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Sampling Conformation Space to Model
Equilibrium Fluctuations in Proteins1

Amarda Shehu,2 Cecilia Clementi,3,4 and Lydia E. Kavraki2,4,5

Abstract. This paper proposes the Protein Ensemble Method (PEM) to model equilibrium fluctuations
in proteins where fragments of the protein polypeptide chain can move independently of one another. PEM
models global equilibrium fluctuations of a polypeptide chain by combining local fluctuations of consecutive
overlapping fragments of the chain. Local fluctuations are computed by a probabilistic exploration that exploits
analogies between proteins and robots. All generated conformations are subjected to energy minimization
and then are weighted according to a Boltzmann distribution. Using the theory of statistical mechanics the
Boltzmann-weighted fluctuations corresponding to each fragment are combined to obtain fluctuations for the
entire protein. The agreement obtained between PEM-modeled fluctuations, wet-lab experiment and guided
simulation measurements, indicates that PEM is able to reproduce with high accuracy protein equilibrium
fluctuations that occur over a broad range of timescales.

Key Words. Sampling conformations, Equilibrium fluctuations, Proteins, Robotics, Inverse kinematics,
Statistical mechanics.

1. Introduction. In flexible biomolecules such as proteins, biological function often
relates with the ability of a protein to change shape as needed, for instance, to accommo-
date other molecules for binding [1], [2]. Upon binding, a protein may assume different
low-energy conformations [3]. Understanding protein function requires characterizing
the entire conformation space available to a protein at equilibrium (under physiological
conditions) [4].

Experimental techniques such as X-ray crystallography and Nuclear Magnetic Res-
onance (NMR) report few of the conformations available to a protein at equilibrium.
NMR experiments additionally report statistical averages over all equilibrium confor-
mations [5]. While measuring fluctuations that occur over a wide range of timescales,
from picoseconds to milliseconds [5], NMR experiments do not provide detailed in-
formation on all the equilibrium conformations behind the measurements. Simulation
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techniques such as Molecular Dynamics (MD) and Monte Carlo [6], [7] sample the con-
formation space one trajectory at a time and consequently are often limited to modeling
only up to nanosecond equilibrium fluctuations [8]–[13]. Since events such as binding
may occur beyond the nanosecond timescale, this limitation is serious [8]–[13].

The Protein Ensemble Method (PEM) we propose in this work complements existing
experimental and simulation techniques. PEM explores the equilibrium conformation
space of the whole protein. Unlike existing simulation techniques, PEM does not fol-
low trajectories in conformation space but samples conformations independently of one
another.

PEM is based on the premise that, in proteins where fragments of the polypeptide
chain do not move in concert with one another, global equilibrium fluctuations of the
polypeptide chain can be obtained by combining local equilibrium fluctuations of frag-
ments of the chain. These fragments are defined consecutively and with overlap by
sliding a window over the polypeptide chain. PEM measures equilibrium fluctuations of
amino acids of each fragment as Boltzmann-weighted averages over the sampled space
of low-energy conformations of each fragment. The theory of statistical mechanics [14]
is employed to transform the collection of sampled conformations of each fragment
into a Boltzmann ensemble of conformations. PEM exploits analogies between robot
kinematic chains and protein polypeptide chains [15], [16] to sample conformations of
a fragment similarly to sampling configurations of a kinematic chain.

PEM samples conformations of a fragment through a probabilistic space exploration
that is computationally effective because the number of parameters needed to represent
the conformation of a fragment of the polypeptide chain is smaller than for the entire
chain. PEM then employs an optimization-based inverse kinematics method to map the
sampled space to a lower-dimensional space of conformations that satisfy the kinematic
constraints imposed on the ends of a fragment by the rest of the chain.

The reduced dimensionality of the resulting space makes it computationally feasible
to address energetic considerations on the conformations of this space. PEM employs
an energy minimization procedure to minimize the energy of each kinematically con-
strained conformation of a fragment. The minimization procedure interleaves exploring
the self-motion manifold of the redundant DOFs of a fragment with a conjugate gradi-
ent descent on a pseudo-energy landscape. Each low-energy conformation obtained is
weighted by the Boltzmann probability that measures its feasibility at equilibrium. Such
weighting allows us to measure equilibrium fluctuations of a fragment on the obtained
conformations.

The method presented in this work indicates that one computationally effective strat-
egy to model global equilibrium fluctuations of a protein is to combine local equilibrium
fluctuations of consecutive overlapping protein fragments. This strategy is appealing
because fluctuations of different fragments can be obtained in parallel. The strategy
is well suited for proteins with non-concerted fluctuations, that is, where equilibrium
fluctuations of a fragment can be obtained while the rest of the polypeptide chain is
unperturbed.

Focusing on proteins with non-concerted motions is however of very broad interest.
There is no evidence of any correlation between global physico-chemical properties
such as stability or contact order [17] and the nature, local or correlated, of protein
fluctuations. Moreover, despite the limited information on protein structures and mo-
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tions available in current databases [18] and literature, proteins with non-concerted
motions represent a significant portion of proteins with known structure [19], [20].
For the proteins studied in this article, our results show that PEM-modeled fluctua-
tions are fully consistent with multiple timescale measurements obtained from NMR
wet-lab experiments and guided simulation techniques. Thus, for the examples consid-
ered, PEM can be employed to provide a microscopic level of understanding of protein
function.

The rest of this article is organized as follows. In Section 2 we summarize related
work. We devote Section 3 to a thorough comparison and discussion of the advantages
of PEM over existing simulation techniques. Section 3 also provides biophysical back-
ground and rationale behind our design of PEM. Details and analysis of PEM are related
in Section 4. Section 5 shows that PEM-obtained fluctuations of the SH3 domain of
the Fyn tyrosine kinase (SH3) and α-lactalbumin (α-Lac) agree very well with NMR
measurements and guided simulations. In Section 6 we lay the ground work for meth-
ods that can be employed to assess the accuracy of PEM-obtained fluctuations when
experimental or guided simulation data are not available for comparison. We conclude
in Section 7 with a discussion.

2. Related Work. We first summarize protein modeling work that exploits analogies
between protein polypeptide chains and robot kinematic chains. A survey of simulation
techniques that model equilibrium fluctuations follows. The provided survey is not meant
to be comprehensive but instead focuses on simulation techniques that allow us to place
the proposed PEM in context. Since PEM explores the space of kinematically constrained
conformations, a discussion of probabilistic space exploration and inverse kinematics
methods is also included.

2.1. Background Work in Protein Modeling. A protein molecule consists of repeated
blocks of atoms known as amino acids. An amino acid has an alpha carbon (Cα) atom
connected to a hydrogen atom, an amino group, a carboxylic group, and a group of atoms
known as a sidechain. Consecutive peptide bonds between the amino nitrogen and the
carboxylic carbon link amino acids in a polypeptide chain, as shown in Figure 1(a).
Amino acids are numbered from the N- to the C-terminus which refer to the amino and
carboxyl not involved in peptide bonds. The backbone is what remains after stripping
the sidechains off a polypeptide chain (removing Cβ in Figure 1(a)).

A conformation C that uniquely describes the three-dimensional structure of a pro-
tein with N atoms may be represented as a vector 〈A1x , A1y, A1z, . . . , AN x , AN y, AN z〉,
where Aix , Aiy, Aiz are atom Ai coordinates. The parameters needed to represent C , in
this case the atom coordinates, are often referred to as degrees of freedom (DOFs). We
note that most of the 3N DOFs in this representation are redundant. Atom positions can
be measured using only bond lengths, bond angles, and dihedral angles, which are illus-
trated in Figure 1(b). The idealized geometry model [22] allows us to fix bond lengths
and bond angles to idealized equilibrium values and employ only dihedral angles as
DOFs. As illustrated in Figure 1(c), there are two backbone DOFs, the ϕ and ψ dihedral
angles, and at most four sidechain DOFs per amino acid. On average, the total number
of DOFs is 3N/7 [23].
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(a) (b) (c)

Fig. 1. (a) A polypeptide chain with four amino acids. Cβ is the only sidechain atom shown. (b) b refers to the
bond length and α to the bond angle. The dihedral angle θ is the angle between planes π1 defined by the first
and second bond and π2 defined by the second and third bond. Rotation by θ changes positions of atom Ai+1

and others down the chain. (c) The rigidity of the peptide bond leaves each amino acid with two backbone
dihedral angles, ϕ, ψ , for a total of at most six dihedral angles. All figures are generated with MOLMOL [21].

GEOMETRIC MODELING. We model a polypeptide chain as a kinematic chain with
revolute joints [15], [16] by employing the idealized geometry model. As in forward
kinematics [24] where a joint rotation changes the positions of the following links,
rotation about a bond by a dihedral angle changes the positions of the following atoms.
We propagate rotations down a polypeptide chain as in [25] to compute atom positions.

ENERGETIC MODELING. We consider atomic interactions through all-atom empirical
forcefields such as CHARMM [26] and AMBER [27] which allow us to sum over all
favorable and unfavorable interactions to calculate the energy of a conformation. State-
of-the-art protein folding theories are based on the description of a protein’s energy
landscape as a multidimensional funnel [28]–[33], the global minimum of which corre-
sponds to a stable conformation assumed by the protein at equilibrium. The equilibrium
conformation space of a protein corresponds to the region around the global minimum,
which can be populated by the protein upon thermal motions.

2.2. Survey of Simulation Techniques. Current simulation techniques to sample con-
formation space are either systematic or random searches [13]. MD simulations [4],
[13], [34], [35] systematically update atom coordinates of a conformation to obtain a
new one by numerically solving Newton’s equations of motions. The occurrence of a
conformation obtained with a constant temperature MD simulation is proportional to
the Boltzmann probability. Since the solution accuracy demands a small timestep in the
order of femtoseconds, obtaining a physical trajectory of conformations is computa-
tionally demanding [13], [36]. Moreover, thoroughly sampling conformation space may
require many trajectories. The sampling of rare events such as crossing local maxima of
the energy landscape adds to the computational cost of sampling conformation space in
a sequential fashion. Thus, in a reasonable amount of time, MD simulations sample a
small sub-space of the conformation space available to a protein and are often limited to
exploring events that occur within nanoseconds [8]–[13].

Rather than solving Newton’s equations of motions, random search techniques such
as Monte Carlo [7], [13] conduct a biased probabilistic walk in conformation space to



Modeling Equilibrium Fluctuations in Proteins 307

obtain a sequence of conformations. The biased probabilistic walk ensures through the
Metropolis criterion [37] that a conformation is obtained with frequency proportional
to its Boltzmann probability. While sometimes computationally more efficient than MD
simulations, Monte Carlo simulations also obtain conformations sequentially. Hence
they also spend considerable time sampling rare events such as crossing maxima in
the energy landscape. Extensions to enhance sampling include methods such as impor-
tance [38] and umbrella sampling [39], replica Monte Carlo [40], jump walking [41],
multicanonical ensemble [42], entropic sampling [43], weighted histograms [44], local
elevation [45], parallel tempering/replica exchange [46], smart walking [47], multi-
canonical jump walking [48], conformational flooding [49], local energy flattening [50],
activation relaxation [51], Markov state models [52], and guided simulation techniques
[53]–[55] that use experimental measurements to guide trajectories to relevant regions
of conformation space.

The PEM we propose in this work classifies as a random search that transforms a non-
Boltzmann collection of randomly sampled conformations into a Boltzmann ensemble
by weighting each conformation with its Boltzmann probability. Rather than obtaining
conformations sequentially, PEM probes the energy landscape through a probabilistic
exploration that samples conformations independently of one another.

2.3. Probabilistic Space Exploration and Inverse Kinematics Methods.

PROBABILISTIC SPACE EXPLORATION. Analogies between robot kinematic chains and
protein polypeptide chains [15], [16] allow us to use probabilistic space exploration
methods to explore the conformation space of a protein [16], [56], [57]. The introduc-
tion of the Probabilistic RoadMap (PRM) [58], [59] method in the robotics community
enabled the efficient exploration of high-dimensional configuration spaces. In the context
of computational biology, instead of sampling conformations in a sequential fashion, the
probabilistic exploration in PRM probes conformation space to sample conformations.
Such exploration offers an advantage over combinatorial methods [60], [61] as it allows
us to sample large conformation spaces of arbitrarily long polypeptide chains efficiently
[16], [56], [57].

PROBABILISTIC SPACE EXPLORATION WITH KINEMATIC CONSTRAINTS. Conformations
of a polypeptide chain are often kinematically constrained, e.g., by the bond network of a
protein [62]. Conformations can first be sampled without considering the kinematic con-
straints, later enforcing the constraints with a gradient descent [63]. Conformations may
be subjected to attractive forces that pull the end effector of the chain, the robot hand or
gripper, to its target position and orientation [64]. Maintaining kinematic constraints can
be integrated in the sampling process by solving the constraints on six DOF sub-chains
of sampled conformations [65]. Due to their thorough sampling these methods have an
advantage over database methods [66], [67] when applied to protein loops [68].

INVERSE KINEMATICS METHODS. Satisfying kinematic constraints on the end-effector
involves maintaining the end-effector in a specified pose, i.e., a particular position and
orientation. Inverse kinematics (IK) [24] asks what DOF values will result in a configura-
tion where the end-effector assumes the target pose. Methods to solve the IK problem can
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be divided into exact and optimization-based methods. As far as exact IK methods are
concerned, a tight upper bound of 16 solutions has been established for the IK problem
for 6R kinematic chains (chains with six revolute DOFs) operating in a three-dimensional
workspace [69]. Exact IK methods can only enumerate solutions for these chains. One
such efficient method [70] has been applied to short molecular chains [15]. Other exact
IK methods that deal with molecular chains include those in [71]–[75]. IK methods for
hyper-redundant kinematic chains are based on curve approximation [76]. In [74] the
IK problem is solved for six not necessarily consecutive DOFs. The six-DOF limitation
recently extended to nine DOFs [75]. Currently, only optimization-based IK methods
can address the IK problem for kinematic chains with an arbitrary number of DOFs.
Methods like random tweak [77] and cyclic coordinate descent (CCD) [78] iteratively
solve a system of equations related to kinematic constraints. Unlike random tweak, CCD
does not compute an inverse or pseudo-inverse Jacobian matrix and so is computationally
stable. Its linear time complexity on the number of DOFs makes it a method of choice
for solving the IK problem for polypeptide chains [79]–[81]. The employment of CCD
in the method we propose is inpired by the work in [80] and [81].

3. Comparison with Existing Techniques and PEM Biophysical Rationale. The
PEM proposed in this work employs a probabilistic space exploration with kinematic
constraints. In PEM conformations are obtained independently of one another which
allows us to model equilibrium fluctuations with no inherent timescale limitations. This
is an advantage over existing simulation techniques which, due to their exploration of
protein conformation space one trajectory at a time, are limited to modeling equilib-
rium fluctuations up to the nanosecond timescale [8]–[13]. A comparison with existing
simulation techniques, presented in the following for both accuracy and running time,
highlights the advantages of the proposed PEM. The purpose of comparing running
times is mainly to illustrate the orders of magnitude difference between PEM and ex-
isting simulation techniques since running times of simulation studies are reported in
different machines and by different authors.

Applications of PEM to SH3 and α-Lac in this work and to other proteins in [82]
show that PEM-obtained fluctuations agree very well with available experimental data
over multiple timescales. Pearson correlations no lower than 0.80 are achieved between
equilibrium fluctuations obtained by PEM after no more than 164 CPU hours on a current
processor and experimental and guided simulation measurements (details on the accuracy
of the results obtained by PEM and the running times can be found in Section 5). On the
other hand, achieving these same high correlations with existing simulation techniques
is either possible through simulations that require orders of magnitudes longer CPU time
(year-long) [83] or through simulations that shorten their running time to a few months or
a few weeks by incorporating experimental data to guide MD or Monte Carlo trajectories
to relevant regions of conformation space [53]–[55].

The high computational time demand of existing simulation techniques limits a di-
rect comparison between these techniques and PEM to a few well-studied proteins. On
α-Lac, a protein studied in this article, obtaining equilibrium fluctuations beyond the
nanosecond timescale remains challenging for existing simulation techniques. To the
best of our knowledge, the only simulation study that overcomes the timescale limita-
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tions on α-Lac is a Monte Carlo simulation that resorts to employing a coarse-grained
representation of this protein and guides trajectories by incorporating available experi-
mental data [53]. With no a priori knowledge of experimental data and at the same time
employing an all-atom representation of protein conformations, in 164 CPU hours PEM
obtains equilibrium fluctuations of α-Lac that occur over a wide range of timescales. As
detailed in Section 5, the ensemble of conformations obtained by PEM for α-Lac agrees
very well with the ensemble of conformations obtained in [53].

Another reference protein system for comparisons is ubiquitin, where 6 ns of an
MD simulation in explicit solvent are needed to obtain a correlation of 0.62 with NMR
data [55]. While running times are not reported, our experience estimates that 2 ns
of simulation time on an AMD Athlon 1900MP machine require 1 week of CPU time.
Longer CPU times are needed to achieve higher accuracy: 80 ns, estimated to about 1 year
of CPU time, are needed to obtain a 0.96 correlation with NMR order parameters [83].
The only successful simulation study to our knowledge to obtain good agreement with
experimental data (correlation of 0.96) in a few months (22.5 ns) guides MD trajectories
to relevant regions of conformation space with NMR data [55]. While this result is very
significant [84], the required a priori knowledge of high-quality experimental data limits
the predictive power of guided simulation techniques. It is noteworthy to emphasize that
with no a priori knowledge of experimental data, equilibrium fluctuations obtained by
PEM after 120 hours of CPU time on ubiquitin agree with available NMR data with
correlations no lower than 0.95 [82].

As the comparisons on α-Lac and ubiquitin illustrate, the demanding computational
time of existing simulation techniques makes it hard to replicate simulation studies. On
the other hand, PEM’s reasonable running time easily allows for replication of the results
and applications to many proteins.

It would be a tremendous advance, equivalent to decades of work in biophysics, to
be able to model equilibrium fluctuations in any protein. As a first step in this direction,
this article sets a very precise goal and focuses on obtaining equilibrium fluctuations in
proteins where fluctuations of fragments of the polypeptide chain are uncorrelated. To
obtain such fluctuations, PEM employs a first-order approximation that is a powerful
algorithmic approach well-rooted in biophysics, particularly in the context of protein
folding [85]–[88]. In protein folding, the enumeration of all configurations of a protein
(where each amino acid is considered either in an ordered or a disordered state) is
often addressed through a first-order approximation which groups all ordered amino
acids on one single continuous stretch of the protein sequence. Considering one single
continuous stretch of the protein sequence at a time (or one fragment at a time) is known
as the “single sequence approximation.” The single sequence approximation was first
proposed in the context of the helix-coil theory [85], [86] and lately has been shown
sufficient in enumerating folding propensities of amino acids of many different proteins
[87], [88].

PEM uses the single sequence approximation in a novel context; the method samples
conformations of a fragment while the rest of the polypeptide chain is unperturbed in
order to obtain detailed atomistic structural information about a protein’s conformations
at equilibrium. The applicability of the single sequence approximation in this context
is justified in proteins where there are no correlated motions between fragments of the
polypeptide chain that are far in sequence and where, as a consequence, fluctuations
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of one fragment can be obtained independently of another. As discussed in detail in
Section 4, in the absence of correlated fluctuations, PEM constructs fluctuations of the
entire polypeptide chain in a multiscale fashion by combining together the fluctuations
obtained for fragments covering the chain. An initial treatment of equilibrium fluctuations
in the context of even correlated fluctuations through the employment of higher-order
approximations is presented in Section 6.

4. PEM Algorithm. In Section 4.1 we show how PEM defines fragments on a protein
polypeptide chain and then combines fluctuations measured over the equilibrium confor-
mation space of each fragment to model global equilibrium fluctuations of a polypeptide
chain. In Section 4.2 we describe the PEM exploration of the equilibrium conformation
space of a fragment. We analyze this exploration in Section 4.3.

4.1. Modeling Global Equilibrium Fluctuations Using Local Fluctuations. As shown
in pseudocode in Algorithm 1, PEM takes as input an experimentally determined con-

Algorithm 1. PEM (CPDB, l, δl, dl, w)

Input:
CPDB: protein conformation obtained from the PDB
l: length of window sliding over polypeptide chain of protein
δl: overlap between consecutive windows
dl: size of increment to l and δl
w: function to weight fluctuation of an amino acid of a fragment

Output: Equilibrium fluctuations 〈Xi 〉 of each amino acid i

1: Cref ← energetically refine CPDB

2: P ← protein polypeptide chain comprising amino acids 1 to N
3: Slide over P a window of length l amino acids with overlap of δl amino acids

between consecutive windows to define fragments [n1, n2]
4: for each fragment [n1, n2] do
5: �[n1,n2] ← ensemble of sampled low-energy conformations of fragment [n1, n2]
6: associate e−(E(C)−Eref)/(RT0) to each C ∈ �[n1,n2] to obtain Boltzmann ensemble
7: Z ←∑

C∈�[n1 ,n2]
e−(E(C)−Eref)/(RT0) >partition function-normalization factor

8: 〈Xi 〉[n1,n2] ← (1/Z)
∑

C∈�[n1 ,n2]
e−(E(C)−Eref)/(RT0) Xi (C) for amino acid

i ∈ [n1, n2]
9: for each amino acid i ∈ P do
10: Ni ←

∑
{[n1,n2]: i∈[n1,n2]}w(i, [n1, n2]) >normalization factor

11: 〈Xi 〉 ← (1/Ni )
∑
{ [n1,n2]: i∈[n1,n2]}〈Xi 〉[n1,n2]w(i, [n1, n2])

12: {〈Xi 〉min, 〈Xi 〉max} ← {min,max}{[n1,n2]: i∈[n1,n2]} 〈Xi 〉[n1,n2]

13: if 〈Xi 〉max − 〈Xi 〉min ≥ 〈Xi 〉min then
14: l ← l + dl and δl ← δl + dl
15: goto line 3
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(a) (b)

Fig. 2. (a) Sliding a window of length 30 and overlap of 25 amino acids on the 123 amino acid chain of
α-Lac defines 19 fragments, starting with [1, 30] and ending with [90, 123]. An ensemble of low-energy
conformations is sampled for each fragment through the exploration detailed in Section 4.2. Each ensemble
is shown in different colors while the rest of Cref is in cyan. Conformations are drawn with VMD [89].
(b) 〈RMSDi 〉[n1,n2] values, measured as in line 8 of Algorithm 1, are drawn in different colors for different
fragments [n1, n2]. Values for the first and last five amino acids of each fragment are discarded. 〈RMSDi 〉min

and 〈RMSDi 〉max, measured as in line 12 of Algorithm 1, are drawn in black.

formation CPDB from the Protein Data Bank [18]. Since CPDB is an average over protein
conformations at equilibrium, PEM initially minimizes the energy of CPDB with a con-
jugate gradient descent on the energy landscape, detailed in Section 4.2.2, to obtain
a conformation Cref whose energy Eref is assumed to correspond to the global mini-
mum of the energy landscape. PEM employs Cref as a reference conformation to sample
low-energy conformations near the global minimum.

4.1.1. Splitting a Polypeptide Chain into Consecutive Overlapping Fragments. As
shown in line 3 of Algorithm 1, PEM slides a window of length l amino acids over the
polypeptide chain P to split the chain into consecutive fragments. The window is slid so
that neighboring fragments overlap significantly with one another in δl ≈ l amino acids
(by definition, δl < l). As illustrated in Figure 2(a), sliding a window of length 30 with
overlap of 25 amino acids defines 19 fragments on the 123 amino acid chain of α-Lac.
We denote a fragment encompassing amino acids n1 to n2 as [n1, n2].

4.1.2. Modeling Local Equilibrium Fluctuations of a Fragment. PEM samples low-
energy conformations of a fragment [n1, n2] while keeping the rest of the polypeptide
chain as in Cref. This introduces kinematic constraints on amino acids n1 and n2 of each
fragment conformation. Minimizing unfavorable energetic interactions between atoms
introduces energetic constrains on fragment conformations.

As shown in line 5 of Algorithm 1, PEM samples the space of kinematically and
energetically constrained conformations of each fragment [n1, n2] as described in de-
tail in Section 4.2 to obtain an ensemble �[n1,n2] of low-energy conformations. Since
each fragment is shorter than the entire chain P , obtaining �[n1,n2] involves exploring
a lower-dimensional space. Figure 2(a) shows such ensembles for fragments defined
on the polypeptide chain of α-Lac. As shown in line 6 of Algorithm 1, the theory of
statistical mechanics [14] is employed to transform the sampled ensemble �[n1,n2] into
a Boltzmann ensemble of conformations by weighting each conformation C of �[n1,n2]

with its Boltzmann probability e−(E(C)−Eref)/RT0 , where E(C) refers to the energy of C ,
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E(C) − Eref to the difference in energy of C from the reference energy Eref, R to the
gas constant, and T0 to room temperature (300 K).

Let Xi (C) be a measurement of the fluctuation of an amino acid i around Cref as wit-
nessed by a conformation C . An example of Xi (C) is the Root-Mean-Squared-Deviation
(RMSD) of an amino acid i from Cref:

RMSDi (C) =
√

1

# atoms in i

∑
atom j∈ i

‖ pj (C)− pj (Cref)‖2,

where pj is the position of atom j , and ‖ · ‖ is the L2 norm. Other choices for Xi (C)
include the deviation from Cref of the orientation of a particular bond vector in amino
acid i (order parameters [5], presented in detail in Section 5, constitute another choice
for Xi (C) employed by PEM). The transformation of�[n1,n2] into a Boltzmann ensemble
allows us to measure a statistical average of Xi (C)over all conformations C ∈ �[n1,n2]. As
shown in line 8 of Algorithm 1, we sum over all Xi (C), weighting each by the Boltzmann
probability of the corresponding conformation C ∈ �[n1,n2], to obtain a Boltzmann-
weighted average 〈Xi 〉[n1,n2]. This average quantifies the fluctuation of amino acid i as
witnessed by the �[n1,n2] ensemble of conformations available to fragment [n1, n2] at
equilibrium.

The average 〈Xi 〉[n1,n2] measured over ensemble�[n1,n2] can change with the addition
of sampled conformations to the ensemble. To determine a termination condition for
sampling, we measure whether, after adding conformations to ensemble �[n1,n2], there
are any changes in ensemble-averaged measurements such as 〈RMSDi 〉[n1,n2]. When
such measurements converge, the sampling of low-energy conformations of fragment
[n1, n2] terminates as no new information is obtained about equilibrium fluctuations of
the fragment.

4.1.3. Measuring Global Equilibrium Fluctuations over Fragment Ensembles. Mod-
eling global equilibrium fluctuations of a polypeptide chain involves quantifying the
fluctuation of any amino acid i of the chain as witnessed by the available equilibrium
conformation space. As the fluctuation of an amino acid i is a statistical average over the
available conformations of the chain, we denote it by 〈Xi 〉. PEM estimates the global
fluctuation 〈Xi 〉 of an amino acid i by combining local fluctuations 〈Xi 〉[n1,n2]. As shown
in line 11 of Algorithm 1, PEM estimates 〈Xi 〉 as a weighted average over all fluctuations
〈Xi 〉[n1,n2] measured over the sampled ensembles of the fragments [n1, n2] overlapping
in i . As illustrated for α-Lac in Figure 2, 〈X19〉 is averaged over 〈X19〉[1,30], 〈X19〉[5,35],
〈X19〉[10,40], and 〈X19〉[15,45]. Due to the method employed by PEM to satisfy the kine-
matic constraints on amino acids n1 and n2 of a fragment [n1, n2], amino acids i close
to n1 or n2 do not deviate significantly from their configurations in Cref in the sampled
ensemble�[n1,n2]. Their fluctuations are consequently low and not representative of equi-
librium conditions. To take this into account, their contribution to the global equilibrium
fluctuation 〈Xi 〉 is downplayed through a weighting function w(i, [n1, n2]).

An example of a weighting function that downplays fluctuations of the first and last
five amino acids of each fragment isw(i, [n1, n2]) = 0 if min{|i−n1|, |i−n2|} < 5 and
w(i, [n1, n2]) = 1 otherwise. In Figure 2(b) we show measured 〈RMSDi 〉 for each amino
acid i in α-Lac using this weighting function. Figure 2(b) shows that 〈RMSDi 〉[n1,n2]

values measured over ensembles of fragments that encompass amino acid i are simi-
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lar, as indicated by the small difference between 〈RMSDi 〉max and 〈RMSDi 〉min, where
〈RMSDi 〉max and 〈RMSDi 〉min are measured as shown in line 12 of Algorithm 1. A large
difference between 〈RMSDi 〉min and 〈RMSDi 〉max would indicate that the length of the
window limits fluctuations, in which case, as shown in lines 13–15 of Algorithm 1,
window length and overlap are incremented by dl amino acids.

Since the rest of the polypeptide chain remains unperturbed as in Cref while PEM
explores equilibrium fluctuations of a fragment, concerted fluctuations between atoms in
a fragment and atoms in the rest of the polypeptide chain cannot be captured. Extensions
to capture such fluctuations are discussed in Section 5.

4.2. Sampling the Equilibrium Conformation Space of a Fragment. PEM models equi-
librium fluctuations of a protein polypeptide chain by combining equilibrium fluctuations
measured over sampled ensembles of fragments defined consecutively and with overlap
over the polypeptide chain. PEM obtains an ensemble �[n1,n2] of low-energy conforma-
tions of a fragment [n1, n2] in two phases. First, the kinematic constraints that the rest
of the polypeptide chain imposes on amino acids n1 and n2 are exploited to sample a
kinematically constrained conformation space as detailed in Section 4.2.1. Second, the
sampled space is mapped to a sub-space of low-energy conformations as detailed in
Section 4.2.2.

4.2.1. Probabilistic Exploration with Kinematic Constraints. Modeling fluctuations
of amino acids of a fragment [n1, n2] while keeping the rest of the polypeptide chain as
in Cref introduces kinematic constraints on the poses of n1 and n2. Keeping the pose of
n1 or n2 as in Cref involves satisfying six constraints: three positional constraints for the
coordinates of the Cα atom and three orientational constraints so that the axes of a local
frame at Cα align with the N and C backbone atoms of the amino acid. No constraints
are introduced for the sidechain atoms since their positions can change without affecting
the rest of the polypeptide chain.

PEM samples kinematically constrained conformations of [n1, n2] as shown in pseu-
docode in Algorithm 2. As shown in line 1 of Algorithm 2, PEM models [n1, n2] as a
kinematic chain whose base is at n1 and end-effector at n2. This analogy allows PEM
to sample conformations for [n1, n2] through a probabilistic exploration. Conformations
are first sampled without considering the constraints. Since exploring different configu-
rations for the sidechains of [n1, n2] does not affect the conformation of the rest of the
polypeptide chain, sidechains are initially kept in their configurations as in Cref. This
effectively reduces the dimensionality of the explored conformation space since only the
ϕ, ψ dihedral angles starting at amino acid n1+1 and ending at n2−1 are employed as
DOFs. As shown in line 3 of Algorithm 2, values for these DOFs are sampled uniformly
at random in [−π, π ].

Rotations by the sampled angles do not change the atom positions of n1 but violate
the kinematic constraint on n2. Thus each sampled conformation C is subjected to
an optimization-based inverse kinematics method, CCD [78], as shown in line 7 of
Algorithm 2. We implement CCD as in [79] and apply it to a conformation as in [80] and
[81] to satisfy the kinematic constraint on n2. Given a particular permutation of DOFs
σ , CCD analytically finds for one DOF at a time the value that minimizes the distance
between the poses of n2 in C and Cref. As an iterative method, CCD proceeds in cycles.
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Algorithm 2. ExploreWithConstraints (Cref, [n1, n2], nmax, ε, σ )

Input:
Cref: conformation corresponding to global minimum of energy landscape
[n1, n2]: fragment [n1, n2] for which to explore conformations
nmax: maximum number of CCD cycles
ε: criterion for evaluating satisfaction of kinematic constraint on n2

σ : permutation of DOFs of [n1, n2]
Output: Conformation C that satisfies kinematic constraint on n2

1: K ← kinematic chain modeling [n1, n2]
2: B ← DOFs of K corresponding to backbone dihedral angles of [n1, n2]
3: θ |B ← DOF values sampled uniformly at random in [−π, π ]|B|

4: C ← apply rotations by θ |B dihedral angles
5: for n← 1 to nmax do
6: Bσ ← permutation of DOFs B
7: C̄ ← CCD(Bσ , pose of n2 in C , target pose of n2 in Cref)
8: d ← Euclidean distance between pose of n2 in C̄ and target pose of n2 in Cref

9: if d ≤ ε then
10: exit for loop

Each cycle iterates over all DOFs according to the permutation σ of the DOFs until n2

reaches a pose within an ε-neighborhood of the target pose in Cref. As shown in line 5
of Algorithm 2, the number of cycles is limited to nmax.

Only conformations with no self-collisions between atoms are passed onto the energy
minimization procedure. For each conformation, values for the sidechain dihedral angles
of the fragment are sampled uniformly at random in [−π, π ] until the resulting confor-
mation is free of collisions. Since a high energy indicates the presence of collisions, as
an approximation, a conformation is deemed free of self-collisions if its energy is below
a threshold MAX ENERGY value.

4.2.2. Energy Minimization. The minimization procedure interleaves two techniques,
an exploration of the self-motion manifold of the redundant DOFs of a fragment with a
conjugate gradient descent (the exploration of the self-motion manifold is not employed
in the minimization of CPDB). To minimize unfavorable interactions these techniques
change the positions of a fragment’s atoms while keeping all other atoms as in Cref, since
Cref is already a low-energy conformation.

As local searches, both techniques can yield local minima of the energy landscape.
To escape such minima, the minimization procedure interleaves them as follows: If the
improvement in energy is less than a cutoff value η after N minimization steps, the
procedure determines a local minimum has been reached and switches techniques. The
total number of minimization steps is limited to Nmax. The minimization terminates
earlier if the improvement in energy over N steps is less than a convergence value
µ. In order to add a resulting conformation C to an ensemble �[n1,n2], the difference
between its energy E(C) and Eref needs to be small, since the Boltzmann probability of
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C determines the extent to which the measurement Xi (C) contributes to the ensemble
average 〈Xi 〉[n1,n2]. A cutoff of 10−15 for the Boltzmann probability of a conformation
C , for instance, implies that C is added to the ensemble �[n1,n2] if its energy E(C) is no
higher than 20 kcal/mol from Eref.

EXPLORING THE SELF-MOTION MANIFOLD. Due to the six constraints on n2, the re-
maining 2(n2−n1−1)−6 of the q DOFs of the fragment are redundant. They define a
sub-space, the self-motion manifold [90], which we explore for fluctuations of backbone
atoms to minimize the energy of a conformation and yet maintain the pose of n2. We
approximate the manifold with its tangent space as in [81] and obtain an instantaneous
change in q of q̇= J ‡(q)ẋ + N (q)N T (q)g(q) [90], where J ‡(q) is the pseudo-inverse
of a 6×m Jacobian matrix relating the linear and angular velocities of a frame x attached
to n2, N (q) is an orthonormal basis for the null space, and g(q) is the gradient of the
energy function. The constraints on n2 force ẋ = 0. Projecting g(q) on the null space
yields a motion q̇ in dihedral space that minimizes the energy function while keeping n2

in its pose. We explore the manifold through a steepest descent that at each step updates
J (q) as in [91] and N (q) to compute q̇. A singular value decomposition (SVD) [92]
yields J (q) = U�V T , where the vectors of V corresponding to zero-valued singular
values provide N (q). Due to these computational requirements, we limit the number of
steps of the descent.

CONJUGATE GRADIENT DESCENT. We design a pseudoenergy function E = Eforcefield+∑
atom i /∈ fragment Kdi‖ pi (C)− pi (Cref)‖2, where pi is the position of atom i . A conjugate

gradient descent on this landscape minimizes the energy of a conformation (first term)
while limiting fluctuations of atoms outside a fragment (second term). The empirically
determined damping constant Kdi allows us to maintain crucial interactions between
atoms in C during the minimization (Kdi =0 for the minimization of CPDB).

The energy minimization procedure maps a kinematically constrained conformation
space to a sub-space of low-energy conformations. Therefore, to assess the PEM ex-
ploration of the equilibrium conformation space of a fragment, we investigate the PEM
coverage of the space of kinematically constrained conformations.

4.3. Analysis of the PEM Exploration of Conformation Space. Modeling a fragment
as a kinematic chain and using CCD allows PEM to map the uniformly sampled space
C of chain configurations to the space C̄ of IK solutions, configurations that satisfy the
end-effector kinematic constraints. To explore sufficiently the sub-space of low-energy
conformations to which the energy minimization procedure maps C̄, PEM needs to
provide a good coverage of C̄.

The solution space C̄ can be described by a system of multivariable non-linear poly-
nomial equations that relate the chain DOFs to the end-effector constraints [24]. C̄ may
contain components of different dimensions such as isolated solutions, solution curves,
and solution surfaces [93]. A notion of coverage of C̄ can be given through that of disper-
sion [94] which measures the largest portion of C̄ where PEM samples no configurations.
A good coverage of C̄ involves minimizing dispersion in each component of C̄. Covering
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each component uniformly, as provided through the notion of discrepancy [94], might
be desirable as well.

The question whether applying CCD to C provides a good coverage of each compo-
nent of C̄ remains challenging and open to theoretical analysis. Answering this question
is further complicated by the not yet understood dependence of the C̄ exploration on
the σ permutation of the chain DOFs employed by CCD. Demonstration of an inade-
quate coverage of C̄ does not necessarily mean that the exploration of the equilibrium
conformation space of a polypeptide chain is insufficient. The reason is that not all
components of C̄ may be accessible to a protein. It has been shown that certain equilib-
rium conformations may be kinetically inaccessible, i.e., unreachable within biological
timescales [95].

In light of these open questions, to provide insight into the coverage of C̄, we analyze
experimentally the PEM exploration of C̄ for kinematic chains with increasing number
of DOFs. We start with 6R chains where the upper bound of 16 IK solutions [69] allows
us to compare these solutions directly with those obtained by PEM when mapping C
with CCD. On kinematic chains with more than six DOFs where the dimensionality of C̄
does not allow a direct comparison, we analyze solutions obtained when applying CCD
to neighborhoods of configurations in C. To investigate how the σ permutation of DOFs
employed by CCD affects the exploration of C̄ we repeat each experiment with three
obvious choices for σ ; counting from the base to the end-effector (N- to C-terminus)
of the chain we define: (i) the random permutation, where the order of DOFs changes
randomly in each CCD cycle; (ii) the identity permutation, where the value for DOF i
is found before the one for DOF i + 1; and (iii) the reverse permutation, which refers to
the reverse of the identity permutation.

We first determine whether, for 6R chains, mapping C with CCD allows us to sample
all C̄. We do so on a comprehensive list of 20 IK problems for which all IK solutions,
obtained with a polynomial continuation method, are documented [96]. For each problem
we compare its IK solutions with the solutions sampled by PEM. Two configurations
are deemed close if their geodesic distance in SO(2)n normalized by the number n of
DOFs is no more than 0.1 radians. Sampled solutions of a problem with i IK solutions are
discretized into i bins, each bin corresponding to an IK solution. A sampled solution goes
into a particular bin if it is closest to the IK solution associated with that bin. Solutions
are sampled until no bin is empty. We find that for each problem, for each choice of σ ,
all bins are filled after sampling a maximum of 100 solutions. The maximum distance
between a sampled solution and its closest IK solution is no more than 0.02 radians. We
conclude that for 6R chains, for each choice of σ, CCD allows us to obtain all isolated
IK solutions of C̄.

For redundant kinematic chains (more DOFs than constraints) the solution space C̄ is
not discrete but can consist of components of different dimensions [93]. Thus we assess
the ability of PEM to sample different regions of C̄ for redundant chains by analyzing the
solutions obtained when applying CCD to neighborhoods of a configuration A sampled
uniformly at random in C. We sample 1,000,000 neighbor configurations of A uniformly
at random from neighborhoods of radii {1◦, 5◦, 10◦} deviation per DOF. We apply CCD
to A and its neighbor configurations so the end-effector reaches a target pose that we
randomly sample in SE(3). We analyze how different the solutions to which CCD maps
a neighborhood of A are from configuration B to which A maps under CCD. We do so
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Table 1. A configuration A sampled uniformly at random from C maps with CCD to an IK solution B ∈ C̄.∗

30 DOFs 50 DOFs 100 DOFs

(i) (ii) (iii) (i) (ii) (iii) (i) (ii) (iii)

1◦ 0.6115 7.0175 5.8640 0.2241 7.7586 5.9319 0.2279 6.2142 5.0963
5◦ 0.0045 0.0988 0.0395 0.0010 0.0036 0.0018 0.0010 0.0010 0.0010

10◦ 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010

∗The table shows how many (in %) of 1,000,000 neighbor configurations of A sampled uniformly at ran-
dom map with CCD to B. Rows show results obtained when neighbor configurations of A are sampled from
neighborhoods of radii {1◦, 5◦, 10◦}. Columns show results obtained for kinematic chains of 30, 50, and 100
DOFs when CCD employs three different choices of the σ permutation of DOFs. (i)–(iii) refer to the random,
identity, and reverse permutations, respectively. Results are averaged over 100 instances of A.

for 100 instances of configurations A for different choices of permutations σ on chains
of 30, 50, and 100 DOFs.

We first measure the probability that CCD maps a neighbor configuration of A to
B. Table 1 shows that when employing CCD to increasing perturbations of a random
configuration A, the probability of obtaining the IK solution B to which A maps decreases
rapidly. In general the probability gets respectively smaller when employing CCD with
the identity, reverse, and random permutation. In fact, when employing CCD with the
random permutation on a chain of 50 DOFs, the probability of obtaining the same IK solu-
tion B drops quickly to 0.0001% when increasing the perturbation to 10◦. The decrease
in the probability of obtaining the same solution in C̄ upon increasing neighborhood radii
in C indicates that the sampling of solutions is not limited to a particular region of C̄.

We now compare the obtained distribution of solutions in C̄ with the distribution of the
sampled neighbor configurations. For each distribution we measure the distance between
the mean and median configurations. The median configuration of the neighborhood of
A corresponds to the median distance between A and its neighbor configurations. The
median configuration of the obtained distribution in C̄ corresponds to the median distance
between B and obtained solutions in C̄. Figure 3(a) shows that for each of the chains
the distance between the mean and median configurations in the distribution of sampled
solutions is persistently larger than in the distribution of neighbor configurations of A.
The difference between the two distributions gets smaller as neighbor configurations
of A get more diverse with the increase of neighborhood radius and number of DOFs.
Figure 3(b),(c) illustrates how small perturbations around a configuration A can map to
a diverse set of solutions. Similar results are obtained for permutations other than the
random one. While the observed diversity is not desirable when kinematically constrained
chains need to follow a particular trajectory [97], this very feature of CCD allows us in
this work to obtain different solutions and so explore different regions of C̄.

This analysis shows that CCD allows PEM to explore different configurations of C̄
for redundant chains. While the question whether applying CCD to C allows us to cover
all components of C̄ remains, in practice, the PEM exploration of C̄ is sufficient to model
equilibrium fluctuations in proteins. As shown in Section 5, a good agreement is obtained
between 〈Xi 〉measurements computed over the sub-space of low-energy conformations
to which C̄ maps under the energy minimization procedure and measurements provided
from experiments or guided simulations.
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(a) (b) (c)

Fig. 3. (a) A distribution of configurations in C is obtained by sampling uniformly at random 1,000,000
configurations of kinematic chains of 30, 50, 100 DOFs from neighborhoods of radii {1◦, 5◦, 10◦} around a
configuration A sampled uniformly at random in C. Mapping this distribution with CCD yields a distribution of
configurations in C̄. For each distribution we measure the distance between the mean and median configurations
through ρ, the geodesic distance in SO(2)n normalized by the number n of DOFs. We plot the ratio of the
distance corresponding to the distribution in C̄ over that corresponding to the distribution in C averaged over
100 instances of A. (b) Configurations of a chain with 12 DOFs are sampled uniformly at random from a
10◦ radius neighborhood that maps with CCD to the configurations shown in (c). (a)–(c) Results shown are
obtained when CCD employs the random permutation of DOFs.

5. Results. We here assess the PEM exploration of the equilibrium conformation space
of a protein polypeptide chain by directly comparing PEM-modeled fluctuations of the
chain with experimental and guided simulation measurements of equilibrium fluctuations
that occur over a broad range of timescales.

5.1. Implementation Details. In our implementation of CCD nmax is set to 500 and
ε = 0.001 Å. The MAX ENERGY cutoff is 5000 kcal/mol. In the energy minimization
procedure, Nmax is set to 1000, N = 300, µ = 2 kcal/mol, and η = 20 kcal/mol. The
steepest descent employed to explore the self-motion manifold is limited to 50 steps.
The damping constant Kdi in the pseudo-energy function is 10 for all proteins in this
work. Initial values for the window length l and overlap δl are set to 20 and 15 amino
acids, respectively. If the PEM-obtained fluctuations appear biased by the selection of
the window length, as detailed in Section 4.1.3, both l and δl are incremented by five
amino acids. Even though theoretical maximum values for the parameters l and δl can
reach the entire chain length N , we recommend 20 ≤ l ≤ 40 to maintain accuracy
and efficiency. Convergence of PEM-obtained fluctuations for the proteins presented in
this work is attained on l = 30 and δl = 25 amino acids. In the exploration of the
self-motion manifold we numerically compute q̇ through the implementation of finite
differences in the OPT++ nonlinear optimization package [98] modeling the energy
function as an FDNLF1 object. The conjugate gradient descent is implemented through
the OPTCG procedure in the same package modeling the pseudo-energy function as an
NLF1 object since its gradient can be computed analytically. PEM is implemented in
ANSI C/C++ using Intel® 8.0 compilers and libraries. All experiments were run on
the Rice TeraCluster of 900 MHz Intel® Itanium2® processors.

5.2. Modeling Global Equilibrium Fluctuations with PEM. We apply PEM to model
equilibrium fluctuations of the SH3 domain of the Fyn tyrosine kinase [99], PDB code
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1NYF, and α-Lac [100], PDB code 1HML. PEM obtains around 12,000 conformations
for each of the six fragments of the SH3 polypeptide chain in a total of 80 hours of
computation time. For α-Lac, PEM obtains around 10,000 conformations for each of its
19 fragments in a total of 164 hours of computation time. Equilibrium fluctuations of
these proteins, measured over the obtained ensembles as described in Section 4.1.3, are
compared with NMR and guided simulation measurements. For SH3, the comparison
shown here is with NMR order parameter (S2) data, whereas for α-Lac the comparison
shown is with RMSD values obtained from a guided simulation. Comparisons of modeled
equilibrium fluctuations with other NMR measurements are available for more proteins
in [82] (work in [82] also shows that PEM-modeled equilibrium fluctuations are robust
against different energy functions such as CHARMM [26] or AMBER [27], weighting
functions, permutations of DOFs employed by CCD, and interleaving schemes in the
energy minimization procedure).

We choose the comparison with available S2 data for SH3 because these data quantify
the degree of heterogeneity in equilibrium fluctuations of bond vectors over multiple
timescales [5]. S2 = 1 indicates no heterogeneity, whereas S2 = 0 indicates a uniform
distribution over all allowed vectors. Amide S2 data measure fluctuations that occur
within nanoseconds, whereas methyl S2 data measure fluctuations that may take up to
milliseconds [101]. Consequently, while obtaining an ensemble that agrees with NMR
methyl S2 data remains a challenge for simulation techniques [8]–[13], the comparison
with these data of the PEM-obtained ensemble of SH3 is a direct way to assess whether the
PEM exploration of conformation space is sufficient to model equilibrium fluctuations
with no timescale limitations. We measure S2 data for a bond as in [54] by averaging
over the distribution of vectors observed for the bond in the obtained ensemble.

SH3 is an important protein to understand cancer at a cellular level. Figure 4(a1)
shows the ensemble of conformations obtained with PEM for all the fragments defined
on the 56 amino acid polypeptide chain of this protein. In Figure 4(a2) we compare
S2 data measured over SH3 equilibrium conformations sampled with PEM with NMR
S2 data [102]. The data agree with a Pearson correlation of 0.93. The good agreement,
in particular with the NMR methyl S2 data, indicates that PEM-modeled equilibrium
fluctuations are not limited to fast timescales but fully capture SH3 fluctuations observed
at equilibrium.
α-Lac is involved in the synthesis of lactose. Figure 4(a2) shows the ensemble of

conformations obtained with PEM for all the fragments defined on the 123 amino acid
polypeptide chain of this protein. In Figure 4(b2) we plot RMSD values obtained with
PEM for each amino acid of α-Lac vs. RMSD values measured over an ensemble pub-
lished in [53]. Since the guided simulation in [53] uses experimental data such as hydro-
gen exchange protection factors [19], the published ensemble [53] includes fluctuations
that occur beyond nanoseconds. The RMSD values agree with a Pearson correlation of
0.80. This correlation indicates that the α-Lac equilibrium fluctuations modeled with
PEM include fluctuations that occur at timescales slower than nanoseconds.

6. The Accuracy of Modeled Fluctuations and Higher-Order Approximations.
PEM is a first-order method that samples conformations of a fragment while the rest
of the polypeptide chain is unperturbed. The results presented in Section 5 indicate that
PEM allows us to model with remarkable accuracy equilibrium fluctuations in proteins
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(a1) (a2)

(b1) (b2)

Fig. 4. (a1), (b1) Cref is shown opaque with the PEM-obtained fragment conformations shown transparent
for SH3 and α-Lac, respectively. Conformations are drawn with VMD [89]. (a2) Comparison of SH3 PEM-
obtained S2 data (S2

calc) with NMR S2 data (S2
exp). (b2) Comparison of RMSD values obtained with PEM

for each amino acid of α-Lac with RMSD values measured on a Monte-Carlo ensemble [53]. Both data sets
are normalized to account for their different magnitudes. (a2), (b2) The dashed line indicates the linear least
squares regression fit of the data sets, and the continuous line is the identity line.

with non-concerted motions. The applicability of PEM to such proteins is important
because proteins with non-concerted motions represent a significant fraction of proteins
with known structure [19], [20]. Moreover, the comparison of PEM-modeled fluctuations
with experimental data can be used as a framework to test whether local fluctuations are
sufficient to explain experimental data.

In the absence of experimental data with which to compare PEM-modeled fluctu-
ations, higher-order approximations are needed to test the accuracy of PEM-obtained
measurements independently of experimental data and possibly detect the presence of
concerted motions. Since in most proteins concerted motions involve typically no more
than two fragments of the polypeptide chain at a time [19], employing a second-order
approximation may be sufficient in detecting the presence of correlated fluctuations at
equilibrium.

The second-order approximation would involve two windows sliding over a polypep-
tide chain. All possible ordered pairs of non-intersecting windows can be easily enumer-
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Fig. 5. Under the first-order approximation employed by PEM, shown in the left panel, a window slides over a
polypeptide chain. This is illustrated by black windows of length l = 20 and overlap δl = 10 on a polypeptide
chain of N = 60 amino acids. The second-order approximation is shown in the right panel. All possible ordered
pairs of non-intersecting windows with length l and overlap δl are considered. In this case, conformations
are first obtained by PEM for the fragments defined by the windows drawn in black. With each so-obtained
conformation as initial reference structures, final conformations are then obtained by applying PEM to the
fragments defined by the windows drawn in gray.

ated, as illustrated in Figure 5 for windows drawn in black and gray. For each ordered
pair of non-intersecting windows, conformations with PEM-obtained fluctuations of the
fragment defined by the window drawn in black would be used as initial Cref structures to
obtain conformations with additional fluctuations modeled with PEM for the fragment
defined by the window drawn in gray. Note that in Figure 5 all possible ordered pairs of
non-intersecting windows are considered since the decision of which window to use to
obtain initial structures may affect the ensemble of final conformations generated.

While details of the implementation of the second-order approximation go beyond
the scope of this work, the pseudocode in Algorithm 3 provides a high-level glimpse
on how to obtain equilibrium conformations of a protein when considering all pairs of
fragments that can be defined over a polypeptide chain. The measurement of average
quantities 〈Xi 〉 for each amino acid i over the obtained conformations can be addressed
similarly as in Section 4.1.3. Technical details on the implementation of the second-order
approximation are currently under investigation.

If the measurements obtained with the second-order approximation agree with those
obtained by PEM, then there is strong evidence that the second-order approximation does
not significantly change the ensemble of conformations obtained with PEM. That is, the
equilibrium fluctuations of the protein under investigation are inherently local and can be
modeled by PEM with high accuracy. If however the equilibrium fluctuations generated
with PEM do not agree with those obtained with the second-order approximation, then
there is evidence that correlated fluctuations may be present. We are currently working
to introduce higher-order approximations to model equilibrium fluctuations in a more
general framework, that will also incorporate concerted motions.

7. Discussion. We have presented PEM, a novel method that combines a robotics-
inspired probabilistic exploration with the theory of statistical mechanics to model pro-
tein equilibrium fluctuations. PEM employs the computationally feasible approach of
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Algorithm 3. Second-Order Model (Cref, l, δl)

Input:
Cref: reference protein conformation
l: length of window sliding over polypeptide chain of protein
δl: overlap between consecutive windows

Output: Ensemble of low-energy protein conformations �

1: �← ∅
2: P ← protein polypeptide chain comprising amino acids 1 to N
3: Slide over P a window A of length l with overlap of δl to define fragments

[n1, n2]
4: for each fragment [n1, n2] defined by A do
5: slide over P a window B of of length l with overlap of δl to define fragments

[m1,m2]
6: if [n1, n2] ∩ [m1,m2] == ∅ then
7: C[n1,n2] ← low-energy conformation of [n1, n2] with rest of P fixed as in Cref

8: for each fragment [m1,m2] defined by B do
9: C[n1,n2],[m1,m2] ← low-energy conformation of [m1,m2] with rest of P

fixed as in C[n1,n2]

10: �← � ∪ C[n1,n2],[m1,m2]

modeling global equilibrium fluctuations of a protein polypeptide chain by combining
local equilibrium fluctuations of consecutive overlapping fragments of the chain.

PEM-modeled fluctuations agree very well with NMR and guided simulation mea-
surements of equilibrium fluctuations that span multiple timescales. These results and
our analysis of the PEM exploration of the kinematically constrained conformation space
of a fragment indicate that sampling conformations independently of one another allows
PEM to explore the conformation space available to a protein at equilibrium sufficiently.
Unlike guided simulation techniques, PEM does not use experimental measurements
for a sufficient exploration. Thus PEM complements both experimental and simulation
techniques as it provides a detailed and extensive view of the equilibrium conformation
space available to a protein.

More than 90% of PEM’s computation time is spent in the energy minimization
procedure. This is due to two reasons. First, the all-atom energy function employed to
compute the energy of a conformation is of quadratic complexity in the number of atoms
of a protein. Second, the 20 kcal/mol cutoff employed for the energetic difference of an
equilibrium conformation from the reference energy and the ruggedness of the energy
landscape require a high number of minimization steps. This computation cost begs the
need for more efficient energy computations and energy minimization techniques that
still maintain the physico-chemical details needed to relate computation and theory with
wet-lab experiments.

Currently PEM allows us to model only non-concerted equilibrium fluctuations be-
cause it samples conformations of a fragment while the rest of the polypeptide chain
is unperturbed. As a first-order approximation method, PEM provides a robust starting
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point to consider higher-order approximations that will allow us to capture even con-
certed motions at equilibrium. We are investigating such higher-order approximation
strategies of defining fragments and combining fragment fluctuations so as to model
concerted motions in proteins. We are also considering uses of PEM in conjunction
with MD and Monte Carlo for a finer sampling of particular regions of the sampled
conformation space.

Because proteins with non-concerted equilibrium fluctuations constitute a significant
portion of proteins with known structure [19], [20], the proposed PEM is an important first
step toward understanding how equilibrium fluctuations affect the ability of a protein
to interact with other biomolecules. It is our hope that PEM will become a valuable
tool in understanding the microscopic principles that drive macroscopic events such as
biological function.
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