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Abstract— This paper describes an algorithm that considers
uncertainty while solving the simultaneous task and motion
planning (STAMP) problem. Information about uncertainty
is transferred to the task planning level from the motion
planning level using the concept of a task motion multigraph
(TMM). TMMs were introduced in previous work to improve
the efficiency of solving the STAMP problem for mobile
manipulators. In this work, Markov Decision Processes are used
in conjunction with TMMs to select sequences of actions that
solve the STAMP problem such that the resulting solutions
have higher probability of feasibility. Experimental evaluation
indicates significantly improved probability of feasibility for
solutions to the STAMP problem, compared to algorithms
that ignore uncertainty information when selecting possible
sequences of actions. At the same time, the efficiency due to
TMMs is largely maintained.

I. INTRODUCTION

Robotic devices often need to perform tasks that involve
the execution of multiple actions. For example, opening a
door may mean moving to the door, pressing the handle and
then pushing the door. Executing such sequences of actions
implies that robots need to plan at two levels: (1) the task
planning level, where sequences of actions that take the robot
to its goal are computed (a topic often studied in the artificial
intelligence community) and (2) the motion planning level,
where individual motion plans that implement the actions
selected at the task planning level are computed (a topic often
studied in the robotics community [1], [2]). The feasibility
of motion plans cannot always be quickly determined at task
planning level, and thus decoupling of task planning from
motion planning leads to infeasible solutions when motion
plans cannot be computed for proposed task plans. As a
result, recent approaches consider task planning and motion
planning simultaneously (e.g., [3]–[11]). For the remainder
of the paper we will refer to this problem as the simultaneous
task and motion planning (STAMP) problem. The input to
the STAMP problem is in the form of task graphs. These are
directed acyclic graphs that represent possible sequences of
actions that take the robot to the goal. A path in the task
graph that connects the robot’s initial state to a goal state
represents a possible task plan. If every edge along the task
plan has a motion plan associated to it such that the motion
plans can be executed in sequence, a solution to the STAMP
problem has been found [12].

Physical systems are characterized by imperfect actuation,
imperfect sensing and imperfect models, all of which lead
to uncertainty. This work concerns itself with solving the
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STAMP problem while accounting for uncertainty in the
following way: if some form of uncertainty is considered
at the motion planning level, that uncertainty information
is transferred over and used at the task planning level as
well. Uncertainty at the motion planning level has been
considered in previous work (e.g., [13]–[18]). In this paper
we assume that motion planners capable of accounting for
some form of uncertainty are employed in the computation
of individual motion plans for the actions that the robot
considers. Furthermore, we assume these motion planners are
capable of reporting a probability of feasibility for the motion
plans they compute. While this probability of feasibility
may not be explicitly reported by the algorithms described
in previous work, a routine that reports a probability of
feasibility for a computed motion plan can easily be added.
Such a routine would use information from the planner’s
internal data structures; for example, it could report the
minimum probability of feasibility for the segments that
make up the reported motion plan. We also assume motion
planning is performed solely under geometric constraints
(also known as path planning). This paper shows how to
account for uncertainty at the task planning level by using
information gathered by motion planners so that more robust
task plans (plans with higher probability of feasibility) are
proposed when solving the STAMP problem. Consideration
of uncertainty is essential for most practical applications,
especially for complex sensor-based systems that operate in
human environments (e.g., mobile manipulators).

The work presented here relies on the concept of a
Task Motion Multigraph (TMM), which we have introduced
in recent work [10]. TMMs have been developed for use
with complex robotic systems such as mobile manipulators,
and TMM-based algorithms have been shown to solve the
STAMP problem efficiently [11]. In this work we further
develop our TMM-based algorithm so that it can account for
uncertainty using a Markov Decision Process (MDP) [19]
and a motion planner that can report a probability of fea-
sibility for the plans it computes, as described above. The
experiments we conduct show significantly improved proba-
bility of feasibility for the solutions to the STAMP problem
when using the updated algorithm compared to the original
one. At the same time, the computational performance gains
offered by TMMs are largely maintained.

II. BACKGROUND AND RELATED WORK

A. Task Motion Multigraphs

In recent work [10] we introduced the concept of a
Task Motion Multigraph (TMM) to help solve the STAMP
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problem for mobile manipulators. TMMs lead to increased
efficiency because they encode the information from the
input task graph as well as information about the robot
hardware. In particular, TMMs encode the possible choices
of hardware components to use when performing an action
(e.g., an arm, or more generally, any set of joints), which
corresponds to different motion planning options (different
state spaces to plan in). TMMs thus enable motion planners
to compute solutions in lower dimensional spaces when
possible, which is especially useful for complex robots such
as mobile manipulators, and allow for the computation of
task plans that consider the progress of motion planners. For
convenience, we include a brief definition for TMMs [10]
and an efficient TMM-based algorithm we developed [11]
for solving the STAMP problem.

Definition: A task motion multigraph (TMM) is a directed
acyclic multigraph GM = (VM , EM ) such that:
• VM = {v | Q(v) ⊂ X} is a finite set of vertices. Every

vertex v is associated with a set of robot states Q(v) ⊆ X ,
where X is the full state space of the robot; Q(v) can be
explicitly specified as a set of states or implicitly specified
in a manner that allows sampling.
• EM is a finite multiset of edges representing all the

motion planning options between all pairs of nodes (vi, vj) ∈
VM ×VM . For a pair of nodes (vi, vj) there may be multiple
edges Ei,j = {e | e connects vi to vj} ⊆ EM that represent
planning options between vi and vj . The elements of Ei,j
differ by the state space along which motion plans are to
be computed. Given an edge e ∈ Ei,j , the state space used
for planning is denoted as Space(e). Motion plans along an
edge e ∈ Ei,j must start at a state x ∈ Q(vi), end at a state
x′ ∈ Q(vj) and lie in Space(e).

Algorithm: The concept of a TMM was utilized to develop
an efficient algorithm (Algorithm 1) for solving the STAMP
problem [11]. This algorithm consists of roughly two parts:
(1) proposing a sequence of actions that can take the robot to
its goal (the SelectPossibleTaskPath() function) [line 2] and
(2) computing a motion plan for an action along the proposed
sequence [lines 3,4], or, if such a motion plan is not found,
using a randomized process to attempt the computation of a
different motion plan [lines 6,7]. ∆t is the amount of time
spent computing a motion plan at each attempt (repeated
attempts continue from where the planner has left off).

Algorithm 1 TMM-Computation(GM = (VM , EM ))
1: while timeSpent < MaxT do
2: P ← SelectPossibleTaskPath(GM )
3: edge ← SelectEdgeFromPath(P )
4: (edge′, sol) ← TMM-MotionPlan(edge, ∆t)
5: if sol = nil then
6: nextEdge ← SelectEdge(EM , edge)
7: (edge′, sol)← TMM-MotionPlan(nextEdge, ∆t)
8: if sol 6= nil then
9: RecordSolution(edge′, sol)

10: if HaveSolution(GM ) then
11: return ExtractSolution(GM )
12: return nil

B. Considering Uncertainty in Motion Planning

Algorithms that consider uncertainty at the motion plan-
ning level can be separated into two categories: ones that
plan in the state space and ones that plan in the belief space.

1) Planning in the State Space: Algorithms that plan in
the state space build upon already proven sampling-based
algorithms such as the Probabilistic Roadmap (PRM) [20],
and estimate probabilities of feasibility for segments that
make up solution paths. Techniques that plan in the state
space can consider different types of uncertainty. For exam-
ple, uncertainty in sensing (e.g., [13], [14]) and uncertainty
in actuation (e.g., [15], [16]) can be considered separately.
Nevertheless, considering both uncertainty in sensing and
uncertainty in actuation is possible (e.g., [17]).

Missiuro and Roy present a modified version of PRM
that can account for uncertainty in the representation of the
environment [13]. It is assumed that the vertices that make up
the sensed obstacles in the environment are represented using
Gaussian probability distributions, and uncertainty in the
robot state is ignored. Alterovitz et al. present another mod-
ification of PRM which they call the Stochastic Roadmap
Method (SMR) [15]. Their approach assumes a stochastic
model of motion and is applied for of a system that accepts
a finite set of controls.

2) Planning in the Belief Space: Another approach for
considering uncertainty at the motion planning level is to
plan in the belief space. A point in the belief space consists
of the parameters necessary to represent a probability distri-
bution for a point in the state space. For example, Gaussian
models of probability or sets of particles can be used to
approximate the belief state.

An approach similar in implementation to planning in
the state space is the Belief Roadmap [21], which can
consider uncertainty in state information. The idea behind
this approach is to run PRM in the belief space. Points in
the belief space are Gaussian probability distributions. To
construct a roadmap in this space, Prentice and Roy [21]
sample the means of the belief states — which are in fact
elements of the state space — and factorize the covariance
matrices in a manner that affords computational savings.

C. Considering Uncertainty in Task and Motion Planning

The work closest related to ours is by Kaelbling and
Lozano-Pérez [22], where both task planning and motion
planning are performed, but uncertainty information is prop-
agated as a belief at the task planning level only. Works
that employ Partially Observable Markov Decision Processes
(POMDPs) (e.g., [23]) are also related, in the sense that such
approaches could also be used to model uncertainty at the
task planning level.

III. CONSIDERING UNCERTAINTY IN TASK AND MOTION
PLANNING USING TMMS

The probability of a robot successfully executing a task
depends on both the sequence of actions the robot performs
and on the hardware components the robot uses for each
action. For example, a robot executing actions that take it



through an empty environment may have more difficulty
in localization when compared to a robot that executes
actions that take it around corners and walls. At the same
time, different actuators have different abilities in terms
of following planned paths, and the set of actuators used
determines the state spaces in which motions are planned. As
such, the information that TMMs include, i.e., the possible
sequences of actions that lead to the goal and the state
spaces that could potentially be used to plan motions for
those actions, directly affects a robot’s capability to address
uncertainty issues. For this reason, our previously introduced
TMM-based framework is a natural choice for considering
uncertainty at the task planning level. An added benefit
of using TMMs is the increased efficiency for solving the
STAMP problem, as demonstrated in our previous work [11].

As mentioned in Section II, Algorithm 1 consists of
roughly two steps, the first of which proposes a possible
sequence of actions that takes the robot to its goal (the
SelectPossibleTaskPath() function) [line 2]. In our previous
work, SelectPossibleTaskPath() was based on an assignment
of costs to edges and Dijkstra’s algorithm for shortest
paths [10], [11]. In this work, the use of Dijkstra’s algo-
rithm is replaced by the use of Markov Decision Processes
(MDPs) [19] and value iteration. MDPs provide a formal
framework for considering probabilities that would other-
wise be inserted in an ad-hoc way in the cost function
used by Dijkstra’s algorithm. Because we are using motion
planners capable of reporting a probability of feasibility for
their reported solutions, the implementation of SelectPos-
sibleTaskPath() can use the value of those probabilities to
propose sequences of actions that have a higher probability
of feasibility. Furthermore, a user can additionally specify
uncertainty information specific for edges of the TMM (e.g.,
the probability of a particular hardware component being
able to follow a given path).

A. Markov Decision Processes

A Markov Decision Process (MDP) is a 4-tuple
(S,A, T,R), where:

• S is the set of states the robot could be in.
• A is the set of actions the robot can perform in order

to move between states.
• T : S × A → 2S is a transition function indicating the

probabilities of transition between states; T (s, a, s′) is
the probability of transitioning from state s to state s′

under action a. Time is discretized, and at every step
the robot takes, the transition function is evaluated to
determine which state the robot reaches.

• R : S × A → R is a reward function; R(s′, a) is the
reward the robot receives if it reaches state s′ after
performing action a. This reward is usually discounted
over time using a parameter γ.

Often, the sets S and A are assumed to be finite. The
solution to an MDP is a policy π : S → A which specifies
what the optimal action is for every state the robot could be
at. The notion of optimality is defined in terms of maximizing

rewards:

π(s) = arg max
a

∑

s′

T (s, a, s′)(R(s′, a) + γV (s′))

V (s) =
∑

s′

T (s, π(s), s′)(R(s′, π(s)) + γV (s′)),

where γ is the discount factor for the MDP. This factor has
the effect of diminishing the value of rewards the further
they are in the future.

Typical algorithms that find the optimal policy for an MDP
are policy iteration and value iteration [19].

B. Construction of an MDP for Finding Robust Task Plans

Given the information from a TMM GM = (VM , EM )
at a particular time, an MDP (S,A, T,R) is constructed as
follows:
• S = VM ∪ {Fail}; the vertices in the TMM become

states in the MDP, and an additional state (Fail) that
corresponds to catastrophic failure is added.
• A =

⋃
e∈EM

Space(e); all the state spaces that could
be used for planning are considered actions in the MDP.
• The MDP state transition function T is defined as

follows. For every edge e = (s, s′) ∈ EM :

T (s, Space(e), s′) = m(e) ·
{
p if sol
h · 1

1+t if not sol,
(1)

T (s, Space(e), Fail) =∑

s′∈{s′|(s,s′)∈EM}
(1− T (s, Space(e), s′)) (2)

where m(e) can be used to model uncertainty sources that
are known before the computation of motion plans, p is the
maximum probability of feasibility of a motion plan found
while planning along e (in the state space Space(e)), t is
the amount of time spent planning motions for edge e, and
sol is a flag indicating whether any motion plans have been
found for edge e. If sol is true, a value of p is available. If
sol is false, we consider the probability of feasibility to be
proportional to the amount of time already spent planning
and a model specific constant h. At t = 0 (i.e., no planning
was yet performed) T (s, Space(e), s′) = m(e) · h. In this
work we consider even chances for finding a solution (h =
1
2 ), and m(e) was set in accordance with Space(e): when
Space(e) corresponds to an arm, m(e) is higher than when
Space(e) corresponds to a mobile base.

Because the probabilities of outgoing transitions from a
particular state under a particular action do not necessarily
sum up to 1, the transition function needs to also be nor-
malized before use, but this is automatically handled by our
implementation of value iteration.

The transition function brings information from the motion
planning level to the task planning level and thus allows Al-
gorithm 1 to make use of it. Intuitively, for every edge in the
TMM, there exist two corresponding transitions in the MDP.
The first transition represents moving to the desired state and
the second transition represents failure. The probability of the
desired transition depends on the state space of the system



(given by m(e)) and the computed motion plan (given by p)
when such a plan is found. If motion plans do not yet exist
for the edge e, a probability of feasibility that decreases as
computation time increases is assumed.
• The reward function R of the MDP is defined such that:

R(Fail, ·) = −10000 // large negative value (3)

R(s, a) =

{
R0(s, a) · d if sol
−ξ · dim(a) if not sol

(4)

d =

{
dim(X )− dim(a) if p > PC

dim(a) otherwise

R0(s, a) = β ·
(

1

1 + e−α·(p−PC)
− 1

2

)
,

where X is the full state space of the robotic system,
α, β, ξ are scaling factors, a = Space(e), p is the maximum
probability of feasibility of a motion connecting s to s′, sol
is a flag that indicates whether any motion plan connecting s
to s′ (irrespective of the state space) has been found and PC
is a trust threshold. Explanations for these variables follow.

The intention of the reward function is to penalize actions
that are not desirable and to reward ones that are. At first, no
probabilities are known for any of the actions in the TMM.
In this case, the only reasonable approach is to consider a
small penalty for each action in the corresponding MDP, so
that we avoid a bias towards long policies.

Fig. 1. Value of R0(·, ·) function used in defining rewards for PC = 0.5,
ξ = 0.05, α = 10 and β = 1000.

When a motion plan is found for a particular edge in
the TMM, the probability of that motion plan can either
be sufficiently high and then including the corresponding
MDP transition in the followed task path is desirable, or it
is a low probability and the corresponding MDP transition
should be avoided. The distinction is made using the user
defined trust threshold PC : edges that have p > PC will
yield a reward that is positive, while ones that have p < PC
will yield a negative reward; α and β are positive factors.
A representation of the R0 function is shown in Figure 1.
β sets the scale of the returned rewards: the value of R0 is
always in the range (−β2 ,

β
2 ). α regulates how fast the value

of R0 reaches its asymptotes. The higher the value of α, the
closer R0 is to a step function. PC is a key parameter, as
it determines whether the reward is positive or not. When a
probability p is not available (because a solution has not yet
been found), the reward achieved by the edge is considered

to be a small negative value, and the ξ positive factor is used
for scaling.

In this work, the discount factor γ for the constructed
MDP is always set to 0.95. The constants for the definition
of the reward functions are PC = 0.5, ξ = 0.05, α = 10 and
β = 1000; m(e) was set to 0.99 when Space(e) corresponds
to an arm, to 0.90 when Space(e) corresponds to the base
and to 0.75 otherwise.

The values mentioned here are by no means fixed. For
practical applications, these values can be tuned. The inten-
tion in this work is only to show that TMMs can easily
be used to consider uncertainty at task level. The values
selected, as well as the MDP construction model, already
lead to results supporting this point, without further tuning.

C. Using MDPs in the TMM Algorithm

Given an MDP constructed as shown above, value iteration
is executed to find the optimal policy. Let π : S → A be the
optimal policy. The optimality in this case is with respect to
the arbitrary reward model described above. As such, the use
of value iteration could be replaced by faster approximating
algorithms. The sequence of states s0, s1, . . . , sk is extracted
from the MDP such that s0 is the MDP state that corresponds
to the root of the TMM,

si+1 = max
s′∈S

(T (si, π(si), s
′) ·R(s′, π(si))) ,

and sk corresponds to a goal state in the TMM (a goal is
always reachable because the TMM is acyclic). The sequence
of states above is used to produce a sequence of possible
actions that take the robot from the root of the TMM to one
of the goals. This computation replaces the call to Dijkstra’s
algorithm in Algorithm 1 [line 2].

IV. EXPERIMENTAL RESULTS

We compare the original version of Algorithm 1 [11] to
the version that uses MDPs described in this work. We use a
simulation of the Willow Garage PR2 (a mobile manipulator)
as the robotic system for testing our approach. For the
construction of TMMs from input task graphs we assume
every motion planning action can be performed using any
combination of the state spaces that correspond to the base,
the left arm and the right arm of the PR2.

A. Source of Uncertainty

To be able to construct the MDP as described in Sec-
tion III-B, a probability of feasibility needs to be determined
for every motion plan computed as part of solving the
STAMP problem. Ideally, we should use a motion planner
that considers some form of uncertainty and reports the
probability of feasibility for computed plans, as described
in Section I. To simplify our implementation, we used a
sampling-based planner that was readily available but does
not report uncertainty, and we assigned a probability of
feasibility to the computed motion plan in a subsequent step.

For the experiments shown in this section, a simple model
of uncertainty was assumed: the probability of feasibility of
a particular robot state depends on the robot’s position in the



ground plane at that state. The probability of feasibility is
depicted in Figures 2, 3, 4 and 5 as levels of gray that vary
from 0.1 (almost black, high uncertainty) to 1.0 (white, no
uncertainty). The value of the intensity of the gray area that
corresponds to a particular robot state is considered to be
the probability of feasibility for that state. For Figures 2, 3
and 5, the gray levels depend on the distance to walls, thus
mimicking a simplistic model of uncertainty in localization.
This source of uncertainty is merely an example and many
different sources of uncertainty could be used. For example,
the environment in Figure 4 shows an arbitrary distribution
of areas with high uncertainty.

When a motion planner computes a plan, that plan is
projected to the ground plane and the intensity of the darkest
spot the plan touches is considered to be the probability of
feasibility of that plan. The values computed for this source
of uncertainty are not intended to be realistic. Their purpose
is to serve as proof of concept and emphasize the fact that
using information about uncertainty at the task planning level
improves the probability of feasibility of the final solution.

The probability of feasibility for a solution to the STAMP
problem is defined to be:

prob =

∑
u Prob(u) · Length(u)∑

u Length(u)
,

where u stands for the individual motion plans that make
up the STAMP problem solution, Prob(u) represents the
probability of feasibility reported by the motion planner for
plan u and Length(u) represents the length of that plan.

B. Experimental Setup

Algorithm 1 is updated as indicated in Section III and
executed on the environments shown in Figures 2, 3, 4
and 5. Each figure consists of two sides: the left side is
a representation of the environment and the right side is
a representation of the input task graph [10]. The black
dot at the bottom-left of each picture represents the scale
of the robot within the environment. The environment in
Figure 2 is very small and very simple; it is a motivating
example for considering uncertainty at the task level as well.
The environment in Figure 3 has a large open area that
does not provide good localization information. The same
environment is presented in Figure 4, but with a different
distribution of areas with high uncertainty. In both Figure 3
and Figure 4, the shorter sequence of actions takes the
robot through areas with low probabilities of feasibility. This
environment is chosen to show that the algorithm presented
in this work can detect this fact and choose the longer route,
which has higher probability of feasibility. All individual
motion plans are fast to compute. For comparison, we include
the environment in Figure 5, which is fairly cluttered and
individual motion plans are significantly slower to compute,
but good localization information is available throughout the
environment.

For all environments, the vertices of the task graphs re-
quire motion planning for both the robot’s base and its arms,
as we had done in previous work [11]. However, the model

of uncertainty we assumed does not affect arm motions. As
such, the results presented reflect the value of accounting for
uncertainty in base motion only. The difference in probability
of success would be larger if considering uncertainty in arm
motion as well.

For experiments presented in this section, all values are
averaged over 30 runs, and the motion planner used is RRT-
Connect [24] from OMPL [25] (although different types of
motion planners could be used for each edge in the TMM).
The results are shown in Tables I, II, III and IV. Each
table shows the amount of time spent planning motions
(“time”), the amount of memory consumed by exploration
data-structures (“mem”), the length of the produced solution
(“length”), the amount of time spent in calls to SelectPos-
sibleTaskPath() (“pct”) and the probability of feasibility for
the complete task plan (“prob”). These values are shown for
our previously described algorithm [11] (rows marked by
“Dij.”) and for the new algorithm (rows marked by “MDP”).
For each of the reported measurements, the method that
performed better is shown in bold face. The results are shown
for different parameters ∆t (used in Algorithm 1).

C. Discussion of Results

Figure 2 shows a very simple problem where the robot
has two options: move directly to the goal (from “ROOT” to
“r2”) in one single action, or take two additional actions, so
that dark areas are avoided. In the process of the computation
using Dijkstra’s algorithm, the shortest path is the only
one considered, the motion plan between “ROOT” and “r2”
is trivial to find, and the problem is solved. When using
MDPs, the direct solution is computed at first. However,
the probability of feasibility for the motion plan connecting
“ROOT” to “r2” is computed to be 0.1, which is less than PC .
This makes the reward of moving to “r2” directly very low,
so the subsequently proposed sequences of actions extracted
using MDPs are via regions “r0” and “r1”. The probabilities
of feasibility for the corresponding motion plans are higher.
Table I shows the values of the collected measurements.
Rows indicated by “Dij.” correspond to the use of Dijkstra’s
algorithm in Algorithm 1 and rows indicated by “MDP”
correspond to the use of MDPs, as explained in Section III.
The probability of feasibility when using MDPs is much
larger than when using Dijkstra’s algorithm. Additionally, the
execution of Dijkstra’s algorithm is much faster than value
iteration (the “pct” column), and the memory consumption
is slightly increased when using MDPs. All these results are
expected, just as is the fact that the length of the computed
task solutions is higher for MDPs. The differences are small
in this particular experiment because of the small scale of
the environment.

The “Office1” environment shows the benefit of using
MDPs. As shown in Table II, the probability of feasibility
when using MDPs is significantly higher, as the algorithm
avoids the darker areas and follows the longer task path (via
“r7”). The actual value for the probability of feasibility is
still low even for the experiments using MDPs. The reason
for these low values is the non-physical model of uncertainty



ROOT

r2

r0

r1

Fig. 2. Motivating example for considering uncertainty. The obvious shorter
path is to move from “ROOT” to “r2”, crossing the dark area. Considering
uncertainty produces the longer solution, via the “r0” and “r1” regions, thus
avoiding dark areas.

∆t (s) time (s) mem (MB) pct (ms) length prob

0.10 Dij. 0.04 0.00 0.2 12.66 0.07
MDP 0.10 0.01 77.2 13.35 0.58

0.50 Dij. 0.04 0.00 0.2 12.52 0.07
MDP 0.10 0.01 84.5 13.38 0.57

1.00 Dij. 0.04 0.00 0.2 12.53 0.07
MDP 0.10 0.01 81.0 13.37 0.56

2.00 Dij. 0.04 0.00 0.2 12.72 0.07
MDP 0.11 0.01 62.9 13.43 0.56

TABLE I
EXPERIMENTAL RESULTS FOR THE MOTIVATING EXAMPLE (FIGURE 2).

that was used and the fact that in this work, motion planners
ignored the uncertainty information. Motion planners that
incorporate uncertainty do exist but were not used here.
The time spent computing motion plans (the “time” column)
shows similar values for the compared approaches. However,
the time spent proposing task plans is much higher for MDPs
(the “pct” column).

The observations made for the “Office1” environment
hold true for the “Office1∗” environment as well, although
the distribution of uncertainty is very different. In fact, the
difference in terms of probability of feasibility between the
previous variant using Dijkstra’s algorithm and the proposed
variant using MDPs is much more significant.

“Office2” is a version of “Office1” that includes fewer dark
areas. As expected, the probability of feasibility does not re-
ally vary when using MDPs rather than Dijkstra’s algorithm,
as shown in Table IV. More time is spent motion planning
due to the difficulty of the individual planning problems.
The length of the produced solution paths varies because
the approach of selecting paths using MDPs also considers
probability of feasibility, as opposed to the approach using
Dijkstra’s algorithm. As a result, the MDP-based approach
has a much lower chance of considering both possible task
paths. Since the motion plans that make up the solution for
a particular path in the task graph are different, the lengths
of the the solutions produced with Dijkstra’s algorithm and
ones produced with MDPs will differ.

ROOT

r2

r4

r0 r7

r8 r9

r3

r5

r10

r6

r1

Fig. 3. Left: The “Office1” environment with uncertainty map for
localization. Darker areas cause poor localization. Right: The task graph
for the task to solve.

∆t (s) time (s) mem (MB) pct (ms) length prob

0.10 Dij. 0.47 0.04 1.6 51.36 0.38
MDP 0.53 0.04 2011.1 56.21 0.46

0.50 Dij. 0.47 0.04 2.0 49.25 0.34
MDP 0.55 0.04 2007.4 56.18 0.46

1.00 Dij. 0.51 0.04 1.7 47.72 0.31
MDP 0.54 0.04 2022.7 57.28 0.47

2.00 Dij. 0.49 0.04 1.8 46.99 0.32
MDP 0.55 0.04 2080.9 55.20 0.45

TABLE II
EXPERIMENTAL RESULTS FOR THE “OFFICE1” PROBLEM (FIGURE 3).

ROOT

r2

r4

r0 r7

r8 r9

r3

r5

r10

r6

r1

Fig. 4. Left: The “Office1∗” environment with an arbitrary distribution of
areas that mark low probability of feasibility. Right: The task graph for the
task to solve.

∆t (s) time (s) mem (MB) pct (ms) length prob

0.10 Dij. 0.46 0.04 2.0 51.97 0.50
MDP 0.58 0.05 1991.9 57.99 0.74

0.50 Dij. 0.52 0.04 2.1 49.82 0.37
MDP 0.56 0.04 2057.8 56.91 0.75

1.00 Dij. 0.53 0.04 1.9 47.12 0.26
MDP 0.62 0.04 2061.9 58.04 0.75

2.00 Dij. 0.53 0.04 1.8 49.50 0.37
MDP 0.58 0.04 2083.4 57.29 0.74

TABLE III
EXPERIMENTAL RESULTS FOR THE “OFFICE1∗” PROBLEM (FIGURE 4).
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Fig. 5. Left: The “Office2” environment with uncertainty map for
localization. Darker areas cause poor localization. Right: The task graph
for the task to solve.

∆t (s) time (s) mem (MB) pct (ms) length prob

0.10 Dij. 4.88 0.34 1.9 62.15 0.39
MDP 7.72 0.51 1448.0 79.50 0.40

0.50 Dij. 4.06 0.27 1.0 50.92 0.42
MDP 7.00 0.46 911.8 71.62 0.39

1.00 Dij. 4.75 0.32 0.9 52.83 0.43
MDP 7.01 0.44 931.3 59.32 0.44

2.00 Dij. 5.78 0.37 1.2 56.69 0.42
MDP 7.25 0.45 912.2 61.16 0.43

TABLE IV
EXPERIMENTAL RESULTS FOR THE “OFFICE2” PROBLEM (FIGURE 5).

V. DISCUSSION

The use of TMMs and MDPs as shown in this work
provides a simple approach for considering uncertainty at
the task planning and the motion planning levels. Our ex-
periments indicate that the probability of feasibility of the
computed solutions to the STAMP problem can be signif-
icantly increased. Using motion planners that account for
uncertainty as shown in previous work can further increase
the probability of feasibility of solutions when solving the
STAMP problem. Extensions to the proposed method so that
cycles in TMMs can be considered would make our approach
more general. Furthermore, different methods of constructing
MDPs from TMMs and different approaches for computing
MDP policies could be evaluated.
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