPIECE was designed to be used for motion planning
with differential constraints. However, this does not mean the
algorithm cannot be used for kinematic problems as well.
Furthermore, comparisons with certain types of algorithms,
such as ones that use lazy collision checking or bi-directional
search, cannot be performed for the problems with differ-
ential constraints presented above. To shed some light on
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Fig. 11. Logarithmic runtime for KPIECE with various components disabled,
on 2-dimensional and 3-dimensional projections (car and blimp) with the
automatically computed one-level discretization. A = no components disabled,
B = no cell distinction, C = no progress evaluation, D = no cell distinction
and no progress evaluation.

the performance of KPIECE for kinematic problems, two
experiments with only kinematic constraints are included. The
first experiment is that of moving an arm with 7 degrees of
freedom (The PR2 arm from Willow Garage) from a position
above a table to a position under the table, as show in
Figure 12. The second experiment is that of moving a rigid
body from a start configuration to a goal configuration in a
complex environment, as shown in Figure 13. The sampling
of controls was replaced with sampling of random states and
connecting to the random states using a local planner. The
projection used in the first experiment was a two dimensional
one, consisting of the joint values at the first two joints of
the arm. For the second experiment, the projection was the
position of the rigid body in space (ignoring orientation).

TABLE III
RUNTIMES OF KINEMATIC VERSIONS OF THE ALGORITHMS.

Algorithm Arm Plan Time(ms) Rigid Body Plan Time (ms)

RRT 456 3248
EST 187 3907
KPIECE 166 698

RRTConnect 21 1508
SBL 29 3943
LBKPIECE 37 1146
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Fig. 12. Move the right arm from above to below the table: start state (left)
and goal state (right). The representation of the table is as observed using a
laser scanner.

Fig. 13. Move the “L”-shaped rigid body from start to goal, indicated by
“S” and “G”, respectively.

Table III shows the runtimes of various algorithms in this
context. KPIECE is still faster than RRT and EST, but the
speedup is not as significant as in the previous examples. For
comparison, runtimes of bi-directional search algorithms, SBL
[24] and RRTConnect [22], are included. LBKPIECE is a
lazy bi-directional implementation of KPIECE, with a con-
nection strategy similar to that of SBL. For the arm problem,
the bi-directional versions are an order of magnitude faster,
with RRTConnect outperforming the other algorithms. For
the rigid body problem, since the start and goal states are close
in the workspace, bi-directional algorithms no longer perform
as well. In fact KPIECE performs best due to its ability to
expand towards unexplored space. The implementations of
these algorithms are part of the Open Motion Planning Library
(OMPL) [57].

V. ALGORITHM EXTENSIONS

This section introduces the additional improvements of
KPIECE, with corresponding experimental results.

A. Multiple Levels of Discretization

The Proj and Coord functions introduced in Section III-B
allow discretizing Q in spaces Cell(z), for z ∈ Zk. While
this is useful for evaluating coverage, the number of cells
may increase significantly while KPIECE is running. This can
lead to increased computational requirements. Even though
KPIECE was shown to significantly outperform competing
algorithms, we propose a means to further speed up the
algorithm: addition of coarser levels of discretization.

We generalize the definition of Coord:

Coord(p, L) = Coord((p1, . . . , pk), L)

=

(⌊
p1 − o1
dL,1

⌋
, . . . ,

⌊
pk − ok
dL,k

⌋)
= z,

where p and o are the same as in the original definition
of Coord. L is a positive integer specifying the level of
discretization. d1,i, i ∈ {1, . . . , k} are the side lengths of
the k-dimensional cubes at the lowest level of discretization
(L = 1). For L > 1, dL,i, i ∈ {1, . . . , k} are defined such
that dL,i = dL−1,i · gL,i for gL,i a positive integer. In effect,
this definition specifies how to discretize a projection space
Rk into multiple levels of discretization. Each level has cells
of uniform volume. A cell at a higher level of discretization
consists of an integer number of cells at the next lower level
of discretization. Figure 14 shows this pictorially. The lowest
level of discretization corresponds to the discretization as
described in Section III-B. The higher levels of discretization
consist of coarser cells. The intuition behind using multiple
levels of discretization is that higher levels of discretization
allow the planner to quickly identify the general area that
needs to be further explored, and lower levels of discretization
allow the planner to focus on the most promising locations
within that general area.

The definitions for Cell(z), Motions(z), Neighbors(z)
and Importance(z) can clearly be generalized to Cell(z, L),
Motions(z, L), Neighbors(z, L) and Importance(z, L).

Let Mc(L) ⊂ Zk be the minimal cover of AS (as defined
in Section III-A) consisting of cells from level L: AS ⊆⋃

z∈Mc(L)
Cell(z, L).

For a cell Cell(z, L), define the contained cells to be:

IncCells(z, L) = ∅, if L = 1,

IncCells(z, L) = {y ∈ Zk | Cell(y, L− 1) ⊂ Cell(z, L)

and y ∈Mc(L− 1)}, if L > 1.

For generalizing coverage, we use the following definition:

Coverage(z, 1) = previous Coverage(z),

Coverage(z, L) = |IncCells(z, L)|, for L > 1.

This means that the coverage at the first level of discretization
(L = 1) is the same as originally defined. For higher levels
of discretization (L > 1), the coverage of a cell is simply the
number of instantiated cells it contains from the next, lower
level of discretization.

We define an L-level discretization to be:

HL = {Mc(1), . . . ,Mc(L) }.
The coordinates of the cells that make up HL are stored in
a multi-level hash data structure called Grid. At the lowest
level, Grid contains a hash that associates Motions(z, 1) to
each cell coordinate z ∈ Mc(1). For higher levels L > 1,
Grid contains a hash that associates IncCells(z, L) to each
cell coordinate z ∈Mc(L).

The selection of cells (Algorithm 2, line 5) becomes
selection of cell chains, as shown in Algorithm 3. In a
discretization with L levels, KPIECE selects a chain of
cells c = (Cell(z1, 1), Cell(z2, 2), . . . , Cell(zL,L)) such that
Cell(z1, 1) ⊂ Cell(z2, 2) ⊂ · · · ⊂ Cell(zL,L). L is fixed
during the execution of the algorithm. KPIECE identifies the
most important cell at the coarsest level of discretization,
Cell(zL,L), and then proceeds recursively within that cell,
and identifies the most important cell in IncCells(zL,L).
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Fig. 14. An example discretization with three levels (H3). The line
intersecting the three levels defines a cell chain. Cell sizes at lower levels
of discretization are integer multiples of the cell sizes at the level above.

Algorithm 3. SELECT(bias)
1: c = ()
2: L = the number of levels in the discretization
3: type = uniform random number in (0, 1)
4: if type ≥ bias then
5: c[L] = exterior cell coordinate from Mc(L) with highest

importance
6: else
7: c[L] = interior cell coordinate from Mc(L) with highest

importance
8: for i← {L− 1...1} do
9: type = uniform random number in (0, 1)

10: if type ≥ bias then
11: c[i] = exterior cell coordinate from IntCells(c[i+1], i+1)

with highest importance
12: else
13: c[i] = interior cell coordinate from IntCells(c[i+1], i+1)

with highest importance
14: return c

This will be a cell Cell(zL−1,L − 1). Preference is given
to exterior cells. This process continues until a cell from the
finest level of discretization is selected: Cell(z1, 1). A motion
ν from Motions(z1, 1) is then picked according to a half-
normal distribution.

The update to score in Algorithm 2 [lines 14,15] does not
change, but it is now performed for every cell in a selected
chain.

TABLE IV
SPEEDUP (spd) ACHIEVED BY KPIECE WHEN USING A DISCRETIZATION
H2 RELATIVE TO THE AUTOMATICALLY COMPUTED DISCRETIZATION H1 .

Problem spd Problem spd Problem spd

chain1-2 1.0 chain1-7 1.9 chain2-7 1.5
chain1-3 1.1 chain1-8 1.9 chain2-8 0.7
chain1-4 0.7 chain1-9 5.0 chain2-9 1.2
chain1-5 0.8 chain2-5 0.8
chain1-6 2.2 chain2-6 0.9

car-1 1.3 car-3 0.9 blimp-2 1.4
car-2 1.0 blimp-1 2.1 blimp-3 1.4

While the results shown in Table I are computed with a
discretization H1 (one level of discretization), for some prob-
lems, better results can be obtained using multiple levels of

discretization. To show this, for each robot, twelve simple dis-
cretizations are defined. First, a H1 discretization (consisting
only of Mc(1)) is computed as discussed in Section III-G. Two
more H1 discretizations with half and double the cell volume
of the computed discretization’s cells are then constructed
(cell sides shortened and lengthened proportionally, in each
dimension). For each of these three H1 discretizations, three
more H2 discretizations (consisting of Mc(1), Mc(2)) are
defined: ones that have the same cell sizes for Mc(1), but
Mc(2) consists of cells with sizes increased by a factor of 10,
15, and 20 times, in each dimension, with respect to the cell
sizes of Mc(1).

Table IV shows the speedup obtained when employing the
best of the nine defined H2 discretizations, compared to the
automatically computed discretization H1, computed as in
Section III-G. As we can see, in most cases there are benefits
to using two discretization levels. Experiments with more
than two levels of discretization were conducted as well, but
the performance started to decrease and the results are not
presented here.

The defined discretizations can also be used to evaluate the
sensitivity of KPIECE to the defined cell sizes. As shown in
Figure 15, the runtimes of the algorithm for the twelve differ-
ent discretizations (bothH1 andH2) are relatively close to one
another (mostly within a factor of 2). This suggests that the
algorithm is not overly sensitive to the defined discretization
and thus approximating good cell sizes and number of levels
of discretization is sufficient.
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Fig. 15. Logarithmic runtimes with twelve different discretizations for the
chain1, chain2, car, and blimp.

The results from Table IV and Figure 15 suggest that
carefully choosing the number of levels of discretization
and the cell sizes at these levels, can lead to computational
benefits (e.g., blimp-1, blimp-2, blimp-3). However, KPIECE
is robust to these settings and very good results can be obtained
without spending significant effort on tuning parameters for
the employed discretization. For automatic computation of
these parameters, parameter sweeps can be conducted.

B. Goal Biasing

Goal biasing is a standard technique used by sampling-based
motion planners to reduce their runtime. The basic idea is that
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if the planner knows where the goal is, it can greedily attempt
to reach it [12]. This section presents how goal biasing can be
used by KPIECE.

If a heuristic h : Q→ R+ for estimating the distance to the
goal is available, the information provided by that heuristic
can be used in computing the cell importance: cells closer to
the goal get higher score and are thus selected for expansion
more often. In particular, when a cell is instantiated, its score
is set to h(s) instead of 1 in Algorithm 2, where s is the last
state of the motion ν that required the creation of the cell (we
say h∗(ν) = h(s)). While this technique usually contributes
to reducing the runtime of the algorithm, it may become a
problem and slow down the algorithm when obstacles block
the way and higher score is given to cells that cannot be
crossed. In such cases, the progress evaluation component
of the algorithm becomes essential, since the higher score
that was assigned by the heuristic is decreased as progress
stagnates.

In addition to influencing the score of cells, the biasing
component also maintains a set of so-called good motions, B.
For every motion ν, h∗(ν) is computed; B is a limited-size
set (at most 30, in our implementation) of motions with the
largest values of h∗(ν). With a low probability (usually 5%),
tree expansion is continued from a motion in B, rather than
from a motion selected based on the coverage estimates. An
additional constraint imposed on the motions in B is that they
have to be in different cells. This constraint prevents having
all motions in B be almost the same.

Adding biasing for KPIECE does often improve the run-
time, as shown in Table V. The fact that progress evaluation
is also present limits the negative effects biasing has in certain
cases (e.g., blimp-3).

TABLE V
SPEEDUP (spd) ACHIEVED BY KPIECE WITH BIASING RELATIVE TO

KPIECE, BOTH USING AN AUTOMATICALLY COMPUTED DISCRETIZATION.

Problem spd Problem spd Problem spd

chain1-2 1.1 chain1-7 0.9 chain2-7 0.9
chain1-3 1.0 chain1-8 1.0 chain2-8 1.5
chain1-4 0.8 chain1-9 3.9 chain2-9 1.0
chain1-5 1.1 chain2-5 0.9
chain1-6 0.9 chain2-6 0.9

car-1 1.3 car-3 1.3 blimp-2 1.2
car-2 1.1 blimp-1 1.5 blimp-3 0.8

C. Parallel Implementation

The presented algorithm was also implemented in a shared
memory parallel framework. While previous work has shown
significant improvements with embarrassingly parallel se-
tups [58], [59], this work attempts to take the emerging multi-
core technology into account and use it as an advantage.
Instead of running the algorithm multiple times and stopping
when one of the active instances found a solution as in [58],
[59], KPIECE uses multiple threads to build the same tree of
motions (threads can continue expanding from cells instanti-
ated by other threads). Synchronization points are employed to
ensure correct order of execution. Since there is only one copy

of the exploration tree, there is no communication necessary,
as would be the case with a distributed approach. Shared
memory parallelization takes advantage of the increase in
number of computing cores and memory bandwidth. Since
each computing thread starts from a different random seed, the
chances of all seeds being unfavourable decrease. If a single
thread finds a path through a narrow passage, the rest of the
threads will immediately use this information as well. This
setup also seems to reduce the variance in the average runtime
of the algorithm. This proposed parallelization scheme can be
applied to other sampling-based algorithms as well (e.g., [57]).

TABLE VI
SPEEDUP ACHIEVED BY KPIECE WITH MULTIPLE THREADS FOR

2-DIMENSIONAL AND 3-DIMENSIONAL PROJECTIONS (CAR AND BLIMP).
KPIECE WAS CONFIGURED WITH AN AUTOMATICALLY COMPUTED

ONE-LEVEL DISCRETIZATION, AS DESCRIBED IN SECTION III-G.

# car-1 car-2 car-3 blimp-1 blimp-2 blimp-3

2 1.7 2.0 2.6 2.3 1.9 1.4
3 2.8 2.7 3.0 2.9 3.0 2.2
4 3.9 3.6 4.4 3.5 3.2 3.1

TABLE VII
SPEEDUP ACHIEVED BY KPIECE IN EMBARRASSINGLY PARALLEL MODE.

# car-1 car-2 car-3 blimp-1 blimp-2 blimp-3

2 1.3 1.5 1.6 1.5 1.6 1.3
3 1.5 1.8 1.8 1.8 1.9 1.4
4 1.7 2.1 2.0 2.2 3.0 1.5

All experiments presented in previous sections were con-
ducted when using the planner in single-threaded mode. Ta-
ble VI shows the speedup achieved by the motion planner
when using one to four threads on a four-core machine. The
achieved speedup is super-linear in some cases, a known
characteristic of sampling-based motion planners [60]. When
comparing to the speedup obtained with an embarrassingly
parallel setup, shown in Table VII, we notice that lower
runtimes are obtained with the shared memory setup. In
addition, total memory requirements in the suggested setup
do not increase significantly as the number of processors is
increased.
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Fig. 16. Runtime with different number of threads on a four-core machine,
for 2-dimensional and 3-dimensional projections (car and blimp).

Due to the fact that using multiple random seeds increases
the chances of the motion planner benefiting from at least one
favourable seed, using more threads than available processing
units may reduce runtime as well. To evaluate this possibility,
we run KPIECE with up to 10 threads on a four-core machine
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(shown in Figure 16). Once we use more threads than number
of cores, speedup decreases drastically, but does not come to a
complete halt. Based on the conducted experiments, it seems
to be the case that using a number of threads up to double the
number of cores provides small benefits.

VI. DISCUSSION AND FUTURE WORK

We have presented KPIECE, a sampling-based motion
planning algorithm that can solve complex planning problems
within significantly reduced runtime (up to two orders of
magnitude speedup), and with substantial memory savings (up
to a factor of 40). Furthermore, KPIECE enables the solution
of problems that could not be tackled before.
KPIECE uses a projection of the state space to a lower

dimensional Euclidean space and a specification of a dis-
cretization. As shown in the experiments, even simple intuitive
projections work for complex problems. If a projection is not
defined by the user, the algorithm performs well with random
projections for systems of moderate dimension.

The performance of KPIECE is not drastically affected by
the choice of discretization and a method to automatically
compute H1 discretizations was presented. Parameter sweeps
can be used to decide when further levels of discretization are
beneficial. When using automatically computed H1 discretiza-
tions, KPIECE was compared to other popular algorithms,
and shown to provide significant computational speedup. In
addition, the provided shared memory parallel implementation
seems to give better results than the embarrassingly parallel
setup.

For future work, it would be interesting to prove the
probabilistic completeness of KPIECE, to develop a principled
approach for automatically computing discretizations with
more levels of discretization, and to explore the possibility
of using multiple projection spaces simultaneously. Another
possible direction is that of using PCA to identify vectors along
which to project, but extensive experiments have not yet been
conducted. This use of PCA has been shown to work locally
to help in the exploration of narrow passages [50].
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[34] I. A. Şucan and L. E. Kavraki, “Kinodynamic motion planning by
interior-exterior cell exploration,” in Algorithmic Foundation of Robotics
VIII. Springer, STAR 57, 2009, pp. 449–464.

[35] ——, “On the performance of random linear projections for sampling-
based motion planning,” in International Conference on Intelligent
Robots and Systems, St. Louis, Missouri, October 2009, pp. 2434–2439.

[36] J. H. Reif, “Complexity of the mover’s problem and generalizations,”
in IEEE Symposium on Foundations of Computer Science, 1979, pp.
421–427.

[37] J. Canny, “Some algebraic and geometric computations in PSPACE,” in
Annual ACM Symposium on Theory of Computing. Chicago, Illinois,
United States: ACM Press, 1988, pp. 460–469.

[38] J. Barraquand and J. C. Latombe, “Robot motion planning : A distributed
representation approach,” International Journal of Robotics Research,
vol. 10, no. 6, pp. 628–649, 1991.

[39] P. Cheng, G. Pappas, and V. Kumar, “Decidability of motion planning
with differential constraints,” in IEEE International Conference on
Robotics and Automation, Rome, Italy, April 2007, pp. 1826–1831.

[40] B. Donald, P. Xavier, J. Canny, and J. Reif, “Kinodynamic motion
planning,” Journal of the ACM, vol. 40, no. 5, pp. 1048–1066, 1993.

[41] J. H. Reif and S. Slee, “Optimal kinodynamic motion planning for self-
reconfigurable robots between arbitrary 2d configurations,” in Robotics:
Science and Systems, W. Burgard, O. Brock, and C. Stachniss, Eds.
Atlanta, Georgia: MIT Press, June 2007.

[42] http://sourceforge.net/projects/opende/, seen May 19th 2011.
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Ioan A. Şucan is a Ph.D. candidate in computer
science at Rice University, Houston, TX. He is
studying algorithmic robotics under Dr. Lydia E.
Kavraki. His research interests include motion plan-
ning under differential constraints, multi-threaded
search algorithms and task and motion planning
for manipulation. He received the B.S. degree in
electrical engineering and computer science from
Jacobs University, Bremen, Germany, in 2006 and
the M.S. degree in computer science from Rice
University, Houston, TX, in 2008.

Lydia E. Kavraki received the Ph.D. degree in com-
puter science from Stanford University, Stanford,
CA, in 1995. She is currently the Noah Harding
Professor of computer science and bioengineering
with Rice University, Houston, TX. She is the au-
thor/coauthor of more than 150 technical papers
and a robotics textbook: Principles of Robot Motion
(MIT Press, 2005). Her interests include motion
planning for continuous and hybrid systems, plan-
ning with temporal specifications, mobile manipula-
tion, networked multiagent systems, and applications

of robotics methods to biology. Prof. Kavraki is a Fellow of the Association
for the Advancement of Artificial Intelligence and the American Institute for
Medical and Biological Engineering. She is the recipient of the ACM Grace
Murray Hopper Award and the Early Academic Career Award from the IEEE
Robotics and Automation Society. Information about her work can be found
at http://www.kavrakilab.org.


