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Abstract: Unlike the secondary structure elements that connect in protein structures, loop
fragments in protein chains are often highly mobile even in generally stable proteins. The
structural variability of loops is often at the center of a protein’s stability, folding, and even
biological function. Loops are found to mediate important biological processes, such as
signaling, protein-ligand binding, and protein-protein interactions. Modeling conformations
of a loop under physiological conditions remains an open problem in computational biology.
This article reviews computational research in loop modeling, highlighting progress and
challenges. Important insight is obtained on potential directions for future research.

Keywords: loop modeling; conformational ensemble; equilibrium fluctuations; native state;
structural analysis of proteins; structural bioinformatics



Entropy 2012, 14 253

1. Introduction

Virtually all biological mechanisms in the living cell involve protein molecules. Proteins are central
components of cellular organization and function. The mechanistic view that shape, also referred to as
structure, governs biological function in proteins has been confirmed in wet laboratory experiments [1].
The unique set of atoms that make up a protein molecule determines to a great extent the spatial
arrangement or conformation assumed by these atoms for biological function. Experiment, theory,
and computation, however, show that proteins are not rigid molecules but employ internal motions to
populate different structures or conformations through which they tune their biological function [2–4].
Elucidating the role of motion in protein function is now at the forefront of protein research [5].

The state in which a protein carries its biological activity is also referred to as the protein native
state. Microscopically, this macrostate is an ensemble of native conformations also referred to as the
native state ensemble. Even for a protein where the native state ensemble is largely the result of local
fluctuations around an average structure, certain fragments of the protein chain are more mobile than
others. For instance, unlike secondary structure elements, such as α-helices and β-sheets (see Figure 1),
loop fragments in protein chains are often highly mobile even in generally stable proteins.

Figure 1. (a) The crystal structure of the variable surface antigen (PDB ID 1LW8) is partially
resolved, with a loop of 20 amino acids missing. The van der Waals spheres of the Cα atoms
of amino acids at both ends of the missing loop are drawn in gray. (b) Three loops surround
the active site of dihydrofolate reductase. The Met20 loop, drawn in thick black and spanning
amino acids 9 to 24, undergoes a significant conformational change in the enzyme’s four
distinct functional states. The structure drawn in transparent is the X-ray structure under
PDB ID 3DFR. (a)–(b) Secondary structure elements are visible in the protein structures
drawn here. α-helices are drawn as purple helices, and β-sheets are drawn in yellow as
thick pointed arrows. With the exception of the Met20 loop highlighted in black, other loop
fragments are drawn as coils in green or white. All protein structures here are drawn with
the Visual Molecular Dynamics Software (VMD) [6].

(a) (b)
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Loops are fragments of a protein chain that are generally void of secondary structure. In addition
to connecting secondary structure elements in protein structures, loops play an important role in protein
folding and stability. Additionally, loops often determine the functional specificity of a protein molecule.
Loops mediate important biological processes. They are found on active and binding sites to mediate
binding of antigens to immunoglobulins [7], toxins to protein receptors [8], metal ions to proteins [9],
DNA to DNA-binding proteins [10], and protein substrates to serine proteases [11]. Due to their role in
protein function, loops are also an important consideration in protein engineering [12].

Loops often lie on protein surfaces and so are exposed to solvent. This allows them more structural
variability, which is a primary reason why loops are not easy to characterize through wet-laboratory
techniques, such as NMR and X-ray crystallography. It is often the case that protein structures resolved
in the wet laboratory are incomplete. In particular, mobility introduces significant disorder in a protein
crystal. In such cases, partially-resolved protein structures are reported, with the loop missing. Figure 1a
shows the partially-resolved X-ray structure of the variable surface antigen obtained from the Protein
Data Bank (PDB) [13]. A loop of 20 amino acids is missing from the crystal structure of this protein [14].

Modeling a missing loop is important in completing a protein’s native structure, particularly when
the loop may mediate the biological activity of the protein. Guessing coordinates for a loop fragment
is not an easy task. Because loops are often on the surface of protein structures, they are susceptible to
insertions and deletions of amino acids. This sequence variability limits the application of comparative
modeling techniques in extracting the conformation for a loop at hand from a template structure.

In many cases, proposing a single loop conformation may not address the mobility of the loop under
native conditions. In light of the high structural variability of loops in proteins, one or a few loop
conformations may not adequately capture the structural diversity in the ensemble of conformations
assumed by a mobile missing loop. Figure 1b shows the native structure of dihydrofolate reductase,
an enzyme that employs distinct backbone conformations of the M20 loop to regulate its substrate
binding [15].

The above examples illustrate that understanding protein function may depend on modeling the
equilibrium mobility or flexibility of a loop fragment. Modeling the equilibrium flexibility of a loop
can be addressed in different ways. A qualitative description of flexibility can be obtained without
explicitly computing conformations populated at equilibrium. For instance, given a loop conformation
in a complete native protein structure, rigidity-based analysis of the network of bonds in the protein
structure can be conducted to locate flexible and rigid regions [16–18]. Even though this information
does not readily yield equilibrium conformations, elucidating which regions of a loop are more flexible
than others can improve understanding of the functional role of the loop. It is worth pointing out that
rigidity-based analysis can be employed to offer alternative conformations, but there are currently no
direct applications on loops. Instead of focusing on a qualitative description of flexibility, this review
concerns itself with methods that explicitly show the motions available at equilibrium by computing
conformations for the given loop.

Finding a physically-relevant conformation for a (missing or not) loop in a given protein structure is
known as the loop modeling problem. Due to the role of loops in protein function, loop modeling is an
important problem in computational biology. Because the problem has been studied in various forms
by different communities, it has alternative names, such as loop/fragment completion, gap completion,
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loop closure, and fragment fitting. Loop modeling is important to address not only in automated
crystallographic protein structure determination, but also in comparative modeling and ab-initio structure
prediction, where incomplete protein structures with missing loops are often obtained from protein
structure prediction protocols [19,20]. In fact, loop modeling is often regarded as a somewhat easier
version of the ab-initio structure prediction problem for two main reasons. First, loops are shorter than
protein chains. Second, the presence of the protein structure at either end of the loop poses constraints
that can be exploited to obtain conformations for a loop more efficiently than conformations for an entire
protein chain.

Loop modeling involves fitting a generated loop conformation with a given protein structure so the
loop connects with the rest of the protein structure and completes it. When the loop is missing, the only
pieces of information about the loop and the protein at hand are the loop’s amino-acid sequence and
coordinates for the atoms in the rest of the protein structure. Figure 2 shows a loop conformation that
fits and so connects with the rest of the protein structure. The amino acids that precede and follow the
loop are referred to as stems. The given protein structure provides coordinates for the stem amino acids.
Figure 2a shows the protein structure at either end of the loop and draws the planes defined by the three
main-chain atoms of the stems.

In loop modeling, the loop is often defined as the fragment of the protein chain that includes the stem
amino acids (shown in Figure 2b). It is important to note that two sets of coordinates are available for
these amino acids. One set is available from the given protein structure. The other is obtained from
a generated loop conformation. Fitting a generated loop conformation with a given protein structure
involves modifying the conformation so that the coordinates of the stem amino acids in this conformation
superimpose with those of the stem amino acids in the given protein structure. The distinction between
the stem amino acids in the loop versus those in the given protein structure is made clearer by borrowing
robotics terminology. In robotics-inspired approaches to loop modeling that exploit analogies between
protein chains and articulated robotic mechanisms, the stems in the protein structure are referred to as
stationary anchors, whereas the stems in the loop are referred to as mobile anchors.

Borrowing further terminology used in robotics, the mobile anchors are constrained to assume the
poses (position and orientation) of their corresponding stationary anchors. Figure 2b shows that the
loop conformation goes through the planes defined by the main-chain atoms of the stationary anchors
in the given protein structure. Since the stationary anchors provide geometric constraints for the mobile
anchors, loop modeling can be viewed as a constraint satisfaction problem. In a treatment of loop
modeling where a loop conformation is first generated and then modified to fit with the rest of the
protein structure, the geometric constraints need to be satisfied only on one of the loop’s two mobile
anchors. Rigid-body transformations can be employed to translate and rotate a selected mobile anchor
with its stationary counterpart. Modifying the resulting loop conformation in order to place the remaining
mobile anchor in the target pose provided by its corresponding stationary anchor is non-trivial, and many
methods have been proposed to address this problem.
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Figure 2. (a) The X-ray structure of chymotrypsin inhibitor 2 (CI2), PDB ID 1COA, is
drawn in transparent with a loop of 12 amino acids (amino acids 53-64) removed. The planes
defined by the three main-chain atoms of the stationary anchors (amino acids 52 and 65) are
drawn in opaque. (b) The complete structure is now drawn, with the loop conformation
present. The loop, drawn in black, connects with the rest of the CI2 structure. The loop’s
mobile anchors overlap with the stationary anchors.

(a) (b)

The loop conformation where the geometric (also referred to as kinematic) constraints are satisfied are
also referred to as closed conformations, as opposed to open loop conformations where the constraints
are not satisfied. The conformational space that contains closed loop conformations is also referred
to as the closure space of the loop. It is important to note that this space is a superset of the set of
physically-relevant loop conformations. Considerations of energetic interactions between the loop’s
atoms and between the loop and the rest of the protein structure allow discriminating against energetically
unfavorable loop conformations in the closure space. In fact, an understanding and treatment of proteins
that goes beyond geometry and includes physics-based interactions is crucial to successfully address
loop modeling. Section 2 elaborates the role of energy in protein modeling.

The review in this article summarizes loop modeling methods often contributed from diverse
communities of researchers, such as computational biologists, chemists, computer scientists, and
roboticists. The review tracks the great progress that has been made by loop modeling methods, while
highlighting remaining challenges. Particular attention is paid to methods that are able to compute not
just one conformation to model a given loop but can reveal more about the mobility of the loop by
elucidating its conformational ensemble under native conditions. This ensemble view is more suitable to
shed light on the potential biological role of a loop, as the gamut of conformations available to the loop
under native conditions may elucidate the ability of the loop to take part in diverse molecular interactions.

The article is organized as follows. Section 2 provides a brief introduction into protein geometry
and modeling. Sections 3–5 then describe loop modeling methods, categorizing them according to
representative approaches. Section 6 describes in greater detail selected methods that are representative
of successful approaches. The article concludes in Section 7 with a summary of current progress,
remaining challenges, and potential directions for future research.
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2. Short Primer on Protein Modeling

Blocks of atoms known as amino acids connect in a series-like fashion to form a protein chain.
Each amino acid contains an alpha carbon (Cα) atom connected to a hydrogen atom, an amino
group, a carboxylic group, and a group of atoms known as a side chain. Side-chain atoms and the
connectivity among them confer to amino acids unique physico-chemical properties and result in 20

naturally-occurring amino acids. The amino nitrogen of one amino acid connects through a peptide
bond with the carboxylic carbon of another amino acid to form a dipeptide. Consecutive peptide bonds
link amino acids in a protein or polypeptide chain, as shown in Figure 3a. Amino acids are numbered
from the N- to the C-terminus, which refer to the amino and carboxyl groups not involved in peptide
bonds. The backbone is what remains of the polypeptide chain after stripping off all side chains.

Figure 3. (a) A chain of four amino acids is shown. The N, Cα, C, and O backbone atoms are
labeled for each amino acid. Main-chain atoms refer to all backbone atoms but the oxygen
atoms. A peptide bond between the backbone N and C atoms links two amino acids together.
The termini atoms in this short chain are the N and C backbone atoms not involved in peptide
bonds. There are two backbone (φ, ψ) angles per amino acid, as labeled here. Atoms in white
are labeled S for side chain. There are 20 distinct side chains in naturally-occurring proteins.
Side-chains dangle off the backbone. (b) There are at most four side-chain dihedral angles
per amino acid in a protein chain, as shown here in detail for the long arginine amino acid.

(a) (b)

The spatial arrangement of atoms in a protein chain is referred to as a conformation. There are
different representations of a protein chain, which result in different degrees of detail in computed
conformations. A conformation C of a protein chain comprised of N atoms may be represented as a
vector 〈A1x, A1y, A1z,. . . , ANx, ANy, ANz〉, where Aix, Aiy, Aiz are coordinates of atom Ai. The atom
coordinates maintained to represent C are often referred to as degrees of freedom (dofs).
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The Cartesian representation of a protein chain is often viewed as redundant. An internal
representation reduces the number of dofs by recording only bond lengths, bond angles (the angle
between two consecutive bonds), and dihedral angles (the angle that can be defined on the second bond
of a series of three consecutive bonds). The internal representation allows recovering atomic coordinates
through forward kinematics: essentially, rotations about bonds are propagated down the protein chain to
update atomic positions [21–23].

Analysis of protein structures deposited in structure databases reveals that bond lengths and bond
angles are constrained to characteristic values [24]. This observation, a consequence of energetic
constraints on native conformations, is exploited to idealize the protein geometry employed in modeling
and remove bond lengths and bond angles as dofs. The resulting idealized geometry representation
contains only dihedral angles defined over three consecutive bonds as dofs, as illustrated in Figure 3b.
Idealizing protein geometry is appealing, as it reduces the total number of dofs to an average of 3N/7
dofs for a protein chain of N atoms [25]. Idealizing the protein geometry relevant for computing native
conformations excludes from consideration improbable but not impossible deviations of bond lengths
and bond angles from equilibrium characteristic values. These deviations are strongly disfavored due to
energetic constraints in native conformations.

Idealizing protein geometry reveals mechanistic analogies between protein chains and robot kinematic
chains with revolute joints. As a joint rotation changes the positions of following links, so does rotation
about a bond change the positions of following atoms [21]. These analogies have long been employed
by robotics researchers to apply algorithms that plan motions for kinematic chains with revolute dofs to
the study of protein conformations [26–37]. Unlike typical articulated mechanisms, protein chains have
a high number of dofs. A short backbone chain of 15 amino acids has 30 dofs.

It is important to note that protein chains are more than kinematic chains. The backbone dihedral
angles in conformations that the protein chain assumes to carry out a biological function, also known as
native conformations, do not populate the entire [−π, π) but are limited to specific regions in amino-acid
dependent (Ramachandran) φ, ψ maps [38]. These regions are associated with local secondary structures
in native conformations, such as α-helices, β-sheets, and coils. Additionally, a limited set of rotamer
configurations are observed for side chains in native conformations [39].

Significant efforts in protein modeling go towards finding representations that reduce the number
of dofs and yet allow capturing important physical properties. Typical representations range from
fine-grained all-atom, which model all atoms, to coarse-grained, which model only a subset of the atoms.
Coarse-grained representations range from Cα traces, where only the central Cα atom is modeled in
an amino acid, to backbone representations which model only backbone atoms. We refer the reader
to [40] for a review of current state-of-the-art representations employed by computational methods.
Choosing a representation for a protein chain is an important decision in a computational method, as
the representation affects not only the feasibility of the method, but also its accuracy. A coarse-grained
representation changes both the conformational space and the effective energy surface underlying the
conformational space.

Conformational changes in proteins are the result of favorable and unfavorable interactions among
the atoms in a conformation and with the surrounding solvent. The totality of these interactions results
in a potential energy value that can be associated with a protein conformation. Organizing the multitude
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of conformations of a protein chain by their potential energies elucidates a multi-dimensional funnel-like
energy surface [41–43]. The vertical axis of this surface records the potential energy (or the “internal
free energy”) of a conformation. The lateral axes represent the many underlying dimensions, and the
width of this multi-dimensional surface denotes the entropy a protein system [41]. Entropy essentially
measures the degree of conformational redundancy that allows a protein chain to flex while maintaining
the same potential energy. Stable conformations are a compromise between low potential energy and
high entropy, a quantity captured by the notion of free energy as in F = E − TS (F is free energy, E
is potential energy, T is temperature, and S is entropy). Due to evolutionary bias, the most stable or
native state in naturally-occurring proteins is also the one with the minimum free energy [1]. We refer
the reader to [41,43,44] for detailed reviews on proteins and free energy.

Free energy is difficult to measure in silico. Measuring entropy is the main challenge, as it requires
computing the range of values of underlying dofs corresponding to different conformations with the
same potential energy. Since introducing the effects of entropy requires extensive free energy sampling,
many methods forego entropy considerations and focus instead on probing the energy surface essentially
one potential energy at a time. Most loop modeling methods summarized in this review fall in this
category. Since the steepness of the energy surface is due to the potential energy, the goal is often to
obtain low-energy conformations and then to select from among them the one(s) reproducing the sought
protein native state.

Measuring potential energy is also non-trivial. All current energy functions, even state-of-the-art
ones, are approximations that allow probing not the true protein energy surface but an effective energy
surface [40]. For instance, all-atom energy functions that essentially sum interatomic interactions into
a potential energy value sacrifice the electronic dofs. The functional formula of physics-based energy
functions is often limited to pairwise interactions. This is another approximation necessitated by the
computational cost of summing over multi-body interactions and the difficulty in designing physically
robust multi-body energy functions. Energy functions that calculate multi-body interactions do exist and
often outperform pairwise-based functions in reproducing experimental kinetic data [45].

Coarse-grained energy functions sacrifice even more dofs and introduce more approximations. Their
role, however, is not limited to mainly offering a computationally expedient alternative to the costly
all-atom energy functions. In fact, coarse-grained energy functions (see [40] for a detailed review
on them) provide a smoother energy surface compared to all-atom energy functions. The smoothness
is due to removal of some structural frustration in proteins that results in energetic barriers between
two conformations corresponding to local minima in the energy surface. A less rugged energy surface
helps search algorithms to more feasibly locate the global minimum. Coarse-grained energy functions
additionally incorporate some configurational entropy due to the dofs that are integrated out in these
functions. Moreover, when employed to elucidate the folding mechanism of given proteins, effective
coarse-grained energy functions provide important insights into the minimal set of dofs that are most
relevant to folding [40]. Many loop modeling methods employ coarse-grained representations and
energy functions. These methods benefit from the feasibility afforded by coarse-grained representations
but incorporate potential errors inherent to coarse-grained energy functions. In fact, many loop
modeling studies show that both coarse- and fine-grained energy functions suffer from inaccuracies or
insensitivities [46–49].
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3. Inverse Kinematics Methods

Fitting a loop conformation with a given protein structure so that the mobile anchor assumes the target
pose in the corresponding stationary anchor naturally lends itself to analogies with controlling motions of
a robot arm so that the hand/gripper assumes a given pose [26]. One end of the loop, a mobile anchor that
is trivially overlapped with its corresponding stationary anchor through rigid-body transformations can
be treated as the base of a kinematic chain. The other end (the remaining mobile anchor) can be treated
as an end effector that needs to reach a target pose (that of the stationary counterpart) to connect with the
rest of the protein and so complete the protein structure. This is known as the Inverse Kinematics (IK)
problem originally formulated for robotic manipulators [21]: solve for the chain dofs so the resulting
configuration places the end effector in the target pose (the term configuration is employed in robotics
instead of conformation). In the context of loop modeling under idealized geometry, angles are sought
for the dihedral dofs so the resulting loop conformation places the mobile anchor in the pose of its
stationary counterpart. When formulated as an IK problem, loop modeling can be addressed with a rich
set of IK techniques originally developed in the robotics and computer graphics communities [50].

3.1. Exact IK Techniques

Exact or analytic IK techniques employ mathematical formulations of the given geometric constraints
and seek exact solutions to the resulting algebraic equations. For manipulators with no more than 6

dofs, the number of solutions is finite [21]. There is, however, no analytical technique able to find these
solutions for all types of manipulators. On kinematic chains with 6 revolute dofs (6R mechanisms), the
number of constraints is identical to the number of dofs. Hence, configurations can be found as discrete
solutions to polynomial equations that formulate the constraints. A tight upper bound of 16 solutions has
been established for the IK problem for 6R kinematic chains operating in a 3D workspace [51].

Since protein fragments with idealized geometry and 3 amino acids are analogous to 6R manipulators,
the solutions can be enumerated. An efficient technique able to enumerate all solutions was
proposed in [52] and later applied to short molecular chains in [26,53]. Separate from progress in
the robotics community on the IK problem, specialized solutions in biology appeared as early as
the 70s [54]. Conformations for protein fragments of up to 6 dofs were predicted by solving a
set of polynomial equations representing geometric transformations. These equations were originally
applied to build tripeptide loops under the ideal geometry assumption [54]. Later work offered efficient
analytical solutions for three consecutive amino acids through spherical geometry and polynomial
equations [53,55–57].

Later work in [58] generalizes the approach to protein fragments of an arbitrary number of amino
acids by solving for any 6 not-necessarily-consecutive dofs separated by any number of rigid segments
of the protein. Essentially, the sought configurations are found as real solutions of a 16th-degree
polynomial equation in one variable. Later work in [59] pushes the dimensionality limit from 6

to 9 dofs through an efficient subdivision of the solution space. IK techniques based on curve
approximation are proposed in [60] for the inverse kinematics of hyper-redundant chains with a very
large number of regularly-distributed joints. Other exact IK techniques that deal with molecular chains
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include [53,54,57–59]. Bounding inverse kinematics solutions for chains with no more than 6 dofs within
small intervals is applied in the context of drug design in [23,61].

3.2. Optimization-Based IK Techniques

Optimization-based or numerical techniques can address the IK problem for kinematic chains with
an arbitrary number of dofs. Techniques like random tweak [62,63] and cyclic coordinate descent
(CCD) [64] are representative of optimization-based IK techniques that iteratively solve a system of
equations until the kinematic constraints are satisfied.

Random tweak defines the kinematic constraints of interest somewhat differently, choosing to focus
on satisfying distance constraints between atoms of the mobile anchors in the loop rather than between
atoms of mobile anchor in the loop and its corresponding stationary anchor in the given protein structure.
A Jacobian matrix is employed to maintain the first derivatives of these distances with respect to the
dihedral angles. Minimization of these distances relies on inversion of the Jacobian, but Lagrange
multipliers are used to minimize changes in the dihedral angles [63]. Essentially, starting from a random
loop conformation, all dihedral angles are modified at once. This modification is repeated for a number
of iterations, until the distance constraints are satisfied or deemed infeasible. Random tweak remains
popular and has been incorporated in many loop modeling packages, such as Biopolymer by Tripos, Inc.
St. Louis, MO, USA, Drawbridge [65] and Loopy [48].

Because random tweak relies on the inversion of the Jacobian, its computations are demanding and
even numerically unstable, as the matrix may lose rank. In addition to suffering from singularities,
random tweak does not allow placing additional constraints on individual amino acids of the loop,
because modifications to dihedral angles are introduced all at once, with a strong dependence of
each proposed dihedral change on all the others. Additional constraints on the dihedrals may result
in unpredictable motions of the atoms away from rather than toward their target positions.

Unlike random tweak, CCD does not compute an inverse or pseudoinverse of a Jacobian matrix, but
solves instead a 1-dof IK problem. Given a loop conformation, the dihedral angles are modified one at a
time to minimize the distance of the end effector/mobile anchor in the ensuing conformation to the target
pose. The process is illustrated in Figure 4a, where a selected atom in a current position M needs to
reach a target position F . The optimal rotation of the dihedral bond between the Cα and C atoms, shown
by α, is the one that positions the atom on the projection of the target position F on the circle defined by
the Cα-C rotation axis. Figure 4b shows the ensuing conformations as CCD iterates over the rotatable
bonds of a short chain of 7 bonds and rotates them by the optimal angles needed for the selected end
atom to reach its target pose. In applications of CCD to loop modeling, α is the solution to the equation
that minimizes the distance between the current positions of the main-chain atoms in the mobile anchor
and the target positions of these atoms in the stationary anchor.

By avoiding the use of a Jacobian, CCD is computationally inexpensive, numerically stable, and free
of singularities. The technique avoids the inter-dependence of dihedrals by adjusting one at a time. CCD
was first introduced in the context of non-linear programming and was originally applied to robotics [64].
Its linear time complexity on the number of dofs make it very appealing for computational biology
applications that need to model and close loops of arbitrary length [66–69]. Unlike random tweak,
CCD-obtained solutions can be modified to incorporate additional constraints with a predictable motion
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of atoms toward target positions. This is exploited in [66] to steer CCD-obtained angle values towards
the closest occupied region in the Ramachandran map. CCD has been incorporated into the Rosetta
ab-initio structure prediction package to model loops in computed structures [20].

Figure 4. (a) In this simple illustration of how CCD can be employed, the atom at the end of
the chain in the current position M needs to reach its target position F . The dihedral bond
between the Cα and C atoms shown can be modified by the angle α in order to place the
atom as close to F as possible. The angle α minimizes the distance between the position
of the atom in the ensuing conformation of the chain and F , as it places the atom on the
projection of F on the circle around the Cα-C rotation axis. (b) The initial conformation of
a chain of 7 bonds is shown in blue. In this illustration, CCD modifies each of the dihedral
angles of the rotatable bonds one at a time so the end atom approaches the target position.
The conformations in red, orange, and pink are the intermediate conformations resulting
during the modification of the dihedral angles. The target position is reached in the pink
conformation.

(a) (b)

3.3. Remaining Challenges Related to IK Techniques

IK techniques can be incorporated in a search algorithm to compute different loop conformations
that satisfy the given constraints. For instance, CCD has been employed to map sampled open loop
conformations to closed conformations to explore the closure space of the loop [70]. Work in [70,71]
shows that incorporating CCD in a probabilistic search algorithm allows obtaining an ensemble of closed
conformations for loops of different lengths and modeling equilibrium loop flexibility [70,71].

An important consideration when employing IK techniques in search-based methods to sample the
closure space of a loop is the coverage of this space. Analysis in [71] has shown that IK techniques, such
as CCD, can recover all known exact solutions of 6R kinematic chains when employed to map random
open conformations to closed conformations where the constraints are satisfied. A full understanding
of the ability of optimization-based IK techniques to cover constrained conformational spaces remains
elusive. Some efforts are made in [71] to understand the nature of the constrained conformational space
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into which CCD maps random open conformations that lie in a narrow neighborhood. The analysis shows
that CCD maps neighbor conformations into distant regions in the constrained conformational space,
potentially allowing to sample diverse geometrically-constrained loop conformations when applied to
an ensemble of randomly sampled open loop conformations. A better understanding is needed of
the potential of optimization-based IK techniques to allow obtaining a broad view of the constrained
conformational space relevant for the equilibrium flexibility of a loop.

It is also worth noting that IK techniques only address the geometric aspect of the loop modeling
problem. For instance, even if all 16 solutions are enumerated for a loop of 6 dihedral dofs, not all
solutions are feasible. Many of them may contain steric clashes between atoms of the loop itself or
between atoms of the loop and the rest of the protein structure. Even optimization-based IK techniques
suffer from this shortcoming. Moreover, in addition to potential steric clashes, the local geometry of
obtained loop conformations may not be protein-like. Obtained dihedral angles may lie outside of
preferred values in protein native structures. Statistical analysis has revealed that the backbone dihedral
angles in native structures do not populate the entire [−π, π) range but are limited to specific regions in
amino-acid dependent (Ramachandran) φ, ψ maps [38]. Current IK techniques do not readily allow to
limit sought dof values to specific ranges, such as those obtained from Ramachandran maps.

Due to their ability to model only the geometry of loop conformations in loop modeling, IK techniques
are often employed only as one of the components of a multi-stage method. Post-processing steps are
often taken to remove steric clashes and refine local geometries in loop conformations obtained from IK
techniques. These steps often employ an energy minimization protocol with a given energy function. The
purpose of the energy function is to remove unfavorable interactions (such as steric clashes) in the loop
itself and between the loop and the rest of the protein structure (see Section 2). Additional components
in the energy function may allow modeling other important effects of the environment on the loop under
consideration. The environment can be solvent, membrane, or crystal [72,73].

4. Database Methods

Database methods were some of the earliest to model loops and obtain loop conformations that satisfy
given geometric constraints [74–82]. These methods were first proposed in the context of electron
density fitting [83]. They operate on the assumption that loops in protein structures deposited in protein
structure databases provide natural examples to model unknown loops.

In essence, database methods search for loop conformations in databases of native protein structures,
such as the Protein Data Bank (PDB) [13]. Suitable loop conformations are selected by how well they
satisfy constraints on length (number of amino acids) and geometry (constraints on the mobile loop
termini). Selected loop conformations that satisfy these constraints very well are of high quality and
in naturally-occurring geometries. For instance, database methods have had great success in modeling
antibody hyper-variable loops that form very specific folds based on few key amino acids [74,81,84,85].

Database methods have the advantage of producing loop conformations very fast, as the selection
process involves few computations. However, the structural diversity of the database affects their
general ability to find constraint-satisfying conformations of a loop of a given length. From an historical
perspective, database methods have often struggled with the quality of obtained loop conformations.
For instance, early work in [77] demonstrated that loop conformations selected from structure databases
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did not overlap satisfactorily with given termini in all instances. Additionally, large-scale studies in the
late 1990s showed that database methods were severely limited by the lengths of the loops they could
model and had practical limitations of 4 amino acids [86]. Later work in [87] demonstrated that loop
conformations obtained from databases were good candidates to model loops up to 9 amino acids but
with extensive restrained energy minimizations of extracted conformations.

Significant efforts have been made since then to address the main limitations of database methods.
For instance, optimization protocols have been proposed to improve the overlap of the mobile anchor
in a loop conformation selected from the database with the stationary anchor in the loop to be
modeled [87,88]. Briefly, the energy function can be enhanced with pseudo-energy terms that penalize
poor overlap. The measurement of overlap can take into account either only Euclidean distances
among main-chain atoms of the mobile and stationary anchor or incorporate additional constraints on
orientation. A simple energy minimization protocol can then ensure that improvement of overlap is part
of the solutions that minimize the given energy function. Selection of candidate loop conformations from
a database, subsequent optimization of these conformations, and then ranking according to lowest energy
values achieved can result in physically-reasonable conformations for a loop under investigation [88].

The growing structural diversity of protein structure databases has recently allowed database methods
to model loops of up to 15 amino acids [89], but the quality of conformations obtained for loops of more
than 12 amino acids (in terms of root-mean-squred-deviation, RMSD, to the known native structure
of the loop) is lower than that obtained with ab-initio methods (the summary below shows that some
ab-initio methods can achieve impressing sub-angstrom RMSDs to the known loop native structure).
Longer loops can be addressed if the process of selecting candidate conformations from a database is
encapsulated in more powerful algorithmic frameworks. For instance, the divide-and-conquer approach
in [90] provides a template on how to do so. The method in [90] constructs conformations of a given
long loop by putting together configurations of shorter fragments. While in [90] these configurations
are analytic solutions to geometric constraints, the process illustrates how one can address limitations of
loop length in database methods. For instance, the fragment configurations can be excised from protein
structures deposited in databases, and the assembly process can be encapsulated in a search framework
that addresses both the geometric constraints of the loop and the energetic feasibility of the resulting
conformation. Indeed, this process has recently been employed in [91], but the resulting method bears
little resemblance with database methods.

The method in [91] provides a template on how databases can be employed to help a search-based
algorithm sample physically-realistic loop conformations. Methods that implement such templates fall in
the category of knowledge-based methods and can be employed to obtain not just one physically-realistic
loop conformation but an entire ensemble of loop conformations and so better capture the structural
variability of a loop. It is worth emphasizing that, while in database methods sampling is strictly limited
to the discrete space encoded in the library of structures, piecing together loop conformations with shorter
pieces obtained from these libraries allows sampling a larger space. There are currently no applications
of knowledge-based methods to sample the constrained conformational space of a loop for the purpose of
modeling the loop’s equilibrium flexibility. Most existing methods choose to focus instead on producing
one accurate loop conformation in a given native protein structure.
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5. Search-Based Methods

Many methods employ search algorithms to explore the constrained conformational space of a loop
instead of relying on databases to readily obtain loop conformations. Ab-initio methods aim to compute
closed loop conformations from physico-chemical principles. However, many of these methods make
use of information extracted from structural databases either in their modeling of protein chains or in
the employed energy function. While the boundary between ab-initio and knowledge-based methods
is getting murkier, it is common practice to reserve the knowledge-based designation for methods that
use database-extracted configurations of small fragments to assemble a physically-realistic open loop
conformation or refine a closed, distorted loop conformation.

Search-based methods can use different representations of a protein chain, different energy
functions to obtain physically-realistic conformations, and different search algorithms to obtain loop
conformations. To ensure that loop conformations fit with a given protein structure, one of two
approaches is usually followed: (i) open conformations that do not satisfy the constraints are first
sampled for the loop at hand, and then geometry- or energy-based adjustments are carried out on open
conformations to close them so they fit with the given protein structure; (ii) closed, possibly physically
unrealistic, conformations are directly obtained, followed by geometry- or energy-based adjustments to
correct local geometry and energetic interactions of the closed loop conformation with itself and the rest
of the protein structure.

5.1. Generate-and-Close Methods

Generate-and-close methods sample open loop conformations with search algorithms commonly used
in computational biology for protein conformational search. They include Molecular Dynamics (MD),
Monte Carlo (MC), or other more powerful search methods that enhance the sampling capability of
the classic MD and MC frameworks. Briefly, in MD simulations, atomic coordinates are updated to
obtain new conformations by numerically solving Newton’s equations of motions (the reader is referred
to [2,92] for detailed reviews on the topic). In contrast, MC employs a set of available moves to modify
a conformation and obtain a new one, resulting in a biased probabilistic walk in conformational space
that has often higher sampling capability than an MD trajectory (cf. to [93,94] for a detailed review on
the topic).

Generate-and-close methods rely on energy- or geometry-based treatments to close open loop
conformations. The following summary categorizes these methods according to these two subcategories.

5.1.1. Energy-Based Approaches

Energy-based approaches to closing sampled open loop conformations rely on the fact that the
distance between a sampled conformation’s mobile anchor and the corresponding stationary anchor
can be captured in a term that can be added to a physics-based energy function. The resulting
pseudo-energy function penalizes both unfavorable atomic interactions (through its original terms) and
long distances between the mobile and stationary anchor (through the newly added term). At the very
least, the energy function can be employed to identify and discard sampled loop conformations that
do not fit with the given protein structure, as done in very early work on loop modeling (described
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below). The lowest-energy conformation among those remaining can be offered as the one that closes
the loop. Additionally, optimization protocols can be pursued. Through the minimization of the
pseudo-energy function, these protocols close the computed open loop conformations and correct
unfavorable interactions of the loop with itself and the rest of the protein structure.

Some of the earliest methods in this category employ systematic search to thoroughly explore the
conformational space of short loops [86,88,95–99]. Essentially, an exhaustive combinatorial search is
conducted by systematically rotating dihedral bonds in a loop fragment with discrete angle increments.
Loop conformations that achieve lowest energies according to a designed pseudo-energy function that
evaluates each loop conformation in the context of the given protein structure are deemed closed. It is
worth noting that these methods were among the first to employ energy functions to either select closed
conformations among those sampled or modify sampled conformations to close them.

The potential combinatorial explosion of conformations enumerated in systematic search is controlled
in different ways. For instance, work in [88] focuses on short loops of up to 6 amino acids and
biases dihedral angles by their distribution in known protein structures. The method in [99] samples
from a discretized solution space by biasing the search toward more populated regions of the (φ, ψ)

Ramachandran maps. Subsequent work in [100] employs finer-grained amino acid-specific φ, ψ state
sets or angle pairs with as many as 722 states per amino acid. In contrast from methods that simplify
the search space through discretizations, the method in [96] analytically solves for a selected short
fragment in a given loop, while enumerating conformations for the remaining part of the loop. Computed
loop conformations are then optimized through energetic minimization protocols like Metropolis MC
Simulated Annealing [98] or high-temperature MD [101]. Systematic or exhaustive methods are limited
by the lengths of loops they can consider, but their performance in the early 1990s was superior to
database methods [86].

Other methods address length limitations by employing more powerful conformational search
algorithms. Over the years, the list of these algorithms has grown very diverse. Just to mention
a few, conformational search algorithms employed in energy-based approaches include importance
sampling with local minimization of randomly generated conformations [102–104], global energy
minimization by mapping a trajectory of local minima [105,106], MD simulations [101,107–109],
genetic algorithms [65,110,111], dynamic programming in a discretized space [112,113], biased
probability MC searches [12,114,115], MC combined with MD [116], MC Simulated Annealing
[117–121], multi-copy searches [122–124], extended scaled collective variable MC [125], self-consistent
mean field optimization [126], or enumeration based on graph theory [127].

The method in [46] follows a slightly different approach in sampling loop conformations and is worth
describing in some detail. Instead of modifying angle values from the N- to the C-termini of the loop,
the loop is divided into two equal fragments that duplicate the middle amino acid of the loop (referred to
as the closure amino acid). Each of the fragments is sampled independently, modifying angles starting
from the loop stem to the middle. Obtained fragment conformations where the carboxyl carbon atoms
of the end amino acids are within 0.5 Å of each other are retained for further structural and energetic
refinement. The position of this atom that is essentially duplicated in the two fragments is averaged over
the values provided by each fragment in order to obtain a connected loop conformation. An extensive
optimization protocol is then conducted on a resulting loop conformation.
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The method in [46] represents one of the most successful methods that employ an energy-based
approach. For instance, average prediction accuracies of 0.84 and 1.63 Å in backbone RMSD from
the crystal structure are reported for loops of 8 and 11 amino acids, respectively. A more powerful
sampling algorithm and a more accurate energy function with a novel hydrophobic term in the employed
SGB solvation model have further improved the performance of the method on loops longer than 10

amino acids [72]. Median backbone RMSDs of 0.62, 0.60, and 0.76 Å, are reported between native
loop conformations and lowest-RMSD conformations on loops of length 11, 12, and 13 amino acids,
respectively. Later extensions of the method in [73] improve modeling of loops in inexact environments,
such as those in incomplete native protein structures obtained from comparative modeling techniques.
In these structures, side chains surrounding the loop also move in order to accommodate a closed loop
conformation. The method in [46] and its extensions and improvements in [72,73] are available as part
of the Protein Local Optimization Program (PLOP) [46].

While most methods in loop modeling focus on potential energies, the suite of methods in [46,72,73]
are unique in their addition of a novel term to the potential energy function to approximate introducing
the effects of entropy without resorting to free energy sampling. The new term relies on clustering of
the sampled loop conformations and effectively lowers the overall energy of loop conformations that
are close (in terms of low RMSD) to other conformations. The resulting overall energy, referred to as
“colony energy”, effectively tends to promote conformations that are located in broad energy basins and
is successful in the ab-initio prediction of native loop conformations. Employment of the colony energy
has been shown to significantly improve the ability to predict the native loop conformation within 3Å of
the actual native loop structure without prior knowledge of this structure for loops up to 8 amino acids
long [48].

The employment of a term that mimics entropy in the colony energy showcases the importance of
ab-initio prediction; that is, predicting the native loop conformation(s) from among the ones generated
through energetic criteria. While most loop modeling methods illustrate their accuracy by showing that
they can generate conformations with low RMSD to the known native loop conformation, they cannot
guarantee that the low-RMSD conformations will also be among the ones with lowest energies. Phrased
otherwise, these methods cannot guarantee that conformations with low potential energy will also
have low RMSD from the known native conformation. This limitation is a consequence of employing
potential rather than free energy, as laid out in our short protein primer in Section 2. In tandem with
efforts to incorporate an approximation of entropy, other efforts in loop modeling focus on employing
more detailed/fine-grained and expensive energy functions on a few loop conformations that are of
similar low energy according to a coarse-grained energy function employed during the generation
procedure [70]. The hope is that the fine-grained energy function will allow better discriminating
against non-native loop conformations. It is worth noting that the employment of energetic criteria to
select native loop conformations is not limited to energy-based approaches. While the geometry-based
approaches summarized below focus on treating the geometry aspects of loop modeling in order to
efficiently generate closed loop conformations, energy is an important component of the loop modeling
problem in order to select native loop conformations among those generated.
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5.1.2. Geometry-Based Approaches

Geometry-based methods do not rely on an energy function and optimization to obtain closed loop
conformations. These methods can handle longer loops, achieve higher success rates in loop closure,
and do so in less time than energy-based methods. While energy-based methods like the one in [46] take
hours to days to accurately model a loop of 8 amino acids, the Loopy method in [48], which employs
random tweak to close sampled open conformations, can model loops of similar lengths in minutes
on a 1.3 MHz processor. The method in [66], which applies CCD to close open loop conformations
sampled uniformly at random, is similarly efficient. A comparative analysis on a single-dual 1.4 GHz
Xeon processor in [128], which measures the time required for the generation of 10, 000 closed loop
conformations free of steric clashes, shows that CCD requires 159.46 minutes for loops of 8 amino acids.
The time demands jump to 528.77 minutes for loops of 12 amino acids. The actual time demands of CCD
are expected to be seven times less than those reported in the comparison study in [128] (the closure of a
conformation in [66] is obtained on average seven times faster than in the CCD implementation in [128]).

Geometry-based methods also employ energy functions but do so only to improve the physical
relevance of computed closed conformations. Often, the energy function is used primarily to identify
closed loop conformations with severe steric clashes in the loop itself and between the loop and the rest of
the given protein structure. While optimization protocols may also be employed to improve the accuracy
of the obtained closed loop conformations, the focus in most geometry-based methods is on improving
time demands rather than in reproducing the native loop conformation with high fidelity. Nonetheless,
due to the ability of geometry-based methods to compute many different closed loop conformations in
a reasonable amount of time, high-quality loop conformations are often reported by these methods. For
instance, the method in [66] achieves minimum backbone RMSDs of 1.20, 2.11, and 2.50 Å for loops
of length 8, 11, and 12 amino acids, respectively.

Many geometry-based methods are contributed from robotics researchers due to the similarity of
the loop modeling problem to the problem of controlling motions of a robotic manipulator. Early
robotics-inspired approaches like the one proposed in [129] sample chain conformations ignoring the
constraints, while later address the constraints with gradient descent. Other methods subject open loop
conformations to attractive mechanical forces formulated to pull the mobile anchor to its target pose
in the stationary anchor [33]. Yet other methods incorporate IK techniques in a probabilistic sampling
framework to close open loop conformations [32,68–70,130–135]. In [130], for instance, the loop is
broken into an active part, for which open conformations are generated disregarding the constraints, and
a passive part of exactly three amino acids that is closed through exact IK methods [130]. An efficient
extension of the above method for longer chains is later provided in [131]. Sampling the active part of
the chain one dof at a time ensuring that the active part’s endpoints are always reachable by the passive
part has been pursued as a natural extension of this line of work in [132]. The resulting Random Loop
Generator (RLG) algorithm has been embedded in sampling-based path planning methods to efficiently
obtain closed conformations for long protein loops [134].

The group of methods that rely on the active and passive designation of fragments in a given loop have
a very high failure ratio as the loop grows in length [130–132]. Conformations of long loops that are free
of steric clashes are typically found in very narrow regions of the closure space. Therefore, naive methods
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that do not consider steric constraints in the process but keep sampling closed loop conformations until
they find clash-free ones have a very low success rate. The method proposed in [136] aims to address
this problem through a two stage exploration. In stage 1, closed loop conformations are obtained with a
seed sampling technique that samples broadly from the closure space. The chain of a loop is divided into
three fragments (beginning, middle, and end), as one follows the N- to C-termini of the loop. The middle
fragment is chosen to be at most half the loop’s length in terms of number of amino acids. Values for the
dihedral angles in the front and end fragments are sampled while avoiding steric clashes. Values for the
dihedral angles in the middle fragment are then obtained through the IK technique proposed in [58].

Conformations obtained in stage 1 of the method in [136] are employed as seeds and refined in stage 2
through a deformation sampling technique. The technique explores the conformational space around a
seed conformation at a finer-grained level of detail by modifying the dofs on a seed conformation without
breaking closure. Motions in the self-motion manifold are employed to move towards a local minimum
of the energy function while keeping closure (this approach was originally employed in [68,69] to obtain
a closed loop conformation that also fit with the electron density map of the protein crystal structure).
Applications on loops of length up to 25 amino acids show that the method is able to efficiently obtain
diverse closed conformations of long loops. The average reported time to obtain one closed clash-free
conformation on a 3 GHZ Intel Pentium processor with 1 GB RAM is 17.74 seconds for a loop of
25 amino acids. This is impressive compared to more than 800 seconds that would be needed by a
naive approach that keeps sampling closed conformations until it finds a clash-free one. The method is
available in the LoopTK toolkit [69].

Geometry-based methods are actually capable of modeling loops with very high accuracy due to their
extensive conformational sampling of the closure space. The method in [91] employs a knowledge-based
approach to obtain physically-realistic open loop conformations. Open loop conformations are
assembled with configurations of short fragments extracted from protein structures, a process known
as fragment-based assembly that is very popular in protein structure prediction [20]. The fragment
configurations are employed as moves in an MC framework. Open conformations obtained this way are
subjected to the IK technique proposed in [58] to close and fit them with the given protein structure. The
method is capable of recovering the known native loop conformation in loops of lengths 4 to 12 amino
acids. The lowest-RMSD conformations obtained by this method for loops of length 4 to 12 amino acids
range from 0.33 to 1.74 Å in backbone RMSD from the corresponding known native conformation,
respectively. The method is available through the FALC-Loop webserver [137].

In an impressive result in loop modeling, the method in [138] reports a sub-angstrom backbone
accuracy in reconstruction of 25 different loops of 12 amino acids in protein structures obtained with
the Rosetta structure prediction package [20]. The approach in [138], which builds over the IK
technique proposed in [58], is to obtain all kinematically accessible conformations for 6 not necessarily
consecutive dihedral angles of the loop, while simultaneously sampling the remaining dihedral angles
using polynomial resultants [139].

A further extension of the work in [140] incorporates the loop closure algorithm in [58] within an MC
framework to obtain an ensemble of low-energy loop conformations. Qualitative comparison with NMR
data show the method is promising for additionally modeling loop flexibility.
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5.2. Close-and-Relax Methods

In close-and-relax methods, closed loop conformations are obtained directly, at the expense of correct
local geometries and energetic interactions of the loop. The bond scaling with relaxation method
in [141,142] was the first to construct a closed loop conformation by directly placing both mobile anchors
of the loop on the stationary anchors (essentially copying the stationary anchors’ coordinates). The size
of a loop conformation obtained from a protein structure database is scaled in order to fit the anchors.
The conformation is later returned to ideal bond lengths through an energy minimization or a short MD
simulation. The method in [47] follows a similar approach, but the loop conformation is not obtained
from a database. Instead, after placing both mobile anchors of the loop on the stationary anchors, the rest
of the loop’s main-chain atoms are positioned with uniform spacing on the line connecting the backbone
N and C atoms of the loop’s mobile anchors.

In [47], a set of different closed loop conformations are obtained by adding to the coordinates of
all the loop’s atoms’ (excluding the stems) a number distributed uniformly at random in [−5, 5] Å. An
optimization protocol employing a specially-designed energy function is then applied to each closed
conformation to improve local geometry and energetically refine each conformation. The protocol
consists of a short conjugate gradient minimization, followed by a short MD simulation with simulated
annealing, and concluded with another short conjugate gradient minimization. The method in [47]
can obtain conformations that reproduce the native loop conformation with high fidelity in terms of
main-chain RMSD; 90% of loops of 8 amino acids are predicted within 2.0 Å of the native structure.
Some of the best cases for loops of 4 and 12 amino acids reach the native structure within 0.30 and 1.5 Å,
respectively. The method is available as the ModLoop web server [47].

Recent work in [143] employs structural information extracted from protein structure databases in
order to improve the quality of closed conformations. The terminal atoms of the loop are placed in their
target positions. Instead of placing the atoms of the loop in a straight line, the self-organizing method
in [143] places the remaining atoms of the loop in random positions in the vicinity of the terminal atoms.
An iterative procedure then refines the positions of these remaining atoms with information derived from
ideal structural templates obtained for the fragments from a precomputed library. The resulting method
reproduces native structures of loops of 4, 8, and 12 amino acids with backbone RMSDs no higher
than 0.36, 1.5, and 2.7 Å, respectively. Extensive analysis in [143] shows that the method is both more
accurate and more efficient than CCD.

5.3. Accuracy and Time Demands

The above summary highlights that loop modeling methods are quite diverse and are characterized
by different results in terms of accuracy and time demands. For instance, while database methods are
fast and can obtain physically-relevant loop conformations, they are often limited to applications on
short loops. More powerful methods are often needed to handle longer loops. These methods either
implement search algorithms over a core process that still makes use of a structure database, like
the divide-and-conquer method in [90], or attempt to reconstruct closed loop conformations from first
principles, ab initio. Due to their reliance on an energy function and an optimization protocol to search
the loop closure space, ab-initio energy-based methods are less efficient and have practical limitations of
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loop length and success rates. In contrast, geometry-based methods that address primarily the geometric
constraints posed by the closure of the loop can compute closed loop conformations more efficiently.
These methods still have to rely on an energy function and an optimization protocol to incorporate
energetic considerations and improve the relevance of computed loop conformations.

Whether relying on the generate-and-close or the close-and-relax paradigm, steering the loop’s ends,
its middle amino acid, or designating active and passive fragments in the loop chain, current search-based
methods are able to model loops as long as 12 amino acids within at most 3 Å of the known loop
native structure. Impressive cases exist when these methods report closed conformations that reproduce
the known native loop structure with less than 1 Å backbone RMSD for loops of 12 amino acids and
more [73,138]. Indicatively, as far as running times are concerned, comparative studies in a dual-core
2 GHZ Intel processor with 1.96 GB 667 MHz DRAM report that search-based methods that employ
CCD to close open loop conformations are quite efficient, obtaining a closed conformation of a loop of
12 amino acids in about 0.45 seconds. The self-organizing method in [143] reports further savings over
employing CCD, but does not improve time demands over the IK-based method in [58]. Work in [136]
shows that the consideration of steric constraints increases these time demands to 17.74 seconds to obtain
a closed conformation that is also free of steric clashes for a loop of 25 amino acids.

6. Highlights of Selected Representative Methods

Four methods are chosen to highlight current progress in loop modeling in greater detail. The first
method is based on evolutionary search and is selected here due to its unique approach and employment
of energy functions for improving accuracy in loop modeling. The second method represents the state of
the art in close-and-relax methods. The third and fourth methods are representative of geometry-based
generate-and-relax methods that incorporate IK techniques in probabilistic sampling frameworks. The
fourth one, in particular, has been applied to model equilibrium loop flexibility.

6.1. Pareto Optimal Sampling Method

The method in [144] addresses the fact that energy functions for loop modeling, whether coarse-
or fine-grained, suffer from inaccuracies or insensitivities, as demonstrated by many loop modeling
studies [46–49]. A Pareto Optimal Sampling (POS) method is proposed in [144] to address this issue
and improve accuracy in loop modeling. The essential idea is to sample an ensemble of diverse loop
conformations that belong to the Pareto optimal solution set. This set contains conformations u that are
not dominated by others; that is, no other conformation v has lower energy than a conformation u in the
set according to many different energy functions. Three different popular energy functions, Rosetta [20],
DFIRE [145], and Triplet [146] are selected for this purpose.

A novel population-based sampling algorithm is proposed to cover the Pareto optimal front with
diverse conformations. The algorithm is inspired from evolutionary search and evolves populations
of conformations toward the Pareto optimal front. Only the top-ranked conformations of a population
(according to a designed fitness function) are allowed to “breed” and reproduce conformations for a new
population. The first population consists of N random open loop conformations (the backbone dihedral
angles are the only dofs). Conformations of a new population are obtained through differential evolution
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(DE) crossover [147]. The Metropolis criterion determines whether a newly-generated conformation is
accepted or not in the population.

The fitness function is based on the strength of each non-dominated conformation C, which is defined
as the proportion of conformations in the population that are dominated by C. Specific schemes are
designed to maintain diversity while seeking high fitness scores. The DE mechanism, illustrated in
Figure 5a, combines fragments of conformations selected at random over a population to obtain a new
loop conformation. CCD is employed to restore closure for the new loop conformation. Given that
conformations are modeled at a backbone level of detail, selected conformations are later refined in
atomistic detail (details in [144]).

Figure 5. Top: Schematic illustration of the process employed in POS to generate closed
loop conformations in a population. Fragments of conformations selected at random from
a population are combined to obtain a new open loop conformations. CCD is employed to
close the new loop conformation. Reprinted with permission from [144]. Copyright 2011
American Chemical Society. Bottom: Predicted loop conformations in red are superimposed
over the native loop structures in blue. The rest of the protein structures are drawn in white.
The shown protein structures are for the goose lysozome protein in (a), PDB ID 153l, and
the bovine pancreatic trypsin inhibitor in (b), PDB ID 5 pti. The selected loops span amino
acids 36–47 in (a) and 98–109 in (b). The RMSD between the predicted and computed loop
conformations are 0.43 and 0.40 in (a) and (b), respectively. Contributed by Yaohang Li.
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Figure 5. Cont.

(a) (b)

Application of POS on the Jacobson decoy set [46] reveals interesting results. On short loops of
4–6 amino acids, around 97% of the POS top-ranked conformations approach the native structure of
the loop within 1 Å backbone RMSD. On medium loops of 7–9 amino acids, around 84% of POS
top-ranked conformations lie within 1 Å of the native structure. This result changes to 72.2% for long
loops of 10–12 amino acids. Figure 5a,b show cases two of the best results obtained by POS for loops
of 12 amino acids, where the backbone RMSDs from the known native structures of the loops are below
0.5 Å.

6.2. Self-Organizing Method

The self-organizing method proposed in [143] is one of the most recent close-and-relax approaches
to loop modeling. The method aims to simultaneously address the satisfaction of geometric, steric,
planarity, and chirality constraints. The closure constraint is trivially satisfied by placing the loop’s
mobile anchors over the stationary anchors. The method then proceeds to determine physically-relevant
coordinates for the remaining atoms of the loop.

The initial coordinates of the loop’s atoms (excluding the stems) are sampled uniformly at random
in the vicinity of the stationary anchors. The method then modifies these coordinates in iterations,
until certain distance constraints resulting from the loop’s covalent structure, planarity, and chirality
constraints are satisfied. Each iteration consists of pairwise distance adjustments and superimposition of
structural templates to gradually refine and obtain a physically-relevant closed loop conformation.

What makes the method unique and extremely efficient is its employment of template structures for
short rigid fragments of the loop chain. The method consists of two main stages, initialization and
embedding. In initialization, the loop is decomposed into rigid fragments. Peptide bonds and bonds on
side-chain rings are considered rigid. The remaining rotatable bonds define excision points to decompose
a chain into rigid fragments. The ideal conformational template for each fragment is extracted from a
library of pre-computed templates (obtained, for instance, from the PDB). Upper and lower interatomic
distance bounds are then constructed. Lower bounds follow from standard covalent geometry for bonded
atoms. The sum of van der Waals radii defines the lower bound for nonbonded atoms. Upper bounds are
set to the sum of bond lengths along the shortest path connecting two atoms and obtained through the
Floyd-Warshall algorithm.
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In the second embedding stage, a series of pairwise distance adjustments and template fittings are
performed in order to obtain loop conformations consistent with the distance bounds. Each iteration
adjusts each defined fragment for a set number of cycles. In each cycle, two random atoms are selected
from the fragment for adjustment. The atoms’ coordinates are adjusted so that their distance lies between
the lower and upper distance bounds. Afterwards, the template for the selected fragment is superimposed
over the configuration of the fragment. The coordinates of all atoms in the fragment are replaced
with those of the superimposed template (see Figure 6a for an illustration). This process of iteratively
adjusting atomic coordinates and fitting templates results in a closed loop conformation that is free of
steric clashes and satisfies planarity and chirality constraints.

Figure 6. (a) Illustration of the superimposition operation for a randomly selected amide
fragment (highlighted with the rectangular box) in a loop of 4 amino acids. Coordinates of
the fragment are replaced with those of the superimposed template (drawn in grey). This
ensures correct geometry for the fragment (bond lengths, angles, and planarity). (b) Plot
shows the lowest achieved RMSD to the known native loop structure for loops of 12 amino
acids. The three different lines, drawn in red, blue, and green, show the values obtained from
three independent runs of the method. (a),(b) are reprinted with permission from [143].

(a) (b)

The method in [143] is numerically stable and computationally efficient. More importantly, additional
distance constraints, such as those obtained from NMR, can be directly incorporated into the method.
Comparisons of the method with the CCD algorithm and the IK technique in [58] show that the method
achieves similar or better prediction accuracies on diverse loops of 4, 8, and 12 amino acids. Native
structures of loops of 4, 8, and 12 amino acids are reproduced with backbone RMSDs no higher than
0.36, 1.5, and 2.7 Å, respectively, as shown in Figure 6b. Extensive analysis shows that the method does
not improve over the IK technique in [58] but is more accurate and efficient than CCD.
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6.3. A Robotics-Inspired Method for Sampling the Loop Closure Space

The method proposed in [32] is representative of robotics-inspired approaches originally developed
for the exploration of robot configurational spaces that have been adapted to study protein conformations.
The method in [32], based on similar previous work by the authors [134], employs a tree-based search to
efficiently explore the closure space of a loop and model its flexibility. The RLG algorithm is embedded
in the search in order to efficiently obtain closed loop conformations.

The tree-based search proposed in [32] is an adaptation of a path planning algorithm employed in the
robot motion planning community to find feasible paths that take a robot from an initial to a goal state
while satisfying specified constraints. The algorithm, the rapidly-exploring random tree (RRT) [148],
is a tree-based variant of the Probabilistic RoadMap (PRM) framework [149]. It is worth noting
that the introduction of the PRM method in robotics enabled the efficient exploration of constrained
high-dimensional search spaces. Essentially, a computed connectivity graph (the roadmap) encodes
feasible paths in the space. Vertices in the roadmap are randomly sampled configurations that satisfy
constraints. Edges are feasible short paths that connect neighbor configurations. When adapted for
protein conformations, the probabilistic exploration in PRM offers an advantage over combinatorial
methods [99,105], as it allows efficiently sampling vast and complex conformational spaces of arbitrarily
long protein chains [27,28,30].

Inspired by the success of RRT in exploring complex and vast conformational spaces, work in [32]
adapts RRT to explore the closure space of a loop and sample an ensemble of closed loop conformations.
Figure 7a illustrates the main idea in RRT. A tree is grown in conformational space, rooted at an initial
conformation qinit. The tree grows in iterations. At each iteration, the tree is expanded or pulled towards
a randomly sampled conformation qrand. The qnear nearest node in the tree to qrand is then determined.
The actual conformation added to the tree, qnew is the feasible conformation in the subpath connecting
qnear and qrand. In [32], the subpath is a linear interpolation over the dihedral angles of the loop.

The RRT in [32] conducts its search over the closure space of the loop. The IK-based technique
proposed in [132], the RLG algorithm, is employed to obtain the qrand conformation. Briefly, RLG
designates two active and one passive fragment in the loop chain. The passive fragment is limited
to 6 consecutive dihedral angles so that exact IK techniques can be employed to obtain closed
conformations for it. Forward kinematics is employed to sample conformations for the active fragments.
Biased conformational sampling for the active fragments increases the probability of finding a feasible
conformation for the passive fragment that closes the loop. The conformation of the active fragments are
sampled one angle at a time to ensure that the endpoints are always reachable by the passive fragment,
as illustrated in Figure 7b. Other details in [32] concern expediting the detection of steric clashes and
conducting short energy minimizations on sampled conformations with few steric clashes. The actual
growth of the RRT tree from qclose to qrand is achieved through a simple interpolation between the two
conformations. The qnew conformation is the closest to qrand that is also energetically feasible.

Figure 7c shows a few distinct conformations obtained by the method in a few minutes for
the “thumb”-loop in the glycoside hydrolase family 11 xylanase from Thermobacillus xylanilyticus
(Tx-xyl) [150]. These conformations showcase the mobility of this loop and compare very well with
known characterizations of the loop’s flexibility by detailed biophysical studies [151]. Specifically, the
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tip of the loop is able to move more than 10 Å in backbone RMSD in the direction towards the catalytic
cleft from its conformation in the crystallographic structure of the enzyme.

Figure 7. (a) Figure illustrates the general RRT search algorithm for a point robot in a
2D workspace. Contributed by Erion Plaku. (b) Figure illustrates the RLG algorithm.
The algorithm is based on the decomposition of the loop into several fragments. The
algorithm performs a biased sampling of the conformation of the left and right fragments,
which increases the probability of finding a feasible closed conformation for the middle
fragment through exact IK techniques. (c) Figure shows of the “thumb”-loop in the glycoside
hydrolase family 11 xylanase from Thermobacillus xylanilyticus computed by embedding
RLG in the RRT algorithm. Only a few minutes on a Sun Blade 100 Workstation with a
500-MHz UltraSPARC-IIe processor are required to compute the loop conformations shown
here. Contributed by Juan Cortes.

(a) (b)

(c)
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6.4. The Fragment Ensemble Method

The Fragment Ensemble Method (FEM) proposed in [70] addresses equilibrium mobility in the loop
modeling problem. FEM generates an ensemble of low-energy loop conformations that complete the
given protein structure. The method combines a statistical mechanics formulation with an efficient
exploration of conformational space, exploiting analogies between protein chains and robot kinematic
chains [26,27]. In particular, a loop fragment is modeled as an open kinematic chain.

FEM proceeds in stages, first sampling open loop conformations, then closing these conformations,
and finally structurally and energetically refining them in the context of the rest of the protein structure.
The process is illustrated in Figure 8. The open conformations are sampled uniformly at random in
the [−π, π)n space for a chain n rotatable dihedral bonds. Each open conformation is closed with
CCD. The loop is modeled at a backbone level of detail until many closed conformations are obtained.
All-atom detail is added onto each closed conformation by adding missing side chains. The resulting
conformations are energetically refined in order to improve atomic interactions both within the loop and
between the loop and the rest of the protein structure. In order to place most of the burden on the loop,
a pseudo-energy function combines physics-based terms with a dampening term that limits the extent of
atomic motions outside the loop. The optimization protocol combines conjugate gradient minimization
in Cartesian space with small angular movements in the self motion manifold in order to deform closed
loop conformations for the purpose of improving energetic interactions without breaking closure [70].

Figure 8. Top: Schematic illustration of FEM. Sampled open loop conformations are
subjected to CCD. The resulting closed conformations are only at a backbone level of
detail. Structural (missing side chains) and energetic detail (in the form of a short energy
optimization protocol) is then added to these conformations to obtain an ensemble of
low-energy all-atom closed loop conformations. Bottom: Conformational ensembles are
shown for three loops of 12 (in cytochrome inhibitor 2), 30 (in α-Lactalbumin), and 20

amino acids (in the variable surface antigen) in (a), (b), and (c), respectively. The known
native structures of the loop are drawn in opaque, whereas computed conformations are
drawn in transparent. The structure drawn for the loop in (c) is the one of lowest energy
among computed conformations, as this loop is missing in the crystal structure of the protein.
Figures on comparisons with experimental and simulation data, originally appearing in [70],
are reprinted with permission of John Wiley & Sons, Inc. Copyright 2011 John Wiley &
Sons, Inc.
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Figure 8. Cont.

(a) (b) (c)

The employment of CCD in the context of probabilistic sampling of open loop conformations
allows FEM to explore the space of arbitrarily long loops. Loops modeled in [70] range from 12

to 30 amino acids. In particular, FEM is applied to characterize loop structure and mobility both in
strongly stable and completely disordered loops (selected applications are shown in Figure 8a,b). A
statistical mechanics formulation of the obtained loop conformational ensemble in [70] is employed
as a natural way to associate a weight (Boltzmann factor) to each computed loop conformation and so
obtain an equilibrium conformational ensemble. This is an obvious advantage over other geometry-based
ab-initio methods applied to proteins [68,69,134]. In particular, the weighted ensemble facilitates
measuring thermodynamic data as weighted averages over fluctuations in the ensemble and so directly
comparing with published experimental and simulation data. Fluctuations measured over generated
loop conformational ensembles agree well with published experimental and simulation data [70,71].
Figure 8 compares computed fluctuations to experimental ones derived from B-factors for the loop in
cytochrome inhibitor 2, fluctuations obtained by simulation studies [152] for the loop in α-Lactalbumin,
and fluctuations predicted from sequence data [153] for the missing loop in the variable surface antigen.

The agreement with experimental data that measure equilibrium fluctuations in [70] and the
simulation-based analysis in [71] provide empirical evidence that FEM is not severely limited in
its sampling capability. The employment of optimization-based IK techniques, however, complicates
theoretical analysis into coverage of the closure space. Further application of FEM to model equilibrium
fluctuations of consecutive overlapping fragments (not just loops) in protein chains shows that the
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approach is capable of reproducing equilibrium local fluctuations of protein chains [154]. This is perhaps
further evidence that the basic framework in FEM may be promising to generally model equilibrium
mobility in loops.

7. Conclusions

The loop modeling literature is rich and growing steadily. In light of this, it is not possible
to have a complete review of work in loop modeling. Instead, this paper focuses on methods that
implement geometry- and energy-based approaches to model loops and their equilibrium flexibilities.
Other methods that employ different approaches are also being applied to loop modeling. For instance,
the method in [155], which employs HMMs, is a recent example of machine learning methods.
Additionally, a whole suite of methods exist that employ rigidity analysis of a protein’s native
structure to identify flexible regions and employ them for modeling local fluctuations around the given
structure [16–18,156–158]. While these methods have not been employed to model the equilibrium
flexibility of loops in protein structures, they can be promising in narrowing down the relevant degrees
of freedom to specific flexible regions in the given loop.

The various examples listed in this review illustrate that modeling equilibrium loop mobility in
proteins is important for understanding biological function. The methods described in [32,70,136,140],
also referred to as sampling-based methods, present promising first steps in this direction. Moreover, the
employment of IK techniques to address kinematic constraints in sampling-based methods is allowing
new applications on modeling the equilibrium flexibility not only of specific protein fragments, such as
loops, but of entire protein chains [71,154,159]. IK techniques are efficient and allow sampling-based
methods to spend computational resources on sampling a large number of closed conformations.
Further work is needed, however, to understand the ability of sampling-based methods in obtaining a
representative view of the closure space populated by the loop at equilibrium.

Currently, sampling-based methods cannot guarantee that they model all relevant regions of the
closure space. Often, the validation relies on comparing various aspects of the obtained conformational
ensembles with other experimental or simulation data on the loops at hand. An accurate characterization
of loop equilibrium mobility may rely on obtaining a broad view of the constrained conformational
space of the loop. This requires methods that can enhance sampling of the loop’s closure space.
Further progress is needed in expediting the process of obtaining closed physically-reasonable loop
conformations without relying on expensive optimization protocols. This will allow devoting available
computational resources to the exploration component of search-based methods rather than the
optimization of specific conformations to render them physically reasonable.

Another open problem in loop modeling is how to directly incorporate constraints other than those
posed by the stationary anchor in loop modeling methods. The rigidity analysis methods listed above
promise to allow incorporation of additional constraints, but they have not been employed in loop
modeling so far. Incorporating additional constraints is a great area of interest, as it may not only to
expedite, for instance, the generation of closed conformations that are also free of steric clashes, but also
possibly directly realize observations made in the wet laboratory on closed loop conformations. The
recent method in [143] illustrates that the incorporation of additional distance or angle constraints is
possibly less challenging in the close-and-relax approach to loop modeling.
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Most of the current work in loop modeling limits the conformational search to the loop at hand,
ignoring potential loop-induced motions in the rest of the protein structure to accommodate a loop
conformation. Characterization of dihydrofolate reductase actually shows that small fluctuations are
observed in the rest of the protein structure in concert with the motions in the M20 loop [15].
Additionally, when loops are in active sites of proteins and interact with ligands or other proteins, their
motions may often be induced by the presence of the partner molecule. Differences in loop length
and conformation in a family of related proteins often correlate with the specificity of ligand binding.
Ligands may induce conformational changes in the loops with which they interact. Such scenarios are
not uncommon, but it remains unclear how to address them in an efficient manner.

With the exception of some work in loop modeling that considers environments, such as a crystal
or side chains surrounding the loop, most methods do not model motions outside the loop that may
change the probability of occurrence and so the physiological relevance of a particular computed loop
conformation. In cases when loops interact with ligands, ideally, modeling of the loop and the ligand
should be conducted simultaneously. This, however, increases the dimensionality of the search space.
One way to address this limitation without the actual presence of the ligand is to obtain a broader,
ensemble view of the different conformations that the chosen loop can assume under native conditions.
The presence of the ligand can then be employed to discriminate against loop conformations that do
not interact favorably with the ligand. This approach follows the view that conformations are not truly
induced. Instead, they are populated by a system even in isolation, albeit with lower probabilities. The
presence of different conformations for the ligand or the rest of the protein may change the occurrence
probabilities of certain conformations sampled in isolation.

Early work in [47] concluded that accuracy in loop modeling was limited primarily by the energy
function rather than by the thoroughness of the optimization protocol. While further research is
needed in improving energy functions, the review here has shown that search plays a central role
both in improving accuracy and in modeling equilibrium flexibility. The main focus of recent loop
modeling methods remains the development of efficient and accurate techniques for either closing open
loop conformations or relaxing closed distorted conformations. As in the general structure prediction
framework, the investigation of powerful search frameworks for loop modeling is fertile territory for
further progress.

From a user’s perspective, it is currently hard to determine which loop modeling method to employ.
Various considerations of accuracy versus efficiency and one loop conformation of high accuracy versus
a large ensemble of relevant loop conformations come into play. As this review has shown, comparable
accuracies can be obtained from different methods. Moreover, the positive development in the loop
modeling community is the pace with which new methods are pursued to further improve the state of the
art. Despite the open problems listed in this review, the current interest, as demonstrated by contributions
of different communities, promises great advances in loop modeling.
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Structural basis of the properties of an industrially relevant thermophilic xylanase. Protein. Struct.
Funct. Bioinf. 1997, 29, 77–86.

152. Vendruscolo, M.; Pacci, E.; Dobson, C.; Karplus, M. Rare fluctuations of native proteins sampled
by equilibrium hydrogen exchange. J. Am. Chem. Soc. 2003, 125, 15686–15687.



Entropy 2012, 14 290

153. Li, X.; Romero, P.; Rani, M.; Dunker, A.K.; Obradovic, Z. Sequence complexity of disordered
protein. Protein. Struct. Funct. Bioinf. 2001, 42, 38–48.

154. Shehu, A.; Kavraki, L.E.; Clementi, C. On the characterization of protein native state ensembles.
Biophys. J. 2007, 92, 1503–1511.

155. Joo, H.; Chavan, A.G.; Day, R.; Lennox, K.P.; Sukhanov, P.; Dahl, D.B.; Vannucci, M.; Tsai,
J. Near-native protein loop sampling using nonparametric density estimation accommodating
sparcity. PLoS Comp. Biol. 2011, 7, e1002234.

156. Thorpe, M.F.; Ming, L. Macromolecular flexibility. Phil. Mag. 2004, 84, 1323–31137.
157. Wells, S.; Menor, S.; Hespenheide, B.; Thorpe, M.F. Constrained geometric simulation of

diffusive motion in proteins. J. Phys. Biol. 2005, 2, 127–136.
158. Farrell, D.W.; Speranskiy, K.; Thorpe, M.F. Generating stereochemically acceptable protein

pathways. Protein. Struct. Funct. Bioinf. 2010, 78, 2908–2921.
159. Yao, P.; Zhang, L.; Latombe, J.C. Sampling-based exploration of folded state of a protein under

kinematic and geometric constraints. Protein. Struct. Funct. Bioinf. 2011, 80, 25–43.

c© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/.)


	Introduction
	Short Primer on Protein Modeling
	Inverse Kinematics Methods
	Exact IK Techniques
	Optimization-Based IK Techniques
	Remaining Challenges Related to IK Techniques

	Database Methods
	Search-Based Methods
	Generate-and-Close Methods
	5.1.1. Energy-Based Approaches
	5.1.2. Geometry-Based Approaches

	Close-and-Relax Methods
	Accuracy and Time Demands

	Highlights of Selected Representative Methods
	Pareto Optimal Sampling Method
	Self-Organizing Method
	A Robotics-Inspired Method for Sampling the Loop Closure Space
	The Fragment Ensemble Method

	Conclusions

