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ABSTRACT
In the aftermath of COVID-19, screening for pathogens has never
been a more relevant problem. However, computational screening
for pathogens is challenging due to a variety of factors, including (i)
the complexity and role of the host, (ii) virulence factor divergence
and dynamics, and (iii) population and community-level dynamics.
Considering a potential pathogen’s molecular interactions, specifi-
cally individual proteins and protein interactions can help pinpoint
a potential protein of a given microbe to cause disease. However,
existing tools for pathogen screening rely on existing annotations
(KEGG, GO, etc), making the assessment of novel and unannotated
proteins more challenging. Here, we present an LLM-inspired ap-
proach that considers protein sequence and structure to predict
protein virulence. We present a two-stage model incorporating
evolutionary features captured from the DistilProtBert language
model and protein structure in a graph convolutional network. Our
model performs better than sequence alone for virulence function
when high-quality structures are present, thus representing a path
forward for virulence prediction of novel and unannotated proteins.
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1 INTRODUCTION
Recent global biological threats like COVID-19 have shown the
urgency to detect pathogens swiftly and promptly. However, detect-
ing pathogens requires improved modeling of what causes disease
or virulence, or simply, “what makes a bad bug bad?”. There are
several challenges to generally modeling and predicting virulence,
including the host immune system, pathogen-host interactions,
microbe-microbe interactions, as well as the complex interplay of
genes responsible for virulence[10]. Despite much progress in this
field [3, 8, 26], much remains to be elucidated for viral, bacterial,
and eukaryotic virulence across a wide range of hosts. These “con-
founders” for accurate pathogen-host virulence prediction result
from protein interactions occurring at the molecular level. Analyz-
ing a pathogen’s proteins and associated functions with detailed
characterization can provide insights into their general virulence
and distinguish host or environmental-specific virulence and any
interplay with different genes to cause virulence.

One approach for describing a protein’s function is by its gene
ontology (GO) terms. These terms classify a protein’s function hier-
archically related by three classes: Molecular Function, Biological
Process, and Cellular Component[2]. GO annotations describe a pro-
tein’s function at the most granular level, where a set of GO terms
assigned to a protein can provide a well-rounded understanding of
the protein’s function. However, these terms are not associated with
virulence directly. Therefore, virulence-specific protein databases
are needed to link virulence factors to specific proteins. A few
relevant databases are the Virulence Factor Database (VFDB)[8],
VEuPathDB[1], the SeqScreen Functions of Sequences of Concern
(FunSoC) database[5], and a recently created resource is the Patho-
genesis Gene Ontology database, or PathGO[14].

Methods that rely on these virulence factor databases often use
local sequence alignment and sequence similarity to determine
the presence or absence of a specific virulence factor. Still, as the
protein sequence divergence increases, or for proteins not in the
database, the performance of these methods rapidly decreases. Fur-
thermore, while a widely used resource, VFDB has limitations, in-
cluding poor sequence annotation, discrepancies of pathogenic and
non-pathogenic features, and poor GO term diversity[10]. A recent
approach that takes advantage of both GO terms and the richer
virulence annotation FunSoCs is called Seqscreen[5]. At its core,
SeqScreen is a human-in-the-loop machine learning platform for
assigning virulence functions (functions of sequences of concern,
or FunSoCs) to sequence fragments, from individual sequencing
reads to gene fragments, to assembled contigs and ORFs. Although
SeqScreen only labels a small fraction of the proteins in UniRef100
with FunSoCs, this is on par with expectations as these are thought
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to be low prevalence in microbes. However, if a novel protein arises
that is not contained in the SeqScreen FunSoC database or is highly
divergent from those contained within, it will struggle to charac-
terize it.

Alternatively, several deep learning methods have recently been
deployed such as DeepGO[18], and DeepFRI[12]. The former is a
protein sequence tool composed of a deep neural network with
convolutional layers, while the latter is a protein structure-based
graph convolutional network (GCN). However, the performance
of these tools is limited as predicting GO terms contains a similar
fundamental problem to predicting virulence, where exotic proteins
are poorly understood.

In this work, we propose to exclude similarity scoring and con-
sider the structural features that promote the function or virulence
annotation for automatic function and virulence annotation as-
signment. Proteins determine a wide set of functions from their
3-dimensional conformations, from binding specificity and confer-
ring mechanical stability to catalysis of biochemical reactions[17].
However, the virulence of a protein can come from any or a com-
bination of these functions. A basic understanding of where these
interactions can occur is unknown and could provide a better fun-
damental understanding of what constitutes virulence allowing
better characterization of novel proteins.

As deep learning models have become popular in recent years,
their application to biological problems has shown substantial
progress. Availability of protein structure has recently exploded
from deep models like AlphaFold2[16]. Concerning protein struc-
ture, deep large language models (LLM), have recently been shown
to capture evolutionary features along sequences as demonstrated
in ESMFold[19], replacing the information captured from multiple
sequence alignments (MSAs) that other state-of-the-art models use.
Similarly, its been shown that features extracted from pre-trained,
task-agnostic, LLM can significantly increase classification perfor-
mance in many biological problems[20]. LLM have been deployed
for protein function prediction. SPROF-GO [27] surpassed state-
of-the-art sequence-based and network approaches by coupling a
LLM and stable diffusion. Furthermore, advances in geometric deep
learning have provided new modules built for protein structure-
based tasks. In particular, geometric vector perceptions (GVP) are
a novel neural module transforming euclidean positions to their
equivariant form which is beneficial in protein structure-related
tasks such as docking[15].

This work takes advantage of LLMs and protein structure to
predict the protein virulent function expressed by FunSoCs an-
notations with unlabeled proteins. We include a baseline method
considering only sequence to see what sequence can understand
about virulence. The LLM finds local sequential features to make
its decision on virulence. The LLM we used is a flavor of ProtBert
[6], a masked language model with BERT transformer architecture.
ProtBert was trained on UniRef100, composed of over 217 million
protein sequences. It has shown to be good at predicting GO terms
which provide proximity to function [22]. The baseline model uses
a fine-tuned and distilled version of ProtBert called DistilProtBert
[11] to classify FunSoCs. Our proposed method is a graph-based
approach exploiting GVPs in GNNs coupled with evolutionary in-
formation from DistilProtBert. This method allows us to exploit

the explicit geometry of the protein and evolutionary information
from pairing nearby amino acids.

2 METHODS
2.1 Dataset
The protein dataset was curated from UniProtKB [9] and Swiss-Prot
[4] from domain experts manually annotating FunSoCs. We con-
sidered all FunSoCs categories available amounting to 32 different
FunSoCs non-mutually exclusive. The definition of FunSoCs is a
broader set of annotations allowing for diversity amongst each
FunSoCs annotation such as cytotoxicity covering small peptides to
structures containing sub-units amounting over 4000 amino acids.
A full table of each FunSoC and associated number of structures
used for training is available in Table S1.

Protein structures were first searched from AlphaFold database
[24] updated on November 1st, 2022. If the protein did not ex-
ist in their database, it was computed using ColabFold v1.5.[21].
Structures with an average predicted local distance difference test
(PLDDT) score of 75 or lower were excluded to limit low-quality
structures for a total of 8,000 structures. Experimental structures
were not used to limit potential noise from missing domains to
unwanted chains. Furthermore, excluding experimental structures
had a small impact on the dataset size since most UniProt IDs lacked
any experimental structures. Protein structures were also limited
to no larger than 2500 amino acids due to memory constraints.
Lastly, structures shorter than 50 amino acids were also excluded to
remove any sequences lacking tertiary structure. Protein structures
were split into training, validation, and test sets with an 80/10/10%
ratio split. The splits were enforced on a per-FunSoC basis meaning
each FunSoC contained at least 10% held out for testing. Weighted
sampling during training was enforced to help elevate the class
imbalance between FunSoCs.

2.2 Graph Construction
Graphs were constructed at the residue level where each node is
represented the backbone carbon alpha of each amino acid (see
Figure 1). Edges were calculated from𝐶𝛼 −𝐶𝛼 contact maps with an
10Å cutoff. A k-nearest neighbor of graph nodes representing 𝐶𝛼 s
was also tried with a grid search of [5,10,15,20,30] finding similar
results to contact maps. A node embedding from DistilProtBert [11]
of vector size of 1024, was assigned per node from respective amino
acid. Node features are composed of scalar and vector features. The
scalar features include the sines and cosines of the dihedral angles
𝜙,𝜓,𝜔 , and vector features consist of the forward and reverse unit
vectors in the directions of adjacent C-alpha atoms from two neigh-
boring amino acids and the unit vector in the imputed direction of
C-alpha and C-beta atoms. More explicitly, the unit vector direction
is calculated considering perpendicular bisection of the nitrogen,
and carbon atom from carboxyl group.

Edge features are composed of scalar and vector features. Scalar
features include the encoding of C-alpha distance in terms of 16
Gaussian radial basis functions with centers evenly spaced between
0 and 20 angstroms, and a positional encoding of j-i[25], repre-
senting the AA distance alone the 1D protein sequence. Lastly,
the vector feature is the unit vector in the direction of connecting
carbon alpha atoms.
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Figure 1: Schematic Overview of Method: Overview of GVP Network+LLM classifier, input protein structure contact map of
𝐶𝛼 −𝐶𝛼 contacts less than 10Å is calculated then represented in a graph network. Amino acid embedding from LLM is assigned
to each node 𝑆𝑎 concatenated with additional directional and positional features 𝑉𝑎 . Edge positional and directional features
are also assigned 𝐸𝑎 . Graph is then passed through GVP Covolutional Network for FunSoCs prediction.

2.3 Model Training and Hyper-parameter
tuning

To account for the imbalanced dataset, both models were trained to
minimize weighted binary cross entropy giving weight to FunSoCs
with fewer examples. The learning rate for both models was 0.0001.
Random sampling was also weighted for training and validation
splits. No filtering was performed pre-split besides filtering for
structures larger than 2500 residues due to computational con-
straints for training. During training, DistilProtBert’s layers were
gradually unfrozen to fine-tune to classification task [13]. A token
was generated for each amino acid in each protein structure with
padding and truncation for a length of 2500. This is the same cut
off of largest protein size ensuring each protein gets a token for
encoding. A batch size of four was used due to memory constraints
fromDistilProtBert. To minimize batch bias, accumulative gradients
were used for every 8 batches. This was shown to provide a small
performance increase. The training was performed on 96GBs of
system ram, Nvidia 3070 8GB GPU, and Nvidia 3090 24GB GPU for
a duration of eight hours for each model.

3 RESULTS
As the first investigation into virulence without annotation to sim-
ulate novel proteins, there is no outright comparison of other ap-
proaches. We consider precision and recall as two suitable metrics

of performance because high fidelity and sensitivity is required
for good pathogen detection. Since there are 32 different FunSoCs
labels to consider, we record precision and recall for each FunSoC
category and calculate the corresponding F1 score as this summa-
rizes both precision and recall in one value. As shown in Figure
2, the individual performance of each FunSoC category has high
variability for both the sequence-only baseline and the proposed
model. However, there are several specific categorical results to
take note of.

In the cases where the proposed method under-performed to
sequence, including development in host and non-viral invasion,
there is a large discrepancy in the ratio of high-quality predicted
structure quality in the FunSoC category. Although we selected
a 75 average PLDDT score cut-off for included structures, many
poor-quality structures persisted by containing a high-scoring core
and large loops of disordered regions wrapping around the protein.
An example is the AlphaFold model of Q5A0E5, a transcriptional
regulator NRG1 from Candida albicans. The predicted structure
consists of largely disordered loops with small alpha helices boost-
ing the artificial score of the model just enough so to meet the 75
PLLDT threshold. In contrast, the sequence doesn’t contain the
same challenge as the structure, allowing for a less noisy sample
for better prediction.
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Figure 2: Performance of the two methods in the virulence prediction task. F1 score of the DistProtBert LLM model (blue) and
the GVP model (red) across different FunSoC groups.

FunSoCs which performed marginally better on the GVP model
(structure-based), correlated to a large ratio of high-quality struc-
tures in the dataset. These FunSoCs include viral adhesion and
virulence regulator containing an average PLDDT of each structure
much higher than the selected cut-off with an average PLDDT of
all structures in the FunSoC of 92. Previous work has demonstrated
that predicted structures from AlphaFold with an average PLDDT
scores of 90 or above display interactions and mutation behavior
close to their experimental counterparts[7].

FunSoCs that perform similarly on both the baseline and the
proposed method showed limitations for both approaches. In par-
ticular, degrade ECM is a FunSoC containing many well-known
proteins, including metalloproteases and disintegrin proteins or a
protein containing a metalloprotease sub-unit in a chain. Metallo-
protease binding and function are well known, relying on a zinc
metal motif to cleave proteins. The motif is conserved amongst the
metalloprotease family with a similar story for disintegrins, but
both methods performed poorly on Degrade ECM. This highlights
that both methods may need more refined features and structure
for classification. The structure as a whole is not enough to classify
the proteins well. The poor performance is also demonstrated by
virtually zero scores in bacterial counter signaling and Host GTPase
for both sequence and protein structure.

Lastly, the high performance of both the baseline (highlighted
in blue) and our structural method (highlighted in red) for the
Counter Immunoglobin is misleading. This FunSoCs training data
is small, incorporating a total of seven structures, making classi-
fication much simpler at the cost of real-world performance. The
lack of structures is primarily due to the limited amount of anno-
tated proteins with the designated FunSoC. Counter immunoglobin
structures also lack structural and sequence similarity consisting

of a few long alpha-helix secondary structures connected by disor-
dered domains. When clustering these seven proteins around 90%
sequence similarity the proteins clustered into two groups.

4 DISCUSSION
Here we present a large language model (LLM) based approach for
predicting microbial virulence from protein structure. As virulence
amongst the different categories varied, so did the protein struc-
ture quality and available data. Using protein structure showed
a performance uplift in FunSoC categories that contained high-
quality structures such as virulence regulator. Conversely, those
with low-quality structures performed worse than sequence. The
performance discrepancies of structure quality provide evidence
of the potential superiority of structure-based models when high-
quality data is available. However, both models contained FunSoCs
categories that performed poorly. These poor performing FunSoCs,
it will be difficult to determine function and virulence from protein
structures. However, protein substructures such as binding sites
are known to orchestrate protein function [23]. Exploration is still
possible to isolate particular substructures associated with protein
function. Therefore, substructures for poor-performing FunSoCs
could show a performance uplift by their targeted nature.

Furthermore, structure quality is an important consideration.
Poor quality structures result in high proportions of disordered
loops wrapping around small secondary structures or, in worst
cases, no secondary structures failing to form a comprehensive
tertiary structure.

Considering the performed structure filtering, more comprehen-
sive filtering is needed to ensure quality structures. One potential
approach to consider is Alphafold’s predicted aligned error matrix
measuring the alignment error for an amino acid in an all vs. all
fashion. If presented with high-quality structures, the square matrix
would contain low values indicating each amino acid’s position has
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a high probability of being placed appropriately for the other amino
acids. In contrast, structures of low quality will contain regions
in this matrix with high values indicating there are regions that
Alphafold did not know how to place respectively to the rest of the
structure. These high-value regions typically encode for a disor-
dered region. However, if the area of high error is large enough, it
indicates Alphafold doesn’t know how to place amino acids from
a tertiary structure. The predicted aligned error matrix can pin-
point both low scoring and high scoring PLDDT regions that are
inconsistent with the overall tertiary structure of the protein

5 CONCLUSION
The described methods represent a first step towards leveraging
protein structure and sequence alone to describe and predict micro-
bial virulence broadly. We showed that, when high-quality protein
structures are available, a structure-based approach performs bet-
ter than a state-of-the-art deep learning sequence based model.
However, some FunSoCs need further investigation to increase per-
formance. Future work will be conducted to gather higher-quality
structures. understand what substructures correlate to promoters
and deterrents to associate protein function and virulence.
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Table S1: Functional Sequence of Concern Categorical Structures

FunSoC Name Number of Positive Samples

Antibiotic Resistance 1744
Avirulence Plant 48
Bacterial Counter Signaling 31
Counter Immunoglobin 7
Cytotoxicity 511
Degrade ECM 391
Development In Host 73
Disable Organ 2294
Host Cell Cycle 162
Host Cell Death 307
Host Cytoskeleton 17
Host GTPase 36
Host Transcription 176
Host Translation 70
Host Ubiquitin 20
Host Xenophagy 44
Induce Inflammation 50
Invasion Hostcell Viral 543
Nonviral invasion 58
Plant RNA Silencing Viral 58
Resist Host Complement 32
Resist Oxidative 46
Secreted Effector 67
Secretion 494
Suppress Detection 61
Toxin Synthase 439
Viral Adhesion 459
Viral Counter Signaling 545
Viral Movement 68
Virulence Activity 92
Virulence Regulator 300
Nonviral Adhesion 58
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