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Asymptotically Optimal Kinodynamic Planning Using Bundles of Edges

Rahul Shome and Lydia E. Kavraki

Abstract— Using sampling to estimate the connectivity of
high-dimensional configuration spaces has been the theoretical
underpinning for effective sampling-based motion planners.
Typical strategies either build a roadmap, or a tree as the
underlying search structure that connects sampled configura-
tions, with a focus on guaranteeing completeness and optimality
as the number of samples tends to infinity. Roadmap-based
planners allow preprocessing the space, and can solve multiple
kinematic motion planning problems, but need a steering
function to connect pairwise-states. Such steering functions
are difficult to define for kinodynamic systems, and limit the
applicability of roadmaps to motion planning problems with
dynamical systems. Recent advances in the analysis of single-
query tree-based planners has shown that forward search trees
based on random propagations are asymptotically optimal.
The current work leverages these recent results and proposes
a multi-query framework for kinodynamic planning. Bundles
of kinodynamic edges can be sampled to cover the state
space before the query arrives. Then, given a motion planning
query, the connectivity of the state space reachable from the
start can be recovered from a forward search tree reasoning
about a local neighborhood of the edge bundle from each tree
node. The work demonstrates theoretically that considering any
constant radial neighborhood during this process is sufficient
to guarantee asymptotic optimality. Experimental validation in
five and twelve dimensional simulated systems also highlights
the ability of the proposed edge bundles to express high-quality
kinodynamic solutions. Our approach consistently finds higher
quality solutions compared to SST, and RRT, often with faster
initial solution times. The strategy of sampling kinodynamic
edges is demonstrated to be a promising new paradigm.

I. INTRODUCTION

Sampling-based roadmaps [1] have been a popular and
effective strategy for motion planning in high-dimensional
spaces. Initial advances focused on the properties of prob-
abilistic completeness to asymptotically guarantee the dis-
covery of a solution to the motion planning problem, if one
exists. Tree-based methods [2] construct tree data structures
rooted at the start of the motion planning problem, as
opposed to connected roadmaps. Typically roadmap-based
methods [1] are multi-query frameworks [3] that can reuse
the same graphical structure across different motion planning
queries in the same scene. Tree-based methods are single-
query, and rooted at the start state of the current problem.
Roadmaps have a limitation arising from the neighborhood
connectivity required for the graph structure. Such precise
connections require the robotic system to be steerable, or
in other words, the local planner needs access to a steering
function that can connect pairs of nearby states. Such steer-
ing functions are typically not available for systems with
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Fig. 1. The key idea of sampling edges instead of configurations, and
propagating nearby edges instead of steering towards neighborhoods.

complex dynamics, and therefore limit the use of roadmaps-
based multi-query methods. For the past two decades, tree-
based planners [4]–[6] have therefore been the mainstay in
kinodynamic motion planning. Tree edges can be forward
propagated to grow outwards into the space, without needing
to precisely hit any state. Some previous work [5] has
focused on sampling path segments, instead of tree nodes
within planning. Nonetheless, since the tree is rooted at the
start of the motion planning problem, in most cases, for a
new problem, the tree is reconstructed from scratch and all
the previous computation is discarded.

Recently, there has been a push beyond probabilistic
completeness into asymptotic optimality, which affords guar-
antees of the motion planner to converge to the optimal
cost in addition to finding a solution. The original work [7]
and subsequent improvements [8] used results from random
geometric graph literature to provide meticulous bounds on
how to design neighborhoods and connection strategies for
both roadmap and tree-based methods in kinematic problems.
Extensions to kinodynamic domains relied on assumptions
about the availability of steering [9]–[11]. Eventually a
kinodynamic asymptotically optimal planner [12] was de-
vised based off a naive random forward search tree, that
forsook steering. It was shown that the theoretical property
of asymptotic optimality is guaranteed as long as enough
Monte Carlo propagations (random controls and durations)
are added to the search tree. More recent extensions have
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refined the understanding of the properties of asymptotically
optimal kinodynamic planning [13]–[15].

The current work poses the question: can we attain
benefits from a multi-query algorithmic framework in the
kinodynamic domain?

Our work proposes sampling a set of kinodynamic edges
for a new environment. Each edge comprises of a sampled
state, from where a sampled control is propagated for a
sampled duration. These edges represent a kinodynamic
edge bundle. When a new motion planning query arrives,
a forward search tree is grown from the start state. The
out-edges from each tree node can be inferred from the
precomputed edge bundle. Bundle edges starting within a
neighborhood of the tree node, parameterized by radius θ,
are propagated from the tree node to grow the search tree.
This is visualized in Fig 1. For new motion planning queries
in the same scene, the edge bundle can be reused.

It should be noted that the edges in the bundle are inde-
pendent of each other and are completely disconnected. This
makes their computation relatively straightforward. Most
of the computational overhead is delegated to the forward
search over the bundle of edges, that attempts to reconstruct
a solution from the start state, to the goal region.

We leverage the theoretical tools outlined in these recent
lines of work, for our analysis. Our chief contribution in
Lemma 4 is to show that as long as the θ used for computing
neighboring edges remains a positive constant, as the number
of edges in the pre-sampled bundle increases, solutions
that are arbitrarily close to the optimal can be recovered
from the edge bundle. This is the key component in our
proof of asymptotically optimality. Beyond the theoretical
investigation, our experimental results indicate that bundles
of sampled edges can express higher quality solutions, faster
than competing methods. This motivates our algorithmic
paradigm of sampling edges instead of sampling configu-
rations.

II. PROBLEM SETUP

The problem formulation and associated assumptions are
mostly identical to those set up in previous work [12], [15].

The workspaceW contains a robot and obstacles. A robot
can be described in terms of a d-dimensional state x ∈ Q ⊂
Rd, and D-dimensional controls u ∈ U ⊂ RD. It should be
noted that the state space in kinodynamic problems typically
consists of a geometric component like positions or angles,
and higher order dynamical components like velocities and
accelerations. Each of these add to the d dimensions. A
collision-free subset of the state space Qfree ⊆ Q does not
induce intersections between the robot and the obstacles.

Consider problem domains where the changes to the
robotic system can be described in terms of differential
equations of the following form (where t denotes time):

ẋ = f(x(t), u(t)), x ∈ Q, u ∈ U (1)

Assumption 1 (Topology): It is assumed that Qfree is lo-
cally Euclidean, and admits the Euclidean norm (‖ · ‖), and
hyperball regions Br(x) of radius r at state x.

Assumption 2 (Small-time local controllability [12]-5):
The system in Eq 1 is assumed to be small-time locally
controllable, with a bounded second derivative, and Lipschitz
continuous in both x and u.

A control function Y : [0, T ] → U maps timestamps
within the range [0, T ] to a control. When starting from a
start state x0, a valid trajectory π : [0, T ]→ Qfree is obtained
by forward-integrating Eq 1 from x0 = π(0).

Trajectories can be defined using piecewise-constant con-
trol functions Ŷ with resolution ∆t such that Ŷ : i →
U , Y(t) = Ŷ(b t∆tc), i ∈ Z+, where i is the indexing.

We define ε-similar trajectories π, πε when πε(t) ∈⋃
t Bε(π(t)). We will also denote this phenomenon as the

trajectory πε observing π. It is also assumed that we restrict
the analysis to trajectories that have a positive clearance δ
from obstacles. A valid δ-robust trajectory π means that⋃
t Bδ(π(t)) ⊂ Qfree.
The cost of the trajectory of duration T is assumed to be

additive, and real-valued over a trajectory, and can be defined
as: cost(π) : π → R≥0. Let us assume this cost to be the
Euclidean arc length along the trajectory.

Similarly distances can be described as the Euclidean norm
between points in the state and control space as ‖x0−x1‖ or
‖u0−u1‖ respectively. The distance between trajectories can
be defined by the maximum deviation along configurations
over two trajectories sup∀t{‖π0(t)− π1(t)‖}.

Assumption 3 (Smooth Cost Function): The cost func-
tion defined over a trajectory is assumed to be Lipschitz
continuous with respect to both x and u.

Fig. 2. Lipschitz smoothness.

From Assumptions 2 and
3, there exists smoothness con-
stants [12], [14], [15] for the
underlying dynamics function f
and two constant-control trajec-
tories (π0, and π1), such that the
following bounds hold for some Ku,Kx,Kc > 0:

‖f(x0, u0)− f(x0, u1)‖ ≤ Ku‖u0 − u1‖ (2)
‖f(x0, u0)− f(x1, u0)‖ ≤ Kx‖x0 − x1‖ (3)

cost(π0)− cost(π1) ≤ Kc sup
∀t
{‖π0(t)− π1(t)‖} (4)

The smoothness bounds essentially imply that there exists
small enough scales of the space wherein close enough
starting configurations and controls executed for similar
time durations will result with trajectories that end in close
enough ending configurations, and have similar costs.

Definition 1 (Motion Planning Problem): Given a
starting state x0and a goal region Qgoal ∈ Q, the motion
planning problem is defined by (x0,Qgoal,Qfree), and
admits a feasible solution π. A feasible motion planning
solution π connects the starting state x0 = π(0) and ends in
a goal region Qgoal such that π(T ) ∈ Qgoal.

Definition 2 (Optimal Motion Planning): Given a mo-
tion planning problem, an optimal solution πOPT is a feasible
solution with the lowest cost, πOPT = argmin

π
cost(π).

Assumption 4 (Robust Optimal Motion Planning): It is
assumed that there exists a small enough δ′ > 0 such that all
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Fig. 3. δ-robust optimal motion planning to a goal region (green). For
some small δ > 0, the robust optimal stays δ away from the obstacle, and
can be observed by a solution in its neighborhood (blue hyperballs).

values of clearance in the range δ ∈ (0, δ′] admit solutions
π∗ that are at least δ-robust.

It is assumed that the feasible δ-robust optimal solution
exists, and can be approximated by a piecewise-constant
control function. This is illustrated in Fig 3. This property
is necessary for any sampling-based technique to have fully
dimensional voluminous regions where good enough solu-
tions can exist, and can be sampled, Previous work [15] has
shown that this approximation is guaranteed even for feasible
solutions that are not piecewise-constant controlled.

Definition 3 (Asymptotic Optimality): Consider an op-
timal motion planning solution πOPT with a corresponding
cost cOPT, and an algorithm that reports a solution πn after n
iterations, the algorithm is called asymptotically optimal if
the solution cost can be shown to converge to the optimal.

lim
n→∞

Pr({cost(πn) < (1 + ε)cOPT}) = 1, ∀ε > 0 (5)

Specifically the statement says that the event that the reported
solution cost has its suboptimality contained within any
arbitrarily small error ε is assured as n is allowed to increase.

For the purposes of our arguments we will focus on π∗, as
it allows the existence of volumes around it for analysis.
Hereafter we will refer to some robust π∗ as the robustly
optimal solution we care about. 1

III. ALGORITHM

The approach is outlined in Algo 1. The method first
covers the state space with n valid sampled edges in the
loop over Lines 3-4. The SAMPLEEDGE subroutine is in-
voked to augment G(V, E) with additional edges, creating a
disconnected bundle of edges. SAMPLEEDGE first randomly
samples a state, and then performs a MonteCarloProp sam-
pling similar to previous work [12] by randomly sampling
a control and a duration. The edge trajectory is described
by the combination of sampled configuration, control, and
duration using forward propagation in SIMULATECONTROL
on Line 4. The edge is retained only if it is collision-free.
This is checked by the VALIDEDGE subroutine. After the
high level loop of Algo 1, there now exists a bundle of valid
kinodynamic edges connecting different parts of the space.
The larger the number of samples, the denser this coverage
will be. An illustration of such an edge bundle is shown
in Fig 4(left). It should be noted that G is expected to be

1Typically arguments of converging in cost for all δ-robust optimal
solutions rely on δ being made arbitrarily small. This way the error stays
similarly bounded w.r.t. πOPT as in Def 3.

fully disconnected. since no care has been taken thus far in
ensuring any neighborhoods are connected.

Algorithm 1: CONSTRUCTEDGEBUNDLE

Input: Number of samples n, Start x0, Goal Region
Qgoal, Search Neighborhood θ

Output: Path π
1 G(V, E)← (∅, ∅);
2 π ← ∅;
3 for 1 . . . n do
4 SAMPLEEDGE(G);
5 π ←RETRACEPATH(x0,Qgoal,G,θ);
6 return π

Algorithm 2: SAMPLEEDGE

Input: Graph G
1 vnew ← SAMPLESTATE();
2 Enew ← ∅;
3 unew, t← SAMPLECONTROLANDDURATION(vnew);
4 enew ← SIMULATECONTROL(vnew, unew, t);
5 if VALIDEDGE(enew) then
6 G ← (V ∪ vnew, E ∪ enew);

Algorithm 3: RETRACEPATH

Input: Start x0, Goal Region Qgoal, Graph G, Search
Neighborhood θ

Output: Path π
1 π ← ∅;
2 Q← x0;
3 for Q 6= ∅ do
4 v ← SELECT(Q);
5 if v ∈ Qgoal then
6 if cost(π) > cost(PATHTO(v)) then
7 π ←PATHTO(v);
8 Vnear ←RADIALNN(v, θ,G);
9 Vnext ← ∅;

10 for vnear ∈ Vnear do
11 unear, t←GETCONTROL(OUTEDGE(vnear));
12 enew ←SIMULATECONTROL(v, unear, t);
13 if VALIDEDGE(enew) then
14 Vnext ← Vnext ∪ enew ;
15 Q←ADD(Q,Vnext);
16 return ∅

Since G is disconnected the onus of reconstructing a
usable solution trajectory lies on the search. A high-level
tree search is proposed in Algo 3, where neighbor expan-
sions are obtained by accumulating all the edges in G that
start within a parameterized θ-neighborhood of a tree node.
RETRACEPATH maintains a search queue Q. The minimal
guarantee required from the SELECT operation is to ensure
every feasible node that can lead to the optimal solution
in Q is given an opportunity for expansion. The expansion
set is computed from all the nodes in G that lie in the
θ-neighborhood of the selected node. These controls and
durations are propagated from the current node to obtain
Vnext, which is added to the queue. The loop updates the
solution when the goal region is reached in Lines 5-7, and
exits when the queue is empty. A retraced solution is shown
in Fig 4(right). Some implementation choices for Algo 3,
relevant to practical performance, are outlined in Sec V.
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Fig. 4. An illustration of the underlying idea of the proposed method.
The figure on the left shows a bundle of disconnected collision-free edges
(random state, random control, random duration) . The figure on the right
shows a motion planning problem from the start to a goal region (gray).
Controls and durations from the bundle edges starting within the dotted θ
neighborhoods can be reused to create the sequence of black edges that
reaches the goal region.

IV. ANALYSIS

The current set of arguments reason over the invocation
of Algo 1 for an input n, and then calling Algo 3 to
retrace a solution. The idea is that the set of n edges
sampled using SAMPLEEDGE needs to sufficiently recover
the connectivity of different regions in the free space. These
edges are kinodynamic controls, and are not connected to
other specific samples. The RETRACEPATH subroutine uses
θ-neighborhoods to propagate sampled valid controls from
nearby parts of the state space. It needs to be proven that
retracing along such sampled edges can connect the start to
the goal region, while converging to the optimal cost as the
number of sampled edges increases.

The proof first lays out the theoretical tools required,
primarily those set up in previous work [12], [14], [15]. The
rest of the section will go into the details.

Lemma 1 (Near-optimal construction): Given π∗ there
exists a finite sequence of bounded regions Q0,Q1, · · · QM
along the trajectory where π∗(0) ∈ Q0, π

∗(1) ∈ QM , and M
is a constant independent of n, such that a feasible motion
planning solution π crossing these regions in sequence has
a bounded error in cost from c∗, i.e., cost(π) ≤ (1 + ε)c∗.
Such a construction exists from every value of ε ∈ (0, ε0]
for some positive value of ε0.

Proof: This follows from arguments made in [12]
Sec 5.1. The near-optimality arises from the smooth cost
function. For each of the M − 1 segments connecting
consecutive regions, the robust optimal trajectory executes
a constant control function. If π has a constant control along
the same pair of regions (of maximum radius δ), then cost
smoothness dictates the trajectories differ at most by Kcδ.
This error can accumulate over all M−1 segments, leading to
cost(π) = c∗+(M−1)Kcδ. There exists some small enough
value of δ such that it must be that (M − 1)Kcδ ≤ εc∗. The
result immediately follows. The following arguments show
that such a finite sequence of regions can be connected by
constant-control trajectories for any arbitrarily small value of
δ. This would allow the cost of the solution to be arbitrarily
close to the optimal cost.

Lemma 2 (Probability of Connecting Regions): The
probability of connecting across the regions Qi=1···M can
be expressed in terms of the event of sampling a state
within one of the regions Qi, and sampling a transition
between consecutive regions, i.e., an edge ei(u, v) such

that u ∈ Qi, v ∈ Qi+1. Let the probabilities be Priselect
and Priextend respectively. If Priselect > 0, P riextend >
0, P riselect ⊥⊥ n, Priextend ⊥⊥ n ∀i, i.e., both probabilities
are strictly positive, and independent of n, then the event
attached to sampling a sequence of the edges connecting
across the regions happens asymptotically almost surely.

Proof: The arguments follow those laid out in previous
work [16] Theorem 11.3. Construct an absorbing Markov
chain corresponding to the events of finding a sequence of
samples and controls that connect up to the i’th region Qi,
where the absorbing state is the final region attached to
the goal QM . With probability pi = Priselect × Priextend
describing the transition probability between the nodes i and
i+ 1 in the chain. As long as pi > 0, pi ⊥⊥ n, ∀i the process
is asymptotically assured to reach the absorbing state as the
number of trials (samples and edges in this case) n increases.
Note that the independence of these geometric probability
measures from n is dictated by [16] Theorem 11.3.

It should be noted that the arguments in Lemma 2 work out
because the construction (number and volume of regions in
the construction) is independent of n. This principle has been
heavily used in similar arguments in previous work [14],
[15], [17], [18]. This is a departure from the evolving
constructions derived from Random Geometric Graph liter-
ature [7], [8], where the number of regions increases, and
radius of hyperball regions reduce asymptotically with n.

Lemma 3 (Sampling Edges to Connect Regions):
Given two consecutive regions along a constant control
(Y(t) = u) segment along π∗, represented by Bκδ(xi), and
Bκδ(xi+1), ∀κ ∈ (0, 1), starting at a state x′i ∈ Bκδ(xi), the
probability of sampling a random control u′ and random
duration T ′ that ends up at some x′i+1 ∈ Bκδ(xi+1) is
positive, and independent of n.

Proof: The construction of the edge is shown in
red in Fig 5 (top). The proof is a slight restatement of
arguments made in [15] Lemma 3, and follows due to the
Lipschitz bounds. Essentially, there exists a positive volume
of constant controls, and a positive range of durations,
selecting any combination of which almost surely connects
between Bκδ(xi), and Bκδ(xi+1), for any κ ∈ (0, 1). These
edges are generated almost surely via Algo 2.

Lemma 3 demonstrates that an edge bundle comprising of
randomly sampled edges will almost surely discover an edge
starting from the interior of the ith κδ ball, and reach the i+
1th ball in the construction, as n increases, for all i. One such
edge from the bundle might look like the red edge from Fig 5
(top). This only shows that consecutive regions have an edge
connecting them, while a motion planning solution requires
retracing through exact states. Algo 3 describes a forward
search tree that can use the bundle for forward propagating
each tree node using controls and durations from bundle-
edges arising within a θ-neighborhood. Such a tree node
xtreei arriving inside the ith region is shown in Fig 5.

It is shown that propagating the control and duration of
the red edge from xtreei is guaranteed to reach the i+ 1th

ball, and that the red edge is almost surely sampled in the
bundle within θ-neighborhoods of xtreei .
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Fig. 5. The top image shows a sampled edge in red connecting consecutive
δ regions tiling the robust optimal trajectory shown in blue. The tree shown
in black enters the i’th region. The bottom image shows the search tree that
can propagate the red edge to connect to the next region.

Lemma 4 (Existence of θ neighborhoods): Given a
state xtreei from a search tree expansion reaching Bδ(xi),
there is a region Bθ(xtreei ) for some θ > 0 such that
asymptotically almost surely there would exist some
constant controls and durations starting from Bθ(xtreei ),
that connected to Bδ(xi+1), which when propagated from
Bθ(xtreei ) will also reach Bδ(xi+1).

Proof: We focus on the ith constant control segment of
the robust optimal trajectory π∗, defined by two states on the
trajectory xi, and xi+1. Two collision free open balls Bδ(xi),
and Bδ(xi+1) are centered at the ends of the segment, both of
which lie in Qfree. We are interested in tracing through these
regions along the search tree constructed in Algo 3. Consider
a tree node xtreei that reached the interior of Bδ(xi).

∃κ ∈ (0, 1), xtreei ∈ Bκδ(xi) (6)

According to Lemma 3, from any state inside Bκδ(xi),
some control u′ and time duration T ′ can be sampled that
reaches a state x′i+1 ∈ Bκδ(xi+1). This means that the edge
bundle is assured to possess such edges as n increases.

Now, given the state xtreei , and a region defined by some
positive θ > 0, we need to show that an edge can be
sampled in the edge bundle characterized by a state x′i, a
control u′, and a duration T ′, such that a) x′i ∈ Bθ(xtreei ),
and b) when u′, T ′ is propagated from xtreei , an end state
xtreei+1 ∈ Bδ(xi+1) is reached. We only choose θ-near edges
for propagation, so

x′i ∈ Bθ(xtreei ), ‖xtreei − x′i‖ < θ (7)

The sampled edge in the bundle x′i, u
′, T ′ ends at x′i+1 ∈

Bκδ(xi+1). When propagating this edge from xtreei , the end
state xtreei+1 will be different from x′i+1. We need to show
that there exists some θ, within which propagating edges
connecting to the next κδ ball keeps xtreei+1 ∈ Bδ(xi+1).
From the smoothness of the system, we can characterize the
maximum deviation of the end state. From [14](Lemma 2),
we get for a constant control segment of duration T ′ between
time parameters ti and ti + T ′

‖π(ti + T ′)− π′(ti + T ′)‖ ≤ eKxT
′
‖π(ti)− π′(ti)‖ (8)

Given a trajectory generated from a control u′ and time
duration T ′ sampled from some x′i ∈ Bθ(xtreei ), if we use
the same control function from xtreei , using Eq. 7 and 8:

‖xtreei+1 − x′i+1‖ ≤ eKxT
′
‖xtreei − x′i‖ ≤ eKxT

′
θ (9)

By construction the intersecting volume between the θ-
neighborhood and κδ-ball is a positive constant, i.e.,

µ(Bκδ(xi) ∩ Bθ(xtreei )) > 0 (10)

This means edges can be sampled in the bundle that start
inside this positive volume region. Consider specifically x′i ∈
Bκδ(xi) ∩ Bθ(xtreei ), then if

0 < θ <
(1− κ)δ

eKxT ′ (11)

=⇒ ‖xtreei+1 − x′i+1‖ < (1− κ)δ (12)
=⇒ xtreei+1 ∈ Bδ(xi+1) (13)

The first implication follows from Eq 9, and the second result
follows from Eq 6. This means, for the choice of θ, there is a
positive volume of the state space where x′i can be sampled,
and a positive volume of controls and durations to sample
u′, T ′, such that when propagated from some xtreei , allow the
search tree to reach Bδ(xi+1). The arguments hold true for
any tree node that reaches the interior of Bδ(xi), and applies
to all i. It is important that all the volumes are independent
of n, and arise from the smoothness of the system. It should
also be noted that the theoretical bounds obtained here for the
neighborhoods are only useful to the extent of showing that
these volumes exist, and are positive constants independent
of n. In practice, any positive θ > 0 works.

We now have all the tools for our final arguments.
Theorem 1 (Asymptotic Optimality): Consider the op-

timal robust motion planning solution π∗ with a correspond-
ing cost c∗. The solutions discovered by the algorithm πn
from an edge bundle of size n is shown to asymptotically
converge to the optimal cost with an arbitrarily small error.

lim
n→∞

Pr({cost(πn) < (1 + ε)c∗}) = 1, ∀ε > 0 (14)

Proof: We reuse the observations from previous
work [12], which were further refined [15]. In order to use
Lemma 2, pi = Priselect×Priextend needs to be shown to be
positive and independent of n. Lemma 4 shows that Algo 3
will connect between the regions as long as a desired x′i has
been sampled, along with the corresponding controls and
durations. By Eq.10, the probability of randomly sampling a
desired sample x′i is positive (i.e., Priselect > 0). Lemma 3
holds for some range of values of controls and time durations
from such a state and the probability of sampling them using
Algo 2 is also positive (i.e., Priextend). This holds for all
regions, and small δ. Constructing the chain of events from
Lemma 2 over the construction, πn is guaranteed to trace
the sequence of regions asymptotically. From Lemma 1 for
a small enough δ, we can conclude that limn→∞ cost(πn) ≤
(1 + ε)cost(π∗), proving Theorem 1.

V. EVALUATION

This section evaluates the proposed algorithm on simulated
benchmarks, and outlines specific implementation choices for
the forward search tree (Algo 3). The primary intent here is
to highlight that kinodynamic motion planning solutions can
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Fig. 6. Benchmarks (1-4) The compared methods noted in along the X axis of the plots include different versions of our algorithm using edge bundles
of size n, SST with the associated pruning parameter, and RRT. Top row: A second order car with an obstacle blocking the center of the space. Second
row: A second order car with a narrow passage in the center of the space that has to be traversed. Third row: A second order car with randomly positioned
circular obstacles. Bottom row: A quadrotor benchmark with randomly positioned cylindrical obstacles. Columns: Left: Scenes and visualization of a
solution for each benchmark. Second: Success rates over 50 runs. Third: Time taken to find the initial solution. Right: The final solution cost after 30s.

be recovered from edge bundles, and increasing the size of
the bundle improves success and solution quality.

Implementation Choices: Algo 3 performs a search over
the bundle of edges in a forward tree search, where the
branching factor is determined by the number of edges aris-
ing within θ-neighborhoods. Performing this naively quickly
leads to an explosion in the size of the search queue. Choices
are made for the selection, and node addition strategies. For
selection, an A∗-like prioritization of f-values is used. When
a child node improves the heuristic estimate, it would be
immediately selected, to greedily make progress [18], [19].
Also, an analog to goal biasing selects the nearest unexplored
node from the goal for a fraction of iterations [12]. In typical
runs the queue will keep growing. It is important to keep
the size of the queue small at any time. A way to do this
is employ a cost-to-go based pruning strategy similar to
SST [12]. A key difference is that instead of eliminating
expansions, they are deferred till the current queue becomes
empty, at which point they are added back to the queue.

Comparison Points: Our approach is tested with values
of n=10k up to 400k, for a constant θ in each benchmark.
As a comparison SST is used with three pruning radii that
are 0.5×, 1×, 2× the pruning used in our method. The SST
selection radius is set to 1.5× of the pruning value. We also
test RRT, which terminates with the first solution.

Benchmarks: In the benchmarks obstacles are generated
in the translational component of the state space. Valid start
states, and goal regions are also sampled. Three state spaces
are created for the second order car (5-dimensional, θ = 0.5).
In Benchmark 1 a geometric square obstacle is placed in the
state space. In Benchmark 2 a narrow passage separates two
halves of the state space. Valid start and goals are sampled at
random on opposite sides. In Benchmark 3 circular obstacles
are sampled at random. Benchmark 4 is modeled with a
quadrotor state space (12-dimensional, θ = 2). It has sampled
cylindrical state space obstacles. Illustrative examples of the
translational projection of the state spaces are shown in

TABLE I
EDGE BUNDLE CONSTRUCTION TIME(S)

Benchmark 10k 20k 50k 100k 200k 300k 400k
1 3.36 7.17 18.18 35.89 — — —
2 3.20 6.56 16.18 32.30 — — —
3 2.94 6.43 16.22 32.28 — — —
4 — — — 23.66 47.57 71.46 95.29

Fig 6(left), along with a candidate solution trajectory.
The results (Fig 6) show the success rates, initial solution

times, and final solution costs after 30s. As the number of
edges in the bundle increases, for the same θ, the success
increases, and final solution cost decreases. Larger edge
bundles outperform both SST and RRT. Initial solution times
are typically faster than SST, and in some cases, even faster
than RRT. Our planner provides much better trajectories after
30s. This emphasizes the benefits of our strategy. It should
be noted that the timings do not include bundle construction
(Tables I). The results show trade-offs in the precomputation
time versus the perks of reusing the bundle edges.

VI. DISCUSSION

The current work has proposed theoretical arguments in
support of a novel paradigm for asymptotically optimal
sampling-based kinodynamic planning. The key insight is
that complex kinodynamic state spaces can be processed
before the search by covering the space with valid randomly
sampled edges. Such a bundle of edges is theoretically
sufficient to recover asymptotically optimal paths as the
number of edges increases if a forward search tree is con-
structed by generating child nodes propagated using controls
and durations arising from edges within a θ-neighborhoods.
Experiments show benefits in terms of success rates, solution
times and quality of solutions wrt. competing methods.
Future work can enhance the efficiency of the search in the
context of other methods, explore parallelization of the edge
sampling, and incorporate learning. We plan to explore this
paradigm to address real-world kinodynamic applications.
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