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Abstract. This paper develops a novel approach for the
falsification of safety properties given by a syntactically
safe linear temporal logic (LTL) formula φ for hybrid sys-
tems with nonlinear dynamics and input controls. When
the hybrid system is unsafe, the approach computes a
trajectory that indicates violation of φ. The approach is
based on an effective combination of model checking and
motion planning. Model checking searches on-the-fly the
automaton of ¬φ and an abstraction of the hybrid sys-
tem for a sequence σ of propositional assignments that
violates φ. Motion planning incrementally extends tra-
jectories that satisfy more and more of the propositional
assignments in σ. Model checking and motion planning
regularly exchange information to find increasingly use-
ful sequences σ for extending the current trajectories.
Experiments that test LTL safety properties on a robot
navigation benchmark modeled as a hybrid system with
nonlinear dynamics and input controls demonstrate the
computational efficiency of the approach. Experiments
also indicate significant speedup when using minimized
DFA instead of non-minimized NFA for representing ¬φ.

1 Introduction

Hybrid systems, which combine discrete logic and con-
tinuous dynamics, provide sophisticated mathematical
models used in robotics, highway systems, air-traffic man-
agement, computational biology, and other areas [1]. An
important problem in hybrid systems is the verification
of safety properties [1,2], which assert that nothing “bad”!
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happens, e.g., “the car avoids obstacles.” A hybrid sys-
tem is safe if there are no witness trajectories indicating
a safety violation. Safety properties have been gener-
ally specified as a set of unsafe states and verification
has been formulated as reachability analysis [1–8]. Many
verification methods perform reachability analysis by ap-
proximating reachable states [1, 4, 5] or use abstractions
to obtain finite-state models [6–8]. Reachability analysis
in hybrid systems is generally undecidable [2,3,9]. More-
over, verification methods have an exponential depen-
dency on the dimension of the state space and are limited
in practicality to low-dimensional systems [1, 2, 5].

To handle more complex hybrid systems, alternative
methods [10–16] have been proposed that shift from ver-
ification to falsification, which is often the focus of model
checking in industrial applications [17]. Even though these
falsification methods [10–16] cannot determine that a hy-
brid system is safe, they can compute witness trajecto-
ries when the hybrid system is unsafe (see also [18–20]
for work that focuses on resolution completeness.) Wit-
ness trajectories, similar to error traces in model check-
ing [17], indicate flaws, which can then be corrected.
The falsification methods in [10–14] adapt the Rapidly-
exploring Random Tree (RRT) motion planner [21], which
was originally developed for continuous systems. We re-
cently proposed the Hybrid Discrete Continuous Explo-
ration (HyDICE) falsification method [15, 16], which also
takes advantage of motion planning, but shows signifi-
cant speedup over RRT-based falsification [12–14].

As more complex hybrid systems are considered, lim-
iting safety properties to a set of unsafe states [1–8,
11–14, 19, 20], as it was also the case in our previous
work [15,16], makes it difficult to adequately express the
desired safe behavior of the system. To allow for more
sophisticated properties, researchers have advocated the
use of LTL, which makes it possible to express safety
properties with respect to time, such as “once the con-
centration level of gene A reaches x, then the concentra-
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tion level of gene B will never reach y” or “the robotic
car, after inspecting a contaminated area A should im-
mediately go to the decontamination station B and then
eventually go to one of the base stations C or D.” Us-
ing the temporal connectives G (globally), U (until), X
(next), F (eventually), the safety property in the gene
regulatory example is G(¬πA ∨ G(¬πB)), where propo-
sition πA (πB) is true iff the concentration level of gene
A (resp., B) is at least x (resp., y). For the robotic car,
the safety property is G(πA → (X (πB) ∧ F(πC ∨ πD))),
where πi, i = A, B, C, D, is true iff the car enters i.

LTL has been widely used in model checking of dis-
crete systems in software and hardware [22], and timed
systems [23]. LTL has more recently been used in robotics
applications. The work in [24, 25] generated trajectories
that satisfy LTL constraints on the sequence of triangles
visited by a point robot with Newtonian dynamics by
using a controller that could drive the robot between ad-
jacent triangles. The work in [26] developed an approach
for designing controllers for linear systems that satisfy
LTL specifications. Other work automatically synthe-
sizes controllers from LTL specifications of tasks that
the robot needs to accomplish [27, 28]. LTL in conjunc-
tion with hierarchical abstractions has also been used
to control robotic swarms [29] and in computational bi-
ology to analyze gene networks [30]. The work in [31]
developed a method to verify LTL safety properties for
robust discrete-time hybrid systems.

Traditional approaches for the verification of LTL
safety properties on hybrid systems often cast the prob-
lem as reachability analysis via model checking. The idea
is to construct an abstraction M of the hybrid system
H so that checking safety properties expressed by an
LTL formula φ on H can be accomplished by checking
φ on M [6]. Moreover, since safety properties have fi-
nite counterexamples, an NFA A can be constructed to
represent ¬φ, where the size of A is at most exponential
compared to the size of φ [32]. This allows for checking
φ on H via model checking on M×A. The computation
of a suitable abstraction M is a non-trivial issue [6].

Alternative approaches based on motion planning [10–
16] focus on hybrid-system falsification, but are limited
to safety properties given as a set of unsafe states. Ap-
plying these alternative approaches to falsify LTL safety
properties is challenging due to intricacies of motion
planning. During the search, motion planning extends
a tree T in the state space of the hybrid system H by
adding valid trajectories as new branches. Consider the
trajectory ζ from the root of T to a vertex v. In reacha-
bility analysis [10–16], a witness trajectory is found when
the state associated with v is unsafe. This is not suffi-
cient when considering a safety property given by an LTL
formula φ, since ζ needs to satisfy ¬φ. It then becomes
necessary to maintain the propositional assignments sat-
isfied by ζ and to effectively extend T so that more and
more of the propositional assignments of ¬φ are satisfied.

To handle LTL safety properties, one can consider a
straightforward extension of the work in [10–16] to use
A as an external monitor to keep track of the automa-
ton states associated with each tree trajectory and to
determine from this information when a tree trajectory
satisfies ¬φ. As shown in this work, however, such an
approach is computationally inefficient.

The main contribution of this paper is to effectively
incorporate LTL safety properties into hybrid-system
falsification by combining model checking with motion
planning. This extends our previous work [15,16] which
limited safety properties to a set of unsafe states. The
proposed approach, Temporal Hybrid Discrete and Con-
tinuous Exploration (TemporalHyDICE), can be used to
compute witness trajectories that indicate violation of
safety properties specified via syntactically safe LTL for-
mulas. The reason for using syntactically safe LTL is that
determining whether an LTL formula is safe is PSPACE-
complete [33]. The work in [33] also provides sufficient
syntactic requirements for safe LTL formulas. In partic-
ular, it shows that an LTL formula that uses only the
temporal connectives X (next), R (release) and G (glob-
ally) when put in positive-normal form (by pushing nega-
tions all the way to leaves) is safe. Such formulas, when
negated, can be translated to NFAs.

TemporalHyDICE allows for hybrid systems with non-
linear continuous dynamics and input controls. In fact,
TemporalHyDICE only requires the availability of a sim-
ulator, which, when given a state s, an input control u,
and a time step ∆t, computes the new state that results
from following the dynamics and the discrete transitions
of H. Furthermore, TemporalHyDICE does not require
explicit representations of invariants, guards, and propo-
sitions. These are treated as black-box functions used to
answer membership queries. However, TemporalHyDICE
needs an input abstraction M of the hybrid system H.

In its core, TemporalHyDICE draws from research in
traditional and alternative approaches in hybrid systems
to combine model checking and motion planning. This
presents significant challenges, as it requires dealing with
state-space search, memory usage, scalability, and pass-
ing of information between model checking and motion
planning. In TemporalHyDICE, model checking guides
motion planning by providing discrete witnesses along
which to extend T . A discrete witness is a sequence
[τi]

n−1
i=0 of propositional assignments that violates φ, which

is computed by searching on-the-fly the abstraction M
and the automaton A. Motion planning extends T as
guided by the discrete witness [τi]

n−1
i=0 so that more and

more of τ0, . . . , τn−1 are satisfied in succession. As mo-
tion planning extends T , it also gathers information to
estimate the progress made in the search for a witness
trajectory. This information is fed back to model check-
ing to select in future iterations alternative discrete wit-
nesses that could expand the search along new direc-
tions. This interplay between model checking and motion
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planning is a crucial component that allows TemporalHyDICE
to effectively search for a witness trajectory.

TemporalHyDICE is tested on a hybrid system which
models a vehicle driving over different terrains, similar
to the navigation benchmark proposed in [34] and used
in [15, 16]. The vehicle dynamics vary from one terrain
to another and are selected from second-order models
of cars, differential drives, and unicycles. Each terrain
is subdivided into a uniform grid and some grid cells
are labeled as guards, jumps, or propositions. Guards
provide conditions that can trigger discrete transitions
that enable the vehicle to move from one terrain to an-
other. Syntactically safe LTL formulas are provided over
the propositions. Experiments demonstrate the compu-
tational efficiency of TemporalHyDICE and show the im-
portance of combining model checking and motion plan-
ning. Experiments also indicate significant speedup when
using minimized DFA instead of non-minimized NFA for
representing ¬φ. This agrees with the work in [35], which
shows significant speedup when using DFAs instead of
NFAs in model checking.

The paper is organized as follows. Section 2 pro-
vides the mathematical framework. Section 3 describes a
straightforward approach of incorporating LTL into re-
lated work [10–16] by using A as an external monitor.
Section 4 describes TemporalHyDICE, which effectively
incorporates LTL. Section 5 describes the experiments.
A discussion concludes the paper in Section 6.

2 Mathematical Framework

This section defines hybrid automata, LTL syntax and
semantics, the automaton for ¬φ, LTL over hybrid-system
trajectories, and the problem statement.

2.1 Hybrid Systems

Hybrid systems are modeled by hybrid automata [2].
This paper extends the definition of hybrid automata to
allow for hybrid systems with nonlinear dynamics and
input controls, and for invariants, guards, and jumps to
be specified as black-box functions.

Definition 1 (Hybrid Automaton). A hybrid au-
tomaton is a tuple

H = (S, INVARIANT, E, GUARD, JUMP, U, f), where

– S = Q ×X is the Cartesian product of the discrete
and continuous state spaces;

– Q is a finite set;
– X maps q ∈ Q to Xq, where Xq is the continuous

state space associated with q;
– INVARIANT maps q ∈ Q to INVARIANTq, where

INVARIANTq : Xq → {true, false}
represents constraints that any x ∈ Xq should satisfy;

– E ⊆ Q×Q is the set of discrete transitions;

– GUARD maps (qi, qj) ∈ E to GUARD(qi,qj), where
GUARD(qi,qj) : Xqi

→ {true, false}
is the guard function associated with (qi, qj);

– JUMP maps (qi, qj) ∈ E to JUMP(qi,qj), where
JUMP(qi,qj) : Xqi

→ Xqj

is the jump function associated with (qi, qj);
– U maps q ∈ Q to Uq, where Uq ⊆ Rdim(Uq) is the set

of input controls associated with q;
– f maps q ∈ Q to fq, where

fq : Xq × Uq → Ẋq

is a set of differential equations that describes the
continuous dynamics associated with q.

The state of the hybrid automaton is a tuple (q, x) ∈ S,
which describes both the discrete and the continuous
components. While in mode q, when applying an input
control function ũ : [0, T ] → Uq for T ≥ 0 time units,
the continuous state changes according to the dynamics
expressed by fq, as shown in the following definition:

Definition 2 (Continuous Trajectory). A state s =
(q, x) ∈ S, a time duration T ≥ 0, and an input control
function ũ : [0, T ] → Uq define a continuous trajectory
χ<s,ũ,T> : [0, T ] → Xq, such that for all t ∈ [0, T ]:

χ<s,ũ,T>(t) = x +
∫ t

h=0
fq(χ<s,ũ,T>(h), ũ(h)) dh

In this paper, each Xq includes derivatives of different
orders, e.g., velocity and acceleration, and, hence, fq is
nonlinear. Numerical integration is used to integrate fq

since closed-form solutions are generally not available.
A discrete transition occurs at (q, x) ∈ S when a

guard is satisfied, i.e., GUARD(q,qj)(x) = true for some
(q, qj) ∈ E. In this paper, the discrete transitions are ur-
gent. As a result, the state of the hybrid system is instan-
taneously changed to (qj , xj), where xj = JUMP(q,qj)(x).
There is, however, no inherent limitation in dealing with
non-urgent discrete transitions. In such cases, the dis-
crete transition can be applied only if the invariant is
invalid or when some other user-defined condition is sat-
isfied. The augmentation of a continuous trajectory with
a discrete transition is defined as follows.

Definition 3 (Continuous Trajectory + Discrete
Transition). Given a continuous trajectory χ<s,ũ,T> :
[0, T ] → Xq, the trajectory Υ<s,ũ,T> : [0, T ] → S follows
a discrete transition at time T if it occurs, i.e.,
Υ<s,ũ,T>(t) =




(q, χ<s,ũ,T>(t)), t ∈ [0, T ) and no guard is satisfied,

(q, xT ), t = T and no guard is satisfied,

(qj , JUMP(q,qj)(xT )), t = T and GUARD(q,qj)(xT ) = true

for some (q, qj) ∈ E,

where xT = χ<s,ũ,T>(T ).

In Definition 3, when a state satisfies more than one
guard, a user-defined procedure can be used to determine
which jump to apply.

A trajectory Ψ can be extended by applying an input
control function ũ to the last state of Ψ . More precisely,
trajectory extension is defined as follows.
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Definition 4 (Trajectory Extension). The extension
of a trajectory Ψ : [0, T ] → S by applying to Ψ(T ) the
input control function ũ : [0, T ′] → Xq′ is written as

Ψ ◦ (ũ, T ′)
and is another trajectory Υ : [0, T + T ′] → S defined as

Υ (t) =

{
Ψ(t), t ∈ [0, T ]

Υ<Ψ(T ),ũ,T ′>(t− T ), t ∈ (T, T + T ′].

A hybrid-system trajectory consists of continuous trajec-
tories interleaved with discrete transitions, as indicated
by the following definition.

Definition 5 (Hybrid-System Trajectory). A state
s ∈ S and a sequence of input control functions ũ1 :
[0, T1] → Uq1

, . . . , ũn : [0, Tn] → Uqn
define a hybrid-

system trajectory ζ : [0, T1 + · · · + Tn] → S, where
ζ = Υ<s,ũ1,T1> ◦ (ũ2, T2) ◦ · · · ◦ (ũn, Tn).

(Valid Hybrid-System Trajectory) ζ is valid iff it
satisfies the invariant, i.e., ∀t ∈ [0, T1 + . . . + Tn]:

INVARIANTqt
(xt) = true, where (qt, xt) = ζ(t).

2.2 Syntax, Semantics, and Syntactically Safe LTL

Let Π denote a set of propositions. LTL formulas com-
bine propositions with Boolean connectives ¬, ∧, ∨ and
temporal connectives X (next), U (until), R (release), F
(future), G (globally), as defined below.

Definition 6 (LTL Syntax and Semantics [32]).
Every π ∈ Π is a formula. If φ and ψ are formulas, then

¬φ, φ ∧ ψ, Xφ, φUψ
are also formulas. Let σ = τ0, τ1, . . . denote an infinite
sequence, where each τi ∈ 2Π . Let σi = τi, τi+1, . . . de-
note the i-th postfix of σ. The notation σ |= φ indicates
that σ satisfies φ and is defined as

σ |= π if π ∈ Π and π ∈ τ0, σ |= ¬φ if σ +|= φ,
σ |= φ ∧ ψ if σ |= φ and σ |= ψ, σ |= Xφ if σ1 |= φ,
σ |= φUψ if ∃ k ≥ 0 such that

σk |= ψ and ∀ 0 ≤ i < k : σi |= φ.
Moreover, we use the abbreviations false ≡ π ∧ ¬π,
true ≡ ¬false, φ ∨ ψ ≡ ¬(¬φ ∧ ¬ψ), Fφ ≡ trueUφ,
Gφ ≡ ¬F¬φ, φRψ ≡ ¬(¬φU¬ψ).

Consider a language L ⊆ Σω of infinite words over
the alphabet Σ. As defined in [35,36], a finite word α ∈
Σ∗ is a violating prefix for L if for all β ∈ Σω it holds
that α ·β +∈ L, where α ·β denotes the concatenation of α
and β. A language L is a safety language iff every w +∈ L
has a finite violating prefix [36]. The language defined by
an LTL formula φ, written as L(φ), consists of all infinite
words over the alphabet Σ = 2Π that satisfy φ. Then, φ
is a safety formula iff L(φ) is a safety language [32].

The work in [33], which shows PSPACE-completeness
for determining whether an LTL formula is safe, also pro-
vides sufficient syntactic requirements for safe LTL for-
mulas. In particular, an LTL formula that uses only the

temporal connectives X , R, and G when put in positive-
normal form (by pushing negations all the way to leaves)
is safe, as defined below.

Definition 7 (Positive Normal Form LTL [33]). The
formulas true, false, π, ¬π for π ∈ Π are in positive nor-
mal form. If φ and ψ are in positive normal form, then

φ ∨ ψ, φ ∧ ψ, Xφ, φUψ, φRψ
are also in positive normal form. (F and G can be derived
from U and R as indicated in Definition 6.)

Definition 8 (Syntactically Safe LTL [33]). An LTL
formula φ that, when written in positive normal form,
uses only the temporals X , R, and G is syntactically safe.
Every syntactically safe formula is a safety formula.

Since the violating prefixes of a safety LTL formula
are of finite length, an NFA can be constructed to rep-
resent all the violating prefixes, as defined below.

Definition 9 (NFA for Syntactically Safe LTL [32]).
For a syntactically safe LTL formula φ, an NFA can be
constructed to represent ¬φ with at most an exponen-
tial blow-up on the size of the NFA. An NFA is a tuple
A = (Z,Σ, δ, zinit, Accept), where

– Z is a finite set of states;
– Σ = 2Π is the input alphabet;
– δ : Z ×Σ → 2Z is the transition function;
– zinit ∈ Z is the initial state; and
– Accept ⊆ Z is the set of accepting states.

The set of states obtained by running A on [τi]
n
i=1, τi ∈

2Π , is defined as

A([τi]
n
i=1)=

{
zinit, n=0⋃

z∈A([τi]
n−1
i=1 ) δ(z, τn), n>1.

A accepts [τi]
n
i=1 iff A([τi]

n
i=1) ∩Accept += ∅.

2.3 LTL Semantics over Hybrid-System Trajectories

The state space of the hybrid system gives meaning to
the propositions π ∈ Π. Specifically, the truth value of
each π ∈ Π is determined by a black-box function

PROPπ : S → {true, false}.
In this way, a state s ∈ S satisfies π iff PROPπ(s) = true.
Note that s can satisfy more than one proposition. In
fact, the map τ : S → 2Π maps each s ∈ S to the propo-
sitions satisfied by s, i.e.,

τ(s) = {π : π ∈ Π ∧ PROPπ(s) = true}.
Moreover, τ makes it possible to contextualize LTL for-
mulas over hybrid-system trajectories. Consider a hybrid-
system trajectory ζ : [0, T ] → S. At time t0 = 0, ζ satis-
fies the set of propositions τ0 = τ(ζ(t0)). The trajectory
ζ will continue to satisfy τ0 until some later time t1,
where ζ may satisfy a different set of propositions τ1 =
τ(ζ(t1)), τ0 += τ1. In this way, ζ can be broken down into
a sequence of propositional assignments [τi]

n−1
i=0 and a se-

quence of time intervals [t0, t1), . . . , [tn−2, tn−1), [tn−1, T ]
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such that inside the i-th time interval ζ satisfies τi =
τ(ζ(ti)) and that τi += τi+1. As discussed in Section 3.1.3,
the sequence of propositional assignments [τi]

n−1
i=0 satis-

fied by ζ is numerically computed based on the forward
simulation of the hybrid-system dynamics. The defini-
tion of LTL over hybrid-system trajectories follows.

Definition 10 (LTL over Hybrid-System Trajec-
tories). Let ζ : [0, T ] → S denote a hybrid-system tra-
jectory. Let 0 = t0 < . . . < tn−1 ≤ T , such that

– τi += τi+1, for all 0 ≤ i < n
– τi = τ(ζ(t)) for all 0 ≤ i < n− 1 and t ∈ [ti, ti+1)
– τn−1 = τ(ζ(t)) for all t ∈ [tn−1, T ]

where τi = τ(ζ(ti)). Then, τ(ζ)
def
= [τi]

n−1
i=0 denotes the

sequence of propositional assignments in the order sat-
isfied by ζ. This mapping of a hybrid-system trajectory
to a sequence of propositional assignments allows for the
same semantics of LTL as in Definition 6 to carry over
to hybrid-system trajectories, e.g., ζ satisfies Xφ when
τ(ζ) |= Xφ. In this way, if φ denotes an LTL formula,
then, it is said that ζ satisfies φ iff τ(ζ) |= φ.

2.4 Problem Statement

Given P = (H, sinit, φ,Π, τ), where
– H is the hybrid automaton,
– sinit ∈ S is the initial state,
– Π is the set of propositions,
– φ is the syntactically safe LTL formula over Π,
– τ is the propositional map, then

compute a sequence of input control functions
ũ1 : [0, T1] → Uq1

, . . . , ũn : [0, Tn] → Uqn

such that the resulting hybrid-system trajectory
ζ = Υ<sinit,ũ1,T1> ◦ (ũ2, T2) ◦ · · · ◦ (ũn, Tn)

is valid and satisfies ¬φ, i.e., INVARIANTqt
(xt) = true,

for all t ∈ [0, T1+· · ·+Tn], (qt, xt) = ζ(t); and τ(ζ) |= ¬φ.

3 A Straightforward Approach to Incorporate
Safety LTL into Motion Planning for
Hybrid-System Falsification

The tree-search framework in motion planning has been
adapted for reachability analysis in hybrid systems to
compute valid witness trajectories to unsafe states [10–
16]. There have been, however, no discussions in the lit-
erature [10–16] on how to augment the tree-search frame-
work so that it can also be used for the falsification of
LTL safety properties. This section describes a straight-
forward extension of the tree-search framework in mo-
tion planning in order to handle LTL safety properties.
The idea is to use the automaton A, which expresses
¬φ, to keep track of the automaton states associated
with each trajectory added to the tree and to determine
from this information when a tree trajectory witnesses

a violation of φ. In this way, similar to model check-
ing, the tree-search framework searches on-the-fly H and
A. With these modifications, the tree-search framework
can be used to falsify LTL safety properties in hybrid
systems, and, thus, provide a basis for the experimental
comparisons. As demonstrated by the experiments, such
a straightforward approach that uses A simply as an ex-
ternal monitor is, however, computationally inefficient.
Section 4, which describes TemporalHyDICE, shows how
to significantly increase the computational efficiency by
effectively combining the LTL tree-search framework in
motion planning with model checking.

3.1 Incorporating Safety LTL into the Tree-Search
Framework by using the Safety Automaton as an
External Monitor

The search for a witness trajectory is conducted by ex-
tending a tree in the state space H.S and using A as
an external monitor. The tree is maintained as a graph
T = (V, E). Each vertex v ∈ T .V is associated with a
state s ∈ H.S, written as v.s. An edge (vi, vj) ∈ T .E
indicates that a valid hybrid-system trajectory connects
vi.s to vj .s. As the search proceeds iteratively, T is ex-
tended by adding new vertices and new edges. Consider
the hybrid-system trajectory TRAJ(T , v) from the root
of T to a vertex v ∈ T .V . Let τ(TRAJ(T , v)) denote the
sequence of propositional assignments [τi]

n−1
i=0 in the or-

der satisfied by TRAJ(T , v), as described in Section 2.3.
If τ(TRAJ(T , v)) |= ¬φ, then TRAJ(T , v) is a witness tra-
jectory, since it indicates a violation of φ. Determining
whether TRAJ(T , v) satisfies ¬φ can be accomplished by
running A on τ(TRAJ(T , v)). As described in Section 2.2,
TRAJ(T , v) satisfies ¬φ iff an accepting state is reached
when A is run on τ(TRAJ(T , v)), i.e.,

τ(TRAJ(T , v)) |= ¬φ ⇐⇒
A(τ(TRAJ(T , v))) ∩ A.Accept += ∅.

For this reason, each vertex v ∈ T .V is associated with
the automaton states corresponding to TRAJ(T , v), writ-
ten as v.α and defined as

v.α = A(τ(TRAJ(T , v))).
Then, TRAJ(T , v) satisfies ¬φ iff v.α ∩ A.Accept += ∅.
Note that v.α can be computed incrementally when v
is added to its parent vparent in T . In particular, let ζ
denote the hybrid-system trajectory from vparent to v;
ζ is associated with the edge (vparent, v) ∈ T .E. Then,
v.α can be computed by running A on τ(ζ) but starting
from the states vparent.α instead of the initial state of A.

In this way, when a vertex v is added to T such
that TRAJ(T , v) satisfies ¬φ, then a witness trajectory is
found. Otherwise, new vertices and new edges will con-
tinue to be added to T until an upper bound on the
running time is exceeded. Pseudocode for the tree-search
framework is given in Algo. 1 and described below.
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Algorithm 1 LTL-TSF(P, tmax)
Incorporating Safety LTL into the Tree-Search Frame-
work by using the Safety Automaton as an External
Monitor
Input

P = (H, sinit, φ, Π, τ): problem specification ♦ 2.4
tmax ∈ R>0: upper bound on computation time

Output
A valid hybrid-system trajectory that satisfies ¬φ if one
is found or false otherwise

1: A ← construct automaton for ¬φ
2: T ← InitializeTree(P, A) ♦ 3.1.1
3: while ElapsedTime < tmax do
4: v ← SelectVertexFromTree(P, T ) ♦ 3.1.2
5: (u, T, snew, αnew) ← ExtendTree(P, A, T , v) ♦ 3.1.3
6: if T > 0 ∧ |αnew| > 0 then

add a new vertex and edge to T
7: vnew ← new vertex; vnew.s ← snew; vnew.α ← αnew

8: (v, vnew) ← new edge; (v, vnew).{u, T} ← {u, T}
9: T .V ← T .V ∪ {vnew}; T .E ← T .E ∪ {(v, vnew)}

10: if A.Accept ∩ αnew '= ∅ then
11: return TRAJ(T , vnew)
12: return false

3.1.1 Initializing the Tree

InitializeTree(P, A) (Algo. 1:2) associates the root ver-
tex vinit with the initial hybrid-system state, i.e., vinit.s =
sinit, T .V = {vinit}, and T .E = ∅. The automaton states
associated with vinit are computed by running A on the
propositions satisfied by vinit.s, i.e.,

vinit.α = A.δ(A.zinit, τ(vinit.s)).

3.1.2 Selecting a Vertex from which to Extend the Tree

SelectVertexFromTree(P, T ) (Algo. 1:4) selects a vertex
v ∈ T .V from which to extend T . Over the years, numer-
ous strategies have been proposed that rely on distance
metrics, nearest neighbors, probability distributions, and
many other factors, as surveyed in [37,38]. As an exam-
ple, RRT methods [10–14], sample a hybrid-system state
s ∈ H.S and select the vertex v ∈ T .V whose associated
hybrid-system state v.s is the closest to s according to a
distance metric. Other selection strategies are discussed
in Section 3.2 when describing how related work [10–14]
can use Algo. 1 to incorporate LTL safety properties.

3.1.3 Extending the Tree by Applying Input Controls
and Simulating the Hybrid System Forward in Time

ExtendTree(P, A, T , v) (Algo. 1:5) extends T from the
selected vertex v by computing a valid hybrid-system
trajectory ζ : [0, T ] → H.S that starts at v.s. A com-
mon strategy is to apply some input control function
ũ : [0, T ] → H.Uq to v.s, where q is the mode of v.s, and
follow the dynamics H.fq until the invariant is no longer
satisfied, a guard is satisfied, or a maximum number of
steps is exceeded [10–16, 37, 38]. Note that if a guard is

satisfied, the corresponding discrete transition is taken
immediately and as a result will be part of the computed
trajectory ζ, as described in Definition 3, i.e.,

ζ = Υ<v.s,ũ,T>.
ExtendTree(P, A, T , v) returns a tuple (u, T, snew, αnew).
The control input function ũ : [0, T ] → H.Uq is gener-
ally defined by selecting pseudo-uniformly at random an
input control u ∈ H.Uq, i.e.,

ũ(t) = u, ∀t ∈ [0, T ].
The random selection of input controls allows for subse-
quent calls to ExtendTree(P, A, T , v) to extend T along
new directions. Moreover, it has been shown to work
well in motion planning for robotic systems with com-
plex continuous dynamics and reachability analysis in
hybrid systems [10–16,18,37,38].

The trajectory ζ computed by ExtendTree is added
to T as a new branch at the vertex v (Algo. 1:7–9). More
precisely, the new vertex vnew and the edge (v, vnew) are
added to the vertices and edges of T , respectively. The
new edge (v, vnew) is associated with the input control
function ũ and time duration T . The new vertex vnew is
associated with the state snew, which corresponds to the
last state of ζ, i.e., snew = ζ(T ). The automaton states
αnew are computed by running A on τ(ζ) but starting
from the automaton states v.α instead of the initial state
of A. In this way, as discussed in Section 3.1, αnew cor-
responds to the automaton states obtained by running
A on τ(TRAJ(T , v) ◦ ζ). If αnew includes an accepting
state of A, then TRAJ(T , vnew) constitutes a witness
trajectory (Algo. 1:10). TRAJ(T , vnew) is computed by
concatenating the trajectories associated with the tree
edges connecting the root of T to vnew (Algo. 1:11).

Note that any hybrid-system simulation method can
be used to compute the hybrid-system trajectory ζ by
simulating the continuous dynamics and the discrete tran-
sitions of the hybrid system when applying an input con-
trol function ũ : [0, T ] → H.Uq starting from the state
v.s. For completeness, we describe below a simple itera-
tive procedure. Pseudocode is given in Algo. 2.

Let nsteps denote the number of steps and let ε > 0
denote the step size (Algo. 2:1). Initially, x0 = x and
α0 = v.α, where v.s = (q, x) (Algo. 2:2). At the i-
th iteration, xi is computed by integrating H.fq from
xi−1 for an ε time step (Algo. 2:5). If xi does not sat-
isfy the invariant, then ExtendTree stops and returns the
tuple [u, (i − 1) ∗ ε, (q, xi−1), αi−1] (Algo. 2:6–7). When
xi satisfies the invariant, then ExtendTree checks if a
guard is satisfied, which would indicate a discrete event
(Algo. 2:8). In the hybrid-system benchmark in this pa-
per, when a guard condition is satisfied, the correspond-
ing jump is always applied. In the case of non-urgent
discrete transitions, as discussed in Section 2.1, a user-
defined procedure can determine when to apply the dis-
crete transition. Discrete event detection is followed by
event localization, which localizes the earliest time T ∈
((i− 1) ∗ ε, i ∗ ε] where the guard is satisfied (Algo. 2:9).
Bisection or bracketing algorithms are typically used for
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Algorithm 2 ExtendTree(P, A, T , v)
Extend Tree by Applying Input Controls and Simulating
the Hybrid System Forward in Time

Input
P = (H, sinit, φ, Π, τ): problem specification ♦ 2.4
A: automaton for ¬φ
T : current search tree
v: vertex from which to extend the tree

Output (u, T, snew, αnew)

1: ε ∈ R>0 ← time step; nsteps ∈ N ← number of steps
2: s = (q, x) ← v.s; α ← v.α; x0 ← x; α0 ← α; τ0 ← τ(s)
3: u ← sample control from H.Uq

simulate the continuous and discrete dynamics of H
4: for i = 1, 2, . . . , nsteps do
5: xi ← χ(ε), where χ(ε) = xi−1 +

∫ ε

h=0
fq(χ(h), u) dh

6: if H.INVARIANTq(xi) = false then
7: return (u, (i − 1) ∗ ε, (q, xi−1), αi−1)
8: if for some H.GUARD(q,qnew)(xi) = true

and discrete transition should be triggered then
9: (xloc, T ) ← localize discrete event in ((i− 1) ∗ ε, i ∗ ε]

10: τloc ← τ((q, xloc))
11: if τi−1 = τloc then αloc ← αi−1

12: else αloc ← ∪z∈αi−1A.δ(z, τloc)
13: xnew ← H.JUMP(q,qnew)(xloc)
14: τnew ← τ((qnew, xnew))
15: if τloc = τnew then αnew ← αloc

16: else αnew ← ∪z∈αlocA.δ(z, τnew)
17: return (u, T, (qnew, xnew), αnew)
18: else
19: τi ← τ((q, xi))
20: if τi−1 = τi then αi ← αi−1

21: else αi ← ∪z∈αi−1A.δ(z, τi)
22: return (u, nsteps ∗ ε, (q, xnsteps), αnsteps)

event localization [39]. Once the discrete event is local-
ized, the discrete transition is then triggered to obtain
the new state (Algo. 2:13). The automaton states are
also updated accordingly and (u, t, (qnew, xnew), αnew) is
returned (Algo. 2:14–17). If no guard is satisfied, the au-
tomaton states αi associated with (q, xi) are updated
only if τ((q, xi)) += τ((q, xi−1)) (Algo. 2:19–21).

Numerical errors in simulation, invariant checking,
event localization could in certain cases cause ExtendTree

to miss an invariant violation, miss a guard, trigger a
different discrete transition, or miss a change in the se-
quence of propositional assignments satisfied by a hybrid-
system trajectory ζ, e.g., τ(ζ(t)) = τ(ζ(t+ε)) but τ(ζ(t+
a)) += τ(ζ(t)) for some 0 < a < ε. To minimize such er-
rors, a practical approach is to choose a small ε. This ap-
proach is the norm in hybrid-system falsification based
on motion planning [10–16]. For hybrid systems with
guards of the form {x : g(x) ≥ 0} where g(x) is contin-
uously differentiable, it is also possible to use more ac-
curate event localization algorithms, which come asymp-
totically close to the guard boundary [39]. In many prac-
tical cases, hybrid systems exhibit a degree of robust-
ness [31, 40] that minimizes the impact of numerical er-
rors, e.g., small perturbations do not change the mode-

switching behavior. As noted, the simple implementation
of ExtendTree presented here for completeness, can be
replaced by more sophisticated hybrid-system simulation
methods.

3.2 Incorporating Safety LTL into Related
Motion-Planning Approaches for Hybrid-System
Falsification

By using A as an external monitor, Algo. 1 provides
a straightforward extension of how to incorporate LTL
safety properties into the tree-search framework. This
makes it possible to adapt related work in hybrid-system
falsification [10–16] so that it can handle LTL, as de-
scribed below.

3.2.1 Incorporating Safety LTL into RRT Methods

LTL can be incorporated into RRT-based falsification meth-
ods [10–14] by using LTL-TSF (Algo. 1) and implement-
ing SelectVertexFromTree(P, T ) as in [10–14], e.g., sam-
ple s ∈ H.S at random and select v ∈ T .V whose v.s is
the closest to s according to a distance metric. This is
referred to as RRT[LTL-TSF] in this paper.

3.2.2 Incorporating LTL Safety Properties into
HyDICE[NoGuide]

Similarly to RRT, HyDICE [15,16] also falls into the broad
category of tree-search algorithms. Distinctly from RRT,
HyDICE [15,16] introduced discrete search over (H.Q, H.E)
to guide the tree search in the context of reachability
analysis to a set of unsafe states. At each iteration, the
discrete search computed a sequence of discrete transi-
tions from an initial to an unsafe mode. The tree-search
framework then extended T along the direction provided
by the discrete search. Experiments showed significant
speedup over RRT-based falsification [12–14].

Incorporating LTL into HyDICE is more involved than
in the case of RRT, since the discrete search over (H.Q, H.E)
does not take LTL into account. When considering LTL,
a safety violation is not indicated by an unsafe state,
but by a trajectory that satisfies ¬φ. Therefore, when
considering LTL, unsafe states and unsafe modes are
not defined. This means that the discrete search over
(H.Q, H.E) from an initial to an unsafe mode is also
not defined. The next section shows how to effectively
incorporate LTL into HyDICE.

The version of HyDICE [15, 16] that does not use the
discrete search is referred to as HyDICE[NoGuide]. Ex-
periments in [15, 16] showed that HyDICE[NoGuide] was
significantly slower than HyDICE, but still considerably
faster than RRT-based falsification [12–14]. HyDICE[NoGuide]
corresponds to the tree-search framework, where the func-
tion SelectVertexFromTree(P, T ) is implemented by se-
lecting v ∈ T .V according to a probability distribution
over T .V , i.e., each v ∈ T .V is assigned a weight w(v)
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based on the number of times v has been selected in
the past and the coverage density around v by other
vertices in T ; then v is selected with probability propor-
tional to w(v). This makes it possible to incorporate LTL
safety properties into HyDICE[NoGuide] by using LTL-TSF
(Algo 1), which is referred to as HyDICE[NoGuide, LTL-TSF]
in this paper.

4 TemporalHyDICE

This section describes TemporalHyDICE, which consti-
tutes the main contribution of this paper. TemporalHyDICE
combines model checking and motion planning to effec-
tively expand T during the search for a witness trajec-
tory. To speed up the search for witness trajectories,
TemporalHyDICE also needs as input an abstraction M
of the hybrid system H. The construction of M is out-
side the scope of this paper; this paper focuses on how
to effectively combine model checking with motion plan-
ning. For the purposes of this work the abstraction M is
thought of as a graph D. Generally, a vertex vi ∈ D cor-
responds to some state-space region whose states satisfy
a propositional assignment τi and an edge (vi, vj) ∈ D
indicates the possibility of constructing a hybrid-system
trajectory ζ that remains in the region associated with vi

until it reaches the region associated with vj . An exam-
ple is given in the experiments in Section 5. Interestingly,
very few requirements are placed on M (and hence D).
TemporalHyDICE tries to compensate for any shortcom-
ings by exploiting the synergy of model checking and
motion planning as explained in the next section.

4.1 Combining Model Checking and Motion Planning

Consider a sequence [τi]
n−1
i=0 of propositional assignments

that satisfies ¬φ. Let
Γ (τi) = {s ∈ H.S : τ(s) = τi}.

If T can be extended so that a hybrid-system trajectory
TRAJ(T , v) starts at Γ (τ0) and reaches Γ (τ1), . . . , Γ (τn−1)
in succession, i.e.,

τ(TRAJ(T , v)) = [τi]
n−1
i=0 ,

then TRAJ(T , v) would be a witness trajectory. In this

way, [τi]
n−1
i=0 provides a sequence Γ (τ0), . . . , Γ (τn−1) of

regions along which motion planning can attempt to ex-
tend T in order to compute a witness trajectory.

TemporalHyDICE relies on model checking to effec-
tively compute sequences of propositional assignments
that satisfy ¬φ. Specifically, model checking searches on-
the-fly A and the graph D to compute a discrete witness,
i.e., a sequence

[(zi, τi)]
n−1
i=0

where (zi, τi) ∈ A.Z×2Π , z0 = A.zinit, zn−1 ∈ A.Accept.
By not computing D×A explicitly, as described in Sec-
tion 4.2, TemporalHyDICE considerably reduces the mem-
ory used by model checking. Note that model checking

can provide many alternative discrete witnesses. Due to
hybrid-system dynamics, invariants, guards, and jumps,
in some cases, it may be easy for motion planning to ex-
tend T from some Γ (τi) to Γ (τi+1) as indicated in the
discrete witness, while in other cases, it may be difficult
or even impossible. This raises the issue of which discrete
witness to select among the many available alternatives.
To address this issue, TemporalHyDICE maintains a run-
ning estimate

COST(zi, τi)
on the cost of having the motion planner spend addi-
tional computational time attempting to extend T from
(zi, τi).vertices to Γ (τi+1), where

(zi, τi).vertices = {v ∈ T .V : zi ∈ v.α ∧ τi = τ(v.s)}.
Note that τi = τ(v.s) means that TRAJ(T , v) has reached
Γ (τi), and zi ∈ v.α means that zi is an automaton state
obtained when running A on τ(TRAJ(T , v)). Therefore,
(zi, τi).vertices indicate that TemporalHyDICE has ex-
tended T in succession from

Γ (τ0), . . . , Γ (τi).
In this way, when COST(zi, τi) is low, TemporalHyDICE
estimates that more computational time should be dedi-
cated to extending T from (zi, τi).vertices toward Γ (τi+1)
so that T reaches Γ (τ0), . . . , Γ (τi+1) in succession. As
described in Section 4.3, COST(zi, τi) is low when (zi, τi)
is underexplored, since additional exploration by motion
planning could add new connections from (zi, τi).vertices
to Γ (τi+1) and advance the search further. When (zi, τi)
is overexplored, then COST(zi, τi) is high, since over-
exploration does not bring much new information and
wastes valuable computational time. The cost of a dis-
crete witness is then defined as

COST
(
[(zi, τi)]

n−1
i=0

)
=

n−2∑

i=0

COST(zi, τi) COST(zi+1, τi+1).

Since when exploring (zi, τi) the objective of motion
planning is to reach Γ (τi+1) from (zi, τi).vertices, then
COST(zi, τi) COST(zi+1, τi+1) is used in the summation
instead of just COST(zi, τi). Note that cost estimates in
this paper, drawing from our earlier work [15, 16] and
extensive experiments, are designed to be computed ef-
ficiently and are shown to work well in practice.

Model checking in TemporalHyDICE biases the com-
putation toward discrete witnesses associated with low
cost. TemporalHyDICE estimates that additional explo-
ration of these discrete witnesses can advance the search
further by increasing exploration in underexplored re-
gions and avoiding spending computational time in over-
explored regions. TemporalHyDICE does not completely
ignore high-cost discrete witnesses. In particular, in ad-
dition to low-cost discrete witnesses, random discrete
witnesses are selected, although less frequently, as a way
to correct for errors inherent with the cost estimates.

The computation of the current discrete witness, ex-
pansion of T by motion planning as guided by the dis-
crete witness, and updates to cost estimates based on
new information gathered by motion planning consti-
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Algorithm 3 TemporalHyDICE(P, D, tmax)
Combining Model Checking and Motion Planning

Input
P = (H, sinit, φ, Π, τ): problem specification ♦ 2.4
D = (V, E): abstraction
tmax ∈ R>0: upper bound on computation time

Output
A valid hybrid-system trajectory that satisfies ¬φ if one
is found or false otherwise

1: A ← construct automaton for ¬φ
2: T ← InitializeTree(P, A) ♦3.1.1
3: while ElapsedTime < tmax do

model checking: search on-the-fly D and A
bias search toward low-cost discrete witnesses

4: σ
def
= [(zi, τi)]

n
i=1 ← DiscreteWitness(P, D, A) ♦4.2

motion planning: extend T guided by discrete witness
5: σavail ← {(zi, τi) ∈ σ : (zi, τi).vertices '= ∅} ♦4.4
6: for several times do
7: (zi, τi) ← select pair from σavail ♦4.4
8: v ← select vertex from (zi, τi).vertices ♦4.4
9: (u, T, snew, αnew) ← ExtendTree(P, A, T , v) ♦3.1.3

10: if T > 0 ∧ |αnew| > 0 then
add a new vertex and edge to T

11: vnew ← new vertex; vnew.s ← snew; vnew.α ← αnew

12: (v, vnew) ← new edge; (v, vnew).{u, T} ← {u, T}
13: T .V ← T .V ∪ {vnew}; T .E ← T .E ∪ {(v, vnew)}
14: if A.Accept ∩ αnew '= ∅ then
15: return TRAJ(T , vnew)

update cost estimates based on new info gathered
from motion planning

16: UpdateCost(zi, τi) ♦4.3
17: τnew ← P.τ(vnew.s)
18: for znew ∈ αnew do
19: σavail ← {(znew, τnew)} ∪ σavail ♦4.4
20: (znew,τnew).vertices←{vnew}∪(znew,τnew).vertices
21: UpdateCost(znew, τnew) ♦4.3
22: return false

tute the core loop of TemporalHyDICE. As a result of the
updated cost estimates, a new discrete witness can be
selected by model checking in the next iteration of the
core loop. In this way, information gathered by motion
planning leads TemporalHyDICE to consider alternative
discrete witnesses that could expand the search for a wit-
ness trajectory along new directions. This interplay be-
tween model checking and motion planning through cost
estimates, as demonstrated by the experiments, allows
TemporalHyDICE to efficiently compute witness trajecto-
ries. Pseudocode is given in Algo. 3. Sections describing
the main steps in Algo. 3 are referenced after each line.

4.2 Computation of Discrete Witnesses

DiscreteWitness(P, A, D) (Algo. 3:4) uses model check-
ing to compute discrete witnesses by searching on-the-fly
A and D. The search produces a sequence [(zi, τi)]

n−1
i=0 ,

where (zi, τi) ∈ A.Z × 2Π , z0 = A.zinit, and zn−1 ∈
A.Accept.

With high probability, the discrete witness is com-
puted as the shortest path from initial to accepting states
in A×D where an edge ((zi, τi), (zj , τj)) is assigned the
weight COST(zi, τi) COST(zj , τj). This allows to select
low-cost discrete witnesses. With small probability, the
discrete witness is also computed as a random path by
using a variation of depth-first-search which visits fron-
tier nodes in a random order. This randomness provides
a way to correct for errors inherent with the cost esti-
mates by ensuring that each discrete witness is selected
with non-zero probability.

TemporalHyDICE does not explicitly construct A×D.
During the search for a discrete witness, the outgoing
edges of (zi, τi) are computed implicitly as

EDGES(zi, τi) = {(zj , τj) : (v(τi), v(τj)) ∈ D.E

∧ zj ∈ A.δ(zi, τj)}.

This allows TemporalHyDICE to considerably reduce the
memory requirements of model checking. Note that the
largest memory requirements in A are imposed by A.δ,
which can be viewed as a ternary relation, subset of
A.Z × Σ × A.Z, where Σ = 2Π . The graph D can be
viewed as a binary relation, subset of Σ ×Σ. Explicitly
constructing A×D would produce a 4-ary relation, sub-
set of A.Z×Σ2×A.Z. For this reason, TemporalHyDICE
does not compute A×D explicitly. Reducing memory re-
quirements is important, since it allows motion planning
to extend T by adding more vertices and edges.

4.3 Cost Estimates

Cost estimates are based on information gathered during
motion planning. Specifically,

COST(zi, τi) =
TIME2(zi, τi)

COV(zi, τi)

where TIME(zi, τi) is the number of times motion plan-
ning has attempted to extend T from (zi, τi).vertices and
COV(zi, τi) estimates the coverage of Γ (τi) by states as-
sociated with (zi, τi).vertices. In this way, TemporalHyDICE
associates a low COST(zi, τi) with (zi, τi) when motion
planning has made rapid progress in covering Γ (τi) with
states associated with (zi, τi).vertices. The component
TIME(zi, τi) gives priority to (zi, τi)’s that have not been
selected frequently in the past. These cost estimates are
designed to be computed efficiently and are motivated
by related work [13–16, 41] and extensive experiments,
which show that it works well in practice.

As in [15, 16], COV(zi, τi) is computed by imposing
an implicit uniform grid on a low-dimensional projec-
tion of H.S and counting the number of grid cells that
have at least one state from the states associated with
(zi, τi).vertices. In the experiments in this paper, where
the hybrid system models a robotic vehicle navigating in
different terrains, the low-dimensional projection corre-
sponds to the vehicle position, i.e., POSITION(x) (Sec-
tion 5.1). Note that COV(zi, τi) needs to be updated
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only when a vertex v ∈ T .V is added to (zi, τi).vertices.
To make this update efficient, each (zi, τi) maintains its
own list of grid cells, (zi, τi).cells. Initially, (zi, τi).cells is
empty. When a vertex v is added to (zi, τi).vertices, the
low-dimensional projection of v.s = (q, x) is computed
as p = POSITION(x), which is then used to determine
the grid cell c that should contain p. The cell c is then
added to (zi, τi).cells if it is not already there. A hash-
map is used to efficiently search if c ∈ (zi, τi).cells. In this
way, COV(zi, τi) is efficiently updated as the number of
covered cells, i.e., COV(zi, τi) = |(zi, τi).cells|.

As evidenced by the experiments, the cost estimates
allow model checking to compute low-cost discrete wit-
nesses that effectively guide motion planning as it ex-
pands T during the search for a witness trajectory. Since
the cost estimates are updated efficiently there is also lit-
tle computational overhead.

4.4 Motion Planning

Let σ = [(zi, τi)]
n−1
i=0 denote the current discrete wit-

ness. The objective is to extend T so that it reaches
Γ (τ0), . . . , Γ (τn−1) in succession. Motion planning pro-
ceeds by extending T from vertices associated with pairs
(zi, τi) (Algo. 3:5–15). Note that only pairs (zi, τi) ∈ σ
reached by T , i.e., (zi, τi).vertices += ∅, have vertices from
which to extend T . Let σavail contain all such pairs, i.e.,

σavail = {(zi, τi) ∈ σ : (zi, τi).vertices += 0} (Algo. 3:5)

At each iteration, a pair (zi, τi) is selected from σavail to
be further explored with probability

1/COST(zi, τi)∑
(zj ,τj)∈σavail

1/COST(zj , τj)
(Algo. 3:7)

This selection favors pairs (zi, τi) associated with low
cost, which indicate that additional progress can be made
by further exploring (zi, τi). The exploration consists
of extending several new branches from (zi, τi).vertices
(Algo. 3:9–15). Specifically, a vertex v is selected from
(zi, τi).vertices with probability

1/TIME(v)∑
v′∈(zi,τi).vertices

1/TIME(v′)
, (Algo. 3:8)

where TIME(v) is one plus the number of times v has
been selected in the past from (zi, τi).vertices. This is
based on well-established strategies in motion planning
that favor those vertices selected less frequently in the
past [37, 38]. After a vertex v has been selected, as de-
scribed in Section 3, T is extended from v by adding
to T a valid hybrid-system trajectory that starts at v.s
and ends at a new vertex, vnew.s (Algo. 3:9–13). If any of
the automaton states vnew.α is an accepting state, then
TRAJ(T , vnew) is a witness trajectory (Algo. 3:14–15).

As a result of the exploration, cost estimates need to
be updated (Algo. 3:16–21) as described in Section 4.3.

Moreover, vnew is associated with each (znew, τnew), where
znew ∈ vnew.α and τnew = τ(vnew.s). COST(znew, τnew) is
also updated to reflect adding vnew to (znew, τnew).vertices.
Each (znew, τnew) is also added to σavail, so that it be-
comes available for selection in the next iteration.

Updates to the cost estimates allow motion planning
to select other pairs (zj , τj) ∈ σavail to explore during
the remaining iterations. Moreover, the updates provide
better cost estimates for the discrete witnesses, which
improves the selection of discrete witnesses in the next
iteration of the core loop of TemporalHyDICE. This in
turn allows motion planning to make more progress in
extending T as guided by the discrete witness and even-
tually compute a witness trajectory.

5 Experiments and Results

Experiments in this paper show that TemporalHyDICE

provides a promising framework for the falsification of
safety properties expressed by syntactically safe LTL
formulas for hybrid systems with nonlinear continuous
dynamics. TemporalHyDICE is shown to be significantly
more efficient than the straightforward extensions of re-
lated work [10–16], which use the automaton A as an ex-
ternal monitor (Section 3). The experiments also demon-
strate the importance of model checking and of the dis-
crete transition model in the computational efficiency of
TemporalHyDICE. This paper also studies the impact on
the computational efficiency of TemporalHyDICE when
using a minimized DFA, minimized NFA constructed by
hand, or NFA constructed by standard tools [42].

5.1 Hybrid-System Robot Navigation Benchmark

The hybrid system H models an autonomous vehicle
driving over different terrains, similar to the navigation
benchmark proposed in [34] and used in [15, 16]. Fig. 1
provides an illustration. Benchmark instances, as de-
scribed below, are generated at random in order to test
falsification methods over a large number of problems
and obtain statistically significant results.

Terrains: The number of terrains is nT = 10. Each
terrain Ti is a unit square. The vehicle dynamics vary
from terrain to terrain. Specifically, the dynamics in each
Ti are selected pseudo-uniformly at random from those of
a car, unicycle, or differential drive, which are described
at the end of this section.

To compute guards, jumps, and propositions, each
terrain Ti is subdivided into a 35× 35 uniform grid. Let
c1, . . . , cm denote a random permutation of all the grid
cells from all the terrains (m = nT × 35× 35).

Guards and Jumps: c1, . . . , cnG
are labeled as guards,

where nG = 50. For each guard cell, the corresponding
jump cell is selected uniformly at random from the re-
maining grid cells, i.e., {cnG+1, . . . , cm}. A grid cell la-
beled as a guard Gk

i,j defines a guard function as follows:
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P 1
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3

P 3
3
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4

terrain T2 (UnicycleDynamics) terrain T3 (CarDynamics)

terrain T4 (DDriveDynamics)

Fig. 1. In the hybrid-system benchmark, a vehicle drives over dif-
ferent terrains. The vehicle dynamics vary from terrain to terrain,
i.e., the vehicle dynamics in each terrain Ti are selected from those
of a car, unicycle, or differential drive. Each Ti is subdivided into a
uniform grid, and some grid cells are labeled as guards, jumps, or
propositions. Grid cells labeled with Gk

i,j (in blue) denote guards.
Discrete transitions are indicated by straight arrows. A discrete
transition occurs when the vehicle center reaches a guard. Only one
discrete transition per guard is shown. The corresponding jump
cells are in green. Grid cells labeled with P k

i (in yellow) denote
propositions.

GUARDk
(qi,qj)

(x) = true ⇐⇒ POSITION(x) ∈ Gk
i,j ,

where POSITION(x) denotes the position of the vehicle
center when the continuous state is x. In other words,
GUARDk

(qi,qj)
(x) is satisfied when the vehicle center reaches

Gk
i,j . In that case, a discrete transition is triggered, which

instantaneously changes the vehicle dynamics to the dy-
namics associated with terrain Tj and resets the contin-
uous state according to JUMPk

(qi,qj)
, where1

JUMPk
(qi,qj)

(x) = (POSITION(x) + CENTER(Tj)−
CENTER(Ti), ORIENTATION(x), 0, . . . , 0)

and CENTER(Ti) denotes the center of terrain Ti. Thus,
the vehicle maintains the same position and orientation
with respect to the origin of Tj as it did with respect to
the origin of Ti immediately before the discrete transi-
tion. In this way, guards and jumps can be thought as
providing overpasses that allow the vehicle to immedi-
ately move from one terrain to another.

1 After a discrete transition, components of the continuous state
except position and orientation are reset to zero to account for the
fact that state components can vary from mode to mode, e.g., the
car has translational velocity and steering angle in the continuous
state, but differential-drive has rotational velocities of the wheels.

Propositions : The number of propositions is nP =
150. Then, a random subset of nP grid cells is selected
from {c2nG+1, . . . , cm} and each selected grid cell is la-
beled as proposition. A grid cell labeled as a proposition
P k

i defines a proposition function as follows:
PROPπi,k

(x) = true ⇐⇒ POSITION(x) ∈ P k
i .

In this way, PROPk
πi,k

(x) is satisfied when the vehicle

center reaches P k
i .

User-Defined Graph D: For the hybrid-system bench-
mark in this paper, D is defined as follows. A vertex is
added to D for each grid cell. If a grid cell c is not la-
beled as a guard, then an edge is added to D from c to
its left, right, up, and down neighboring cells. If a grid
cell c is labeled as a guard Gk

i,j , then an edge is added
from c to the cell c′, where c′ is the grid cell associated
with the jump for Gk

i,j .
Second-order Models of Vehicle Dynamics : Vehicle

dynamics associated with each qi ∈ Q are selected uni-
formly at random from second-order models of cars, dif-
ferential drives, and unicycles. Details of these models
can be found in [15,37,38]. For completeness, these mod-
els are summarized below.

Car: State x = (p, θ, v, ψ) consists of position p ∈ R2,
orientation θ ∈ [−π, π), velocity (|v| ≤ 3m/s), and steer-
ing angle (|ψ| ≤ 40◦). The distance between front and
rear axles is L = 0.8m. Controls consist of the accel-
eration (|u0| ≤ 0.8m/s2) and rotational velocity of the
steering angle (|u1| ≤ 25◦/s). Dynamics equations are
ṗ0 = v cos(θ), ṗ1 = v sin(θ), θ̇ = v tan(ψ)/L, v̇ = u0,
ψ̇ = u1.

Unicycle: State x = (p, θ, v, ω) consists of position
p ∈ R2, orientation θ ∈ [−π, π), translational velocity
(|v| ≤ 3m/s), and rotational velocity (|ω| ≤ 20◦/s).
Controls consist of the translational (|u0| ≤ 0.3m/s2)
and rotational u1 (|u1| ≤ 10◦/s2) accelerations. Dynam-
ics equations are ṗ0 = v cos(θ), ṗ1 = v sin(θ), θ̇ = ω,
v̇ = u0, ω̇ = u1.

Differential Drive: State x = (p, θ, ω(, ωr) consists of
position p ∈ R2, orientation θ ∈ [−π, π), and rotational
velocities (|ω(|, |ωr| ≤ 5◦/s) of the left and right wheels.
Wheel radius is r = 0.2m and axis length is L = 0.8m.
Controls consist of the left and right wheel rotational
accelerations (|u0|, |u1| ≤ 10◦/s2). Dynamics equations
are ṗ0 = 0.5r(ω( + ωr) cos(θ), ṗ1 = 0.5r(ω( + ωr) sin(θ),
θ̇ = r(ωr − ω()/L, ω̇( = u0, ω̇r = u1.

5.2 Syntactically-Safe LTL Formulas

Syntactically safe LTL formulas were manually designed
in order to provide meaningful properties. These formu-
las are defined over the nP = 150 propositions generated
for each benchmark instance. Let π1, . . . , π150 denote a
random permutation of the propositions PROPπi,k

. Let
β0 denote a special proposition, which is true iff none
of the propositions π1, . . . , π150 is true. Note that β0 ge-
ometrically corresponds to the grid cells not labeled as
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propositions, as illustrated in Fig. 1. The syntactically
safe LTL formulas are defined as follows.

Sequencing (n = 3, 4, 5, 6): A witness trajectory ζ
reaches π1, . . . , πn in that order via β0. More specifically,
ζ starts at β0 and remains in β0 until it reaches π1; then
remains in π1 until it reaches β0; then remains in β0 until
it reaches π2; . . .; then remains in πn−1 until it reaches
β0; then remains in β0 until it reaches πn. Formally, the
formulas are as follows:

φ3
1 = ¬(β0U(π1 ∧ (π1U(β0U(π2 ∧ (π2U(β0Uπ3)))))))

φ4
1 = ¬(β0U(π1 ∧ (π1U(β0U(π2 ∧ (π2U(β0U

(π3 ∧ (π3U(β0Uπ4)))))))))
. . .

φn
1 = ¬(β0U(π1 ∧ (π1U(β0U(. . . (πn−1∧

(πn−1U(β0Uπn))))))))

Note that ζ is never allowed to reach any of the propo-
sitions πn+1, . . . , π150. In this way, πn+1, . . . , π150 serve
as obstacles that must be avoided by ζ at all times.

Counting (n = 1, 2, 3, 4): A witness trajectory ζ starts
at β0 ∨ π1 and remains there until it reaches π1. Then,
ζ repeats the following n-times: remains in π1 ∨ β0 until
it reaches π2; then remains in π2 ∨ β0 until it reaches
π3; then remains in π3 ∨ β0 until it reaches π4; then re-
mains in π4 until it reaches π1∨β0. After repeating these
steps n times, ζ remains in π1 ∨ β0 until it reaches π5.
Formally, the formulas are as follows:

φn
2 = ¬(ς1U(π1 ∧ Ξn)),

where ςi = β0 ∨ πi;
f(ψ) = ς1U(π2 ∧ (ς2U(π3 ∧ (ς3U(π4 ∧ (π4U(ς1 ∧ ψ)))))))
(see note2); and
Ξ1 = f(ς1Uπ5), Ξ2 = f(Ξ1), . . . , Ξn = f(Ξn−1).
Note that ζ is never allowed to reach any of the proposi-
tions π6, . . . , π150, which, in this way, serve as obstacles
that must be avoided at all times.

Coverage (n = 4, 5, 6, 7): A witness trajectory even-
tually reaches each π1, . . . , πn, i.e.,

φn
3 = ¬

(
n∧

i=1

F(πi)

)
.

The automata A for the complement of each safety LTL
formula are computed by standard tools [42]. The table
below shows the number of states of the minimized DFA.

LTL safety formula (nr. states minimized DFA)
φ3

1 (10) φ4
1 (21) φ5

1 (46) φ6
1 (105)

φ1
2 (23) φ2

2 (76) φ3
2 (164) φ4

2 (287)
φ4

3 (16) φ5
3 (32) φ6

3 (64) φ7
3 (128)

5.3 Results

Experiments were run on Rice Cray XD1 PBS and ADA
clusters, where each processor runs at 2.2GHz and has

2 The notation f(ψ) is used for convenience as a function that
takes the argument ψ and places it as indicated in the expression.
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Fig. 2. Comparison of TemporalHyDICE (denoted M1),
RRT[LTL-TSF] (denoted M2), HyDICE[NoGuide, LTL-TSF] (de-
noted M3), TemporalHyDICE[no D] (denoted M4) when computing
witness trajectories for various LTL safety properties of the
hybrid-system model. Number inside parentheses after φn

i indi-
cates number of states in minimized DFA. Reported is the average
time in seconds to solve 100 problem instances for each of the LTL
formulas. Times for TemporalHyDICE include the construction of
D, which took < 1s. Timeout was set to 400s.

up to 8GB RAM. Each run uses a single processor and
a single thread, i.e., no parallelism.

For the experiments, 100 benchmark instances were
generated at random as described in Section 5.1. For
each combination of a method Mi and an LTL safety
formula φ, Fig. 2 reports the average time in seconds
obtained by method Mi when attempting to compute
a witness trajectory for φ for each of the 100 bench-
mark instances. Timeout for each run was set to 400s.
Computational times for TemporalHyDICE include the
construction of the graph D, which took < 1s.

5.3.1 Computational Efficiency of TemporalHyDICE

Fig. 2 shows that TemporalHyDICE is significantly more
efficient than RRT[LTL-TSF] and HyDICE[NoGuide, LTL-TSF].
Recall that RRT[LTL-TSF] and HyDICE[NoGuide, LTL-TSF]
correspond to extensions of related work [10–16], which
make it possible for the related work to handle LTL spec-
ifications (since related work in its original formulation
could not handle LTL specifications). As described in
Section 3, these extensions are obtained by using the
safety automaton A as an external monitor.

The results in Fig. 2 indicate that TemporalHyDICE

efficiently computed witness trajectories for all prob-
lem instances. Even for the most challenging problem in
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the experiments (instances where the LTL safety prop-
erty is specified by φ7

3), the average running time of
TemporalHyDICE was less than five minutes. In the other
cases, TemporalHyDICE was even faster. As an example,
for the LTL safety formulas φ3

1, φ
4
1, φ

5
1, φ

6
1, the average

running times of TemporalHyDICE are 18.6s, 25.5s, 27.2s,
and 40.4s, respectively.

As shown in Fig 2, while TemporalHyDICE efficiently
solved all problem instances, RRT[LTL-TSF] timed out in
almost every instance. RRT[LTL-TSF] relies on distance
metrics and nearest neighbors to guide the search. By
relying on such limited information, as shown in [15,16]
in the context of reachability analysis, it quickly becomes
difficult for RRT-based methods to find feasible directions
along which to extend T , causing a rapid decline in the
growth of T . The results in Fig 2 confirm this observa-
tion also in the case of applying RRT[LTL-TSF] to falsify
LTL safety properties in hybrid systems. By combining
model checking and motion planning, TemporalHyDICE
effectively guides the tree search. We also observe that
the running time of TemporalHyDICE tends to increase
sub-linearly (φn

1 and φn
2 ) or sub-quadratically (φn

3 ) with
the number of states in the minimized DFA.

5.3.2 Impact of Combining Model Checking and
Motion Planning

Comparisons in Fig. 2 between TemporalHyDICE and
HyDICE[NoGuide, LTL-TSF] show the importance of com-
bining model checking and motion planning. Recall that,
as described in Section 3, HyDICE[NoGuide, LTL-TSF] de-
notes the extension of our earlier work [15,16] to use the
automaton A as an external monitor so that it can be ap-
plied for the falsification of LTL safety properties. With-
out model checking to guide motion planning, however,
HyDICE[NoGuide, LTL-TSF], similar to RRT[LTL-TSF], times
out in almost all instances.

Comparisons in Fig. 2 between TemporalHyDICE and
TemporalHyDICE[no D] indicate the importance of com-
puting discrete witnesses by searching both the graph
D and the automaton A (as in TemporalHyDICE) and
not just A (as in TemporalHyDICE[no D]). When search-
ing just A, a discrete witness may contain propositional
assignments τi and τi+1 that cannot be satisfied consec-
utively, i.e., Γ (τi) is not directly connected to Γ (τi+1).
The graph D serves to eliminate from consideration many
of these infeasible discrete witnesses. This in turn speeds
up the search for a witness trajectory since T is ex-
tended far more frequently toward feasible directions.
It is also important to note that, even though the dis-
crete witnesses obtained by searching just A are not
as beneficial as those obtained by searching D and A,
TemporalHyDICE[no D] is still considerably faster than
falsification methods that do not guide the tree search,
such as RRT[LTL-TSF] and HyDICE[NoGuide, LTL-TSF].
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Fig. 3. Comparison of the computational efficiency of
TemporalHyDICE when using a minimal DFA, a minimal NFA con-
structed by hand, or an NFA constructed by standard tools [42]
for the safety properties specified by the various φn

2 formulas. Re-
ported is the average time in seconds to solve 100 problem in-
stances for each of the LTL formulas. Timeout was set to 400s.

5.3.3 Impact of Automata Minimization and
Determinization

Fig. 3 compares TemporalHyDICE when using for the
automaton A NFAs computed by standard tools [42],
minimal NFAs constructed by hand, or minimal DFAs
obtained by determinizing and minimizing the NFAs.
These experiments are motivated by the work in [35],
which shows significant speedup when using DFAs in-
stead of NFAs in the context of model checking.

As Fig. 3 shows, TemporalHyDICE is only slightly
faster when using minimal NFAs instead of minimal DFAs,
even though minimal NFAs had significantly fewer states.
As concluded in [35], DFAs offer computational advan-
tages that can offset the drawbacks of a possibly expo-
nential increase in the number of states. In particular, a
DFA search has a significantly smaller branching factor,
since there is exactly one transition that can be followed
from each state for each propositional assignment, while
when using an NFA there are generally many more. This
observation is also supported by comparisons of mini-
mal DFAs to standard NFAs in Fig. 3, since in such
cases there is significant speedup when using minimal
DFAs. Therefore, the non-minimized NFA should be de-
terminized and minimized.

6 Discussion

This paper presented a novel method, TemporalHyDICE,
for the falsification of safety properties specified by syn-
tactically safe LTL formulas for hybrid systems with
nonlinear dynamics and input controls. By effectively
combining model checking and motion planning, when
a hybrid system is unsafe, TemporalHyDICE computes a
witness trajectory that indicates a violation of the safety
property. Model checking in TemporalHyDICE computes
discrete witnesses by searching on-the-fly an automa-
ton A for the complement of the LTL safety formula
and the user-defined abstraction of the hybrid system.
Motion planning explores the state space of the hybrid
system by extending a search tree, consisting of feasible
hybrid-system trajectories, along the directions specified
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by the discrete witness. Information gathered during ex-
ploration is fed back to model checking to improve the
discrete witnesses computed in future iterations. Experi-
ments that test LTL safety properties on a robot naviga-
tion benchmark modeled as a hybrid system with nonlin-
ear dynamics and input controls provide promising vali-
dation. Results show significant speedup over extensions
of RRT-based falsification and demonstrate the impor-
tance of combining model checking and motion planning
for the falsification of LTL safety properties.

TemporalHyDICE opens up several venues for future
research. As we consider increasingly challenging prob-
lems, it becomes important to further improve the syn-
ergistic combination of model checking and motion plan-
ning. Moreover, the development of algorithms that make
use of parallel or multi-threaded computational resources
provides an important venue to significantly improve the
computational efficiency of the framework. Another re-
search direction is to extend the theory developed in [43]
to show probabilistic completeness for TemporalHyDICE.
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