
Motion Planning with Dynamics by a
Synergistic Combination of Layers of Planning

Erion Plaku Lydia E. Kavraki Moshe Y. Vardi

Abstract—Effectively incorporating robot dynamics into mo-
tion planning has been an active area of research in robotics
over the last decade. Toward this goal, this work proposes a
novel multi-layered approach, termed Synergistic Combination
of Layers of Planning (SyCLoP), that synergistically combines
high-level discrete planning and sampling-based motion planning.

Initially, SyCLoPuses a workspace decomposition to construct
a discrete model of the motion-planning problem. At each
iteration, high-level planning, which draws from research in AI
and logic, searches the discrete model for a feasible plan, i.e.,
a sequence of decomposition regions that can effectively guide
motion planning as it extends a tree during the search for a
solution trajectory. In return, information gathered by motion
planning, such as progress made in connecting decomposition
regions, is fed back to high-level planning. In this way, the
planning layers in SyCLoP are not independent, but work in
tandem to compute in future iterations increasingly feasible high-
level plans and quickly grow the tree toward the goal.

The synergistic combination of high-level discrete planning and
sampling-based motion planning allowsSyCLoP to effectively
solve challenging motion-planning problems with dynamics. Sim-
ulation experiments with high-dimensional dynamical models of
ground and flying vehicles demonstrate computational speedups
of up to two orders of magnitude over state-of-the-art motion
planners. In addition, SyCLoP is well-suited for hybrid systems,
which move beyond continuous models by employing discrete
logic to instantaneously modify the dynamics.

I. I NTRODUCTION

A basic component of robot autonomy is the ability of the
robot to plan the motions needed to reach a goal destination
while avoiding collisions. In its early years, research in motion
planning considered only geometric models of the robot and
the environment on which the robot operates [1]–[3]. This
geometric setting served to fuel research in sampling-based
motion planning, giving rise to popular methods such as the
Probabilistic RoadMap (PRM) [4], Rapidly-exploring Random
Tree (RRT) [5], [6], Expansive Space Tree (EST1) [7], [8], and
many others, as surveyed in [9]–[12].

The success of sampling-based approaches and the need
to produce in simulations solutions that respect physical con-
straints in robot motion led researchers to go beyond geometric

Erion Plaku, Lydia E. Kavraki, and Moshe Y. Vardi are with theDepart-
ment of Computer Science, Rice University, Houston, TX, 77005e-mail:
{plakue,kavraki,vardi}@cs.rice.edu.

Preliminary versions of this work by the same authors appearedin Robotics:
Science and Systems, Atlanta, GA, 2007, pp. 326–333 and IEEE Int. Conf. on
Robotics and Automation, Pasadena, CA, 2008, pp. 3751–3756.This paper
combines the preliminary versions, further improves the proposed method,
and presents results on additional motion-planning problemsinvolving high-
dimensional second-order dynamical models of ground and flyingvehicles.

Manuscript received April 3, 2009.
1The acronymEST does not appear in the original papers.

Fig. 1. Proposed multi-layered approach,SyCLoP, synergistically combines
high-level discrete planning and sampling-based motion planning.

models and to incorporate robot dynamics directly into motion
planning [5]–[8], [13]–[27] (see [9]–[12] for more overviews).
Sampling-based methods, such asRRT [5], [6] and EST [7],
[8] have now been widely used in motion planning with
dynamics. These motion planners typically explore the state
space by maintaining a tree data structure, which is extended
with trajectories obtained by applying controls and simulating
the dynamics. This greatly facilitates the design of controllers,
which are needed in order to generate hardware commands that
can enable the robot to follow in the physical world solutions
obtained in simulation [28].

While significant progress has been made, motion planning
with dynamics still constitutes a significant challenge. Taking
into account the robot dynamics in addition to its geometry
can considerably increase the dimensionality and the compu-
tational complexity of the motion-planning problem [29]–[32].

The contribution of this paper is a novel multi-layered ap-
proach to motion planning with dynamics, termedSynergistic
Combination ofLayersof Planning (SyCLoP), that synergis-
tically combines high-level discrete planning and sampling-
based motion planning.SyCLoP draws from our prelimi-
nary work [23], [24], further improves the proposed method,
and contains new simulation experiments on motion-planning
problems with high-dimensional dynamical models of ground
and flying vehicles.SyCLoP, as other sampling- and tree-
based motion planners, uses a tree exploration of the state
space. As demonstrated in this paper, however, as a result
of the synergistic combination of high-level discrete planning
and sampling-based motion planning,SyCLoP is considerably
faster (up to two orders of magnitude) than state-of-the-
art motion planners in solving challenging motion-planning
problems with dynamics.

IEEE Transactions on Robotics, 26(3):469–482, 2010. DOI: 10.1109/TRO.2010.2047820

2

In motion planning with dynamics, tree-based approaches
have become the norm. Over the years, numerous strategies
have been proposed to effectively guide the tree exploration
of the state space.RRT [5], [6] uses a distance metric and
nearest neighbors to introduce a Voronoi bias to the tree
exploration.EST [6], [7] maintains a density distribution over
the states in the tree to guide the exploration toward areas
of low density. The work in [33] defines the utility of each
state in an information-theoretic sense and extends the tree
from those states that would increase the overall utility. The
work in [34] extends the tree using a framework that aims
to balance exploration with exploitation of the configuration
space. Other tree-based motion planners use decompositions to
guide the exploration. In fact, the idea of using decompositions
appeared early in motion-planning literature. Key theoretical
results and some of the first motion planners were obtained
using decompositions, cf. [1], [2], [9], [35], [36]. When
sampling-based motion planners became popular, the idea
of decomposition-based approaches has been revisited many
times. In the context of roadmap motion planners, the work in
[37]–[40] uses decompositions to guide the sampling strategy
during roadmap construction. In tree-based motion planning,
the work in [41] uses a grid and simple selection strategies
to extend the tree from less-populated cells. The work in
[42] uses approximate cell decompositions of the configuration
space to guide the search toward the goal. The work in [43]
uses partial workspace decompositions to speed up exploration
of configuration space. In motion planning with dynamics, the
work in [21], [27] uses a potential field over a grid to guide
the tree exploration toward the goal. The work in [18] uses a
subdivision scheme to extend the tree from regions that have
been selected less frequently in the past. The work in [22] also
uses subdivision, but guides exploration toward regions with
low coverage. We acknowledge that due to the large body of
research in sampling-based motion planning, the summary in
this paper, which focused on recent work, covers only a small
fraction of related work. We refer the reader to recent books
and surveys for more complete overviews [10]–[12].
SyCLoP relies on a combination of high-level discrete

planning and sampling-based motion planning in order to
effectively solve challenging motion-planning problems with
dynamics. Fig. 1 provides a schematic representation of this
combination. Initially,SyCLoP uses a workspace decomposi-
tion to construct a high-level discrete model of the motion-
planning problem. The discrete model is represented in terms
of a graph whose vertices are regions in the decomposition
and whose edges denote the physical adjacency of the regions.
Drawing from research in logic and AI [44]–[46], high-level
planning inSyCLoP exploits the simple observation that any
solution trajectory corresponds to somehigh-level plan, i.e.,
a sequence of neighboring decomposition regions that starts
and ends at regions associated with the initial and goal states,
respectively. Although the converse does not hold in general, a
high-level plan can, however, provide a general direction along
which to extend the tree. Sampling-based motion planning then
can attempt to obtain a solution trajectory by extending thetree
from one region to its neighbor in the high-level plan.

In motion-planning literature, two-layered approaches have

consisted of two independent layers. Examples include early
planners, such as SANDROS [47], and more recent work in
motion planning for physical systems. As an example, the
work in [48] first obtains near-optimal high-level discreteplans
via D* search and then uses controllers to closely follow the
discrete plan in the physical world.
SyCLoP builds further upon this idea of a two-layered

approach to motion planning with dynamics by
(i) incorporating state-of-the-art sampling-based motion

planning in the second layer, and, more importantly,
(ii) instead of treating the planning layers as independent

from each other,SyCLoP synergisticallycombines high-
level planning and sampling-based motion planning.

More specifically, since the discrete model can provide many
alternative high-level plans, as shown in Fig. 1, the planning
layers inSyCLoP work in tandem to evaluate the feasibility
of current plans and to compute increasingly feasible plansin
future iterations. The feasibility of a high-level plan is esti-
mated based on information gathered during motion planning,
such as progress made in connecting decomposition regions,
time spent in exploration, and region coverage. In order to
compute the feasibility estimates efficiently,SyCLoP uses a
second workspace decomposition, which is more fine grained
than the workspace decomposition used for computing high-
level plans. Drawing from earlier work in sampling-based
motion planning [18], [21]–[27], [33], [41], earlier versions of
our work [23], [24], and extensive experimentations, we note
that the feasibility estimates in this paper are designed tobe
computed efficiently and are shown to work well in practice for
solving challenging motion-planning problems with dynamics.

Aiming to strike a balance between greedy and methodical
search,SyCLoP gives priority to highly feasible plans, but at
the same time it does not ignore other less feasible plans. In
this way,SyCLoP has the flexibility to extend the tree along
feasible directions while able to radically change direction
if information from motion planning suggests other more
feasible plans.

The synergistic combination of high-level planning and
sampling-based motion planning allowsSyCLoP to effectively
solve challenging motion-planning problems with dynamics.
Simulation experiments with second-order dynamical mod-
els of ground and flying vehicles demonstrate computational
speedups of up to two orders of magnitude over state-of-the-art
motion planners. The computational efficiency ofSyCLoP be-
comes more pronounced when considering high-dimensional
motion-planning problems with dynamics. Simulation experi-
ments in these cases show thatSyCLoP remains efficient, while
the computational efficiency of the other motion planners in
the comparisons deteriorates rapidly as the number of degrees-
of-freedom (DOFs) increases.

In addition to motion planning with dynamics,SyCLoP is
well-suited for hybrid systems [49]. Hybrid systems move
beyond continuous models by employing discrete logic to
instantaneously modify the dynamics to respond to mishaps
or unanticipated changes [50]. Hybrid systems are used in
a wide variety of settings, such as in embedded controllers
in the automotive industry, and also for modeling biological
networks and air-traffic management systems [51], [52].

3

The paper is organized as follows. The motion-planning
problem with dynamics and a basic tree-search framework
commonly used to solve such problems are described in Sec-
tion II. SyCLoP is described in Section III. Experiments and
results are described in Section IV, which also includes a study
on the impact of the discrete model and the interplay between
high-level planning and sampling-based motion planning on
the efficiency ofSyCLoP. Applications ofSyCLoP to motion
planning for hybrid systems are discussed in Section V. The
paper concludes with a discussion in Section VI.

II. PRELIMINARIES

A. The Motion-Planning Problem with Dynamics

Robots are often controlled by applying external inputs. As
an example, a car is driven by applying acceleration and rotat-
ing the steering wheel. The dynamics describe the evolution
of a system’s state. This section defines the motion-planning
problem using a general formulation that treats the dynamics
as a black box. Similar to the abstraction of collision checking
in sampling-based approaches, the definition of dynamics asa
black-box allows the motion planner to access the necessary
components for planning purposes, while hiding the intricacies
of the robot and its interactions with the environment.

Definition II-A.1. A motion-planning problem with dynamics
is a tupleP = (S,U , FLOW, VALID , sinit ,GOAL), where

• S is a state space consisting of a finite set of variables
that describe the state of the system;

• U is a control space consisting of a finite set of input
variables that can be applied to the system;

• FLOW : S×U×R≥0 → S is a flow function that simulates
the system dynamics when an input is applied to the
system for a certain time duration.

• VALID : S → {true, false} specifies state constraints;
• sinit ∈ S is an initial state;
• GOAL : S → {true, false} specifies the goal.

A solution to the motion-planning problemP is a valid trajec-
tory γ : [0, T] → S that starts atsinit and satisfies the motion-
planning goal, i.e.,γ(0) = sinit ; GOAL(γ(T)) = true; and
∀t ∈ [0, T] : VALID (γ(t)) = true. Moreover,γ is obtained by
applying tosinit a sequence of input controlsu1, u2, . . . , uN ∈
U for certain time durationsT1, T2, . . . , TN ∈ R≥0, i.e.,

γ = sinit ◦ (u1, T1) ◦ . . . ◦ (uN , TN),

whereγA ◦ (uB , TB) denotes the extension of the trajectory
γA : [0, TA] → S by applying the input controluB to the state
γA(TA) for TA time units, i.e.,

(γA◦(uB , TB))(t) =
{
γA(t), if 0 ≤ t ≤ TA

FLOW(γA(TA), uB , t− TB), otherwise

Below we briefly discuss common representations used in
sampling-based motion planning to model dynamics, state
constraints, and the motion-planning goal.

1) Dynamics: When a system is at a states ∈ S and a
control u ∈ U is applied fort ∈ R≥0 time units, the system’s
state evolves according to the underlying dynamics and at the
end the system may be at a new statesnew ∈ S. Such behavior
is captured by a flow functionFLOW : S × U × R≥0 → S,
where, for eachs ∈ S, u ∈ U , and t ∈ R≥0, FLOW(s, u, t)
outputs the new statesnew ∈ S obtained by applying the input
u for t time units when the system is at states. Consistency
in the flow function is ensured by the following requirements:

• (Identity) ∀s ∈ S, u ∈ U : s = FLOW(s, u, 0).
• (Transitivity) ∀s ∈ S, u ∈ U , t1, t2 ∈ R≥0:

FLOW(s, u, t1 + t2) = FLOW(FLOW(s, u, t1), u, t2).

For many systems, dynamics are commonly described by
a set of differential equationsg : S × U → Ṡ. Closed-form
solutions (if available) or numerical integrations can be used
to computeFLOW from g. Several examples of second-order
dynamics are given in Section IV.

In addition to differential equations, physics-based simu-
lations can be used to model the dynamics. Physics-based
simulations provide an increased level of realism by also
modeling friction, gravity, and interactions of the robot with
the environment, which cannot be easily described analytically.

2) State Constraints:State constraints indicate a desired
invariant that states should satisfy, e.g., collision avoidance,
bounds on velocity, turning radius. This work allows for gen-
eral specifications as a functionVALID : S → {true, false},
whereVALID (s) = true iff s satisfies the state constraints.

3) Motion-Planning Goal: The motion-planning goal is
specified as desired constraints that a goal state should satisfy,
e.g., desired configuration, velocity. As in the case ofVALID ,
this work allows for general specifications asGOAL : S →
{true, false}, where GOAL(s) = true iff s satisfies the
motion-planning goal. In many cases, as in this paper,GOAL

is defined as a small ball centered at a goal state, i.e.,

GOAL(s) = true iff ρ(s, sgoal) ≤ δ,

where sgoal ∈ S is the goal state,ρ : S × S → R≥0 is a
distance metric, andδ > 0 is a distance threshold.

B. A Basic Tree-Search Framework for Motion Planning with
Dynamics in Sampling-based Approaches

Motion planning with dynamics is generally approached
as a search problem for a valid trajectoryγ : [0, T] → S
that satisfies the motion-planning goal. Many sampling-based
motion planners follow a common framework that searches
for a solution by extending in the state spaceS a tree rooted
at the initial statesinit [5]–[8], [12], [17]–[19], [21]–[27], [33].
Pseudocode is given in Algo. 1.

A search data structure is maintained as a treeT , where
each vertexv ∈ T has a backpointer,v.parent, to its parent.
Moreover, v is associated with a states ∈ S, written as
v.s, and the edge(v.parent, v) indicates that a valid trajectory
connectsv.parent.s to v.s. A description of Algo. 1 follows.

1) INITIALIZE TREE(P): During initialization, the root ver-
texvinit is associated withsinit and is added toT . As the search
proceeds iteratively,T is extended by adding new vertices.

4

Algorithm 1 A Basic Tree-Search Framework
Input: P = (S,U , FLOW, VALID , sinit , GOAL)

tmax ∈ R>0: upper bound on computation time
ǫ ∈ R>0: propagation step
nadd∈ N: nr. steps to add new vertex to tree

Output: A solution trajectory ornull

T ← INITIALIZE TREE(P) ♦II-B1
while ELAPSEDTIME < tmax do

v ← SELECTVERTEXFROMTREE(P, T) ♦II-B2
γ ← EXTENDTREE(P, T , v, ǫ, nadd) ♦II-B3
if γ 6= null then return γ ♦solution trajectory

return null

EXTENDTREE(P, T , v, ǫ, nadd)
1: [u,maxnsteps]← SAMPLECONTROLANDMAX NRSTEPS(P, T , v)
2: s0 ← v.s; count← 0
3: for i = 1 . . .maxnstepsdo
4: si ← FLOW(si−1, u, ǫ); count← count+ 1
5: if VALID (si) = false then
6: return false
7: goal← GOAL(si)
8: if goal= true or count≥ nadd then
9: vnew.[s, u, t, parent]← NEWVERTEX(si, u, count∗ ǫ, v)

10: T ← T ∪ {vnew}; count← 0
11: if goal= true then return TRAJ(T , vnew.s)

2) SELECTVERTEXFROMTREE(P, T): This function selects
at each iteration a vertexv ∈ T from which to extendT . Over
the years, numerous strategies have been proposed that relyon
distance metrics, nearest neighbors, probability distributions,
and many others [10], [11]. As an example, the initial version
of RRT [5] first samples a states ∈ S uniformly at random
and then selectsv ∈ T whosev.s is the closest tos according
to a distance metric.

3) EXTENDTREE(P, T , v, ǫ, nadd): This function extendsT
from v by computing a valid trajectoryγ : R>0 → S that starts
at v.s. A common strategy is to apply some inputu ∈ U to
v.s and follow the system dynamics until the state-constraints
are not satisfied or a maximum number of stepsmaxnsteps

is exceeded [10], [11]. The inputu is generally selected
uniformly at random to allow subsequent calls to extendT
along new directions. Intermediate states along the trajectory
defined by the statev.s, input controlu, and time duration,
are added toT , as suggested in [5], [6], [10], [11], [33], [53].

The implementation ofEXTENDTREE relies on an iterative
procedure. Letmaxnstepsdenote the maximum number of steps
and let ǫ > 0 denote the step size (Algo. 1:1). Initially,
s0 = v.s (Algo. 1:2). At the i-th iteration, si is computed
assi = FLOW(si−1, u, ǫ) (Algo. 1:4). If si is invalid, then the
computation stops (Algo. 1:5–6). Otherwise, a check is per-
formed to determine whethersi satisfies the motion-planning
goal (Algo. 1:7). A new vertex is added toT if si satisfies the
motion-planning goal or several successful steps have been
taken since the last addition toT (Algo. 1:8–10). If the
motion-planning goal is satisfied, then the solution trajectory
is computed by concatenating the trajectories associated with
the tree edges connectingvinit to vnew (Algo. 1:11).

III. SYCLOP

The efficiency of the basic tree search (Section II-B) de-
pends on the ability of the framework to quickly extendT

Algorithm 2 SyCLoP

Input: P = (S,U , FLOW, VALID , sinit , GOAL)
tmax ∈ R>0: upper bound on computation time

Output: A solution trajectory ornull

1: T ← INITIALIZE TREE(P) ♦II-Ba
2: D ← DISCRETEMODEL(P) ♦III-A
3: INITESTIMATES(P, T ,D) ♦III-D
4: while ELAPSEDTIME < tmax do
5: [Rij]

k
j=1 ← HIGHLEVELPLANNING(D) ♦III-C

6: γ←GUIDEDEXPLORATION(P, T ,D, [Rij]
k
j=1) ♦III-E

7: if γ 6= null then
8: return γ ♦solution trajectory
9: UPDATEESTIMATES(P, T ,D) ♦III-D

10: return null

toward the goal. To effectively guide the search,SyCLoP

synergistically combines high-level discrete planning with
sampling-based motion planning, as illustrated in Algo. 2.

A. High-Level Discrete Model

The high-level discrete model provides a simplified high-
level planning layer that can be used to effectively guide
sampling-based motion planning. This allowsSyCLoP to ben-
efit from research in computer logic and AI, where high-level
planning plays an important role [44]–[46]. LetW denote the
workspace, i.e., the two- or three-dimensional environment
(including the obstacles) on which the robot operates. The
discrete models in this paper are based on decompositions of
the workspaceW into nonoverlapping regions (except at the
boundary), i.e.,W = R1 ∪R2 ∪ · · · ∪ Rn, and

∀Ri,Rj ∈ W : Interior(Ri) ∩ Interior(Rj) = ∅.
In order to map states to workspace decomposition regions,

SyCLoP first uses a projectionPROJ : S → W to map a state
s ∈ S to the corresponding point inW by extracting the
position component froms. SyCLoP then uses a region-locator
function LOCATEREGION : W → {R1, . . . ,Rn} to map each
workspace point to the corresponding region, i.e.,

∀p ∈ W : LOCATEREGION(p) = Ri iff p ∈ Ri.

In this way, a states ∈ S is mapped toRi, whereRi =
LOCATEREGION(PROJ(s)).

The computation of workspace decompositions is an active
research area in computational geometry [54]. Simple decom-
positions can be obtained by imposing a uniform grid overW,
where each cell constitutes a decomposition regionRi. In this
case,LOCATEREGION can be implemented to run in constant
time. Other workspace decompositions can be obtained by
triangulations. In the case of triangulations,LOCATEREGION

can be implemented to run in polylogarithmic time [54]. The
impact of workspace decompositions on the overall computa-
tional efficiency ofSyCLoP is studied in Section IV-D.

The discrete model also keeps information about the regions
associated with the initial and goal states of the motion-
planning problem, i.e.,Rinit = LOCATEREGION(PROJ(sinit)) and
Rgoal = LOCATEREGION(PROJ(sgoal)). Putting it all together, the
discrete model is a tuple

D = (W, {R1, . . . ,Rn}, E, LOCATEREGION,Rinit ,Rgoal).

A solution with respect to the discrete model, referred to asa

5

high-level plan, is a sequence of regions[Rij]
k
j=1 connecting

Rinit to Rgoal.

B. Interplay of High-Level Planning and Sampling-based Mo-
tion Planning

Consider a high-level plan[Rij]
k
j=1. Sampling-based mo-

tion planning inSyCLoP uses[Rij]
k
j=1 as a guide in determin-

ing the regions that should be further explored. Since[Rij]
k
j=1

connectsRinit to Rgoal, by exploring regions in[Rij]
k
j=1, the

rationale is that sampling-based motion planning can make
significant progress in extendingT toward the goal region.

A central issue is then which high-level plan to choose at
each iteration (Algo 2:5), sinceD can provide exponentially
many alternative high-level plans. To address this issue, for
each(Ri,Rj) ∈ D.E, SyCLoP maintains a running estimate

COST(Ri,Rj)

on the feasibility of having the sampling-based motion planner
spend additional time attempting to extendT from Ri to Rj .
In this way, whenCOST(Ri,Rj) is low, SyCLoP estimates that
it is feasible spending more time exploring(Ri,Rj).

COST(Ri,Rj) is computed based on information gathered
by the sampling-based motion planner during each exploration
of Ri andRj . The topic of estimate computations in sampling-
based motion planning has gained considerable attention in
recent years [18], [21]–[27], [33], [41]. Drawing from this
body of research, earlier versions of our work [23], [24],
and extensive experimentations, the estimates in this paper
are designed to be computed efficiently and are shown to
work well in practice for solving challenging motion-planning
problems with dynamics. In particular,COST(Ri,Rj) depends
on the number of timesRi andRj have been explored in the
past, the coverage ofRi and Rj by T , the free volume of
Ri andRj , and the progress made in extendingT from Ri

to Rj . Based on this information,COST(Ri,Rj) is estimated
to be low, i.e., high feasibility, when the free volume ofRi

andRj is high and when the sampling-based motion planner
has spent little time exploringRi andRj , but still has made
considerable progress in covering and connectingRi andRj .
Details are provided in Section III-D.

The computation of a high-level plan[Rij]
k
j=1 then essen-

tially becomes a search algorithm on a weighted graph, where

COST([Rij]
k
j=1) = COST(Ri1 ,Ri2) + · · ·+ COST(Rik−1

,Rik).

Drawing from research in logic and AI [44]–[46], the combina-
tion of search strategies in high-level planning (Algo. 2:5) aims
to balance greedy and methodical search by selecting more
frequently high-level plans with lowCOST([Rij]

k
j=1), i.e., high

feasibility, and selecting less frequently high-level plans with
high COST([Rij]

k
j=1). Details are provided in Section III-C.

The core part ofSyCLoP, illustrated in Fig. 1 and Algo. 2:4–
9 , proceeds by repeating the following steps until a solution
is found or a maximum amount of time has elapsed:

• Use high-level planning to compute the current high-level
plan

[
Rij

]k
j=1

by searchingD. Use theCOST(Ri,Rj)
estimates to bias search toward high-level plans with
low COST([Rij]

k
j=1), i.e., high feasibility (Algo. 2:5,

Section III-C).

• Use sampling-based motion planning to extendT . Use[
Rij

]k
j=1

as a guide in determining the regions that
should be further explored (Algo. 2:6, Section III-E).

• Update COST(Ri,Rj) estimates based on information
gathered by the sampling-based motion planner during
exploration (Algo. 2:9, Section III-D).

• Use the updatedCOST(Ri,Rj) values to discover in
future iterations new high-level plans that effectively
guide the exploration toward the goal (Algo. 2:5–9).

As demonstrated by the experiments, this synergistic com-
bination of high-level discrete planning and sampling-based
motion planning throughCOST(Ri,Rj) estimates is a crucial
component ofSyCLoP.

C. High-Level Planning: Guiding the Search

HIGHLEVELPLANNING(D) (Algo. 2:5) computes at each
iteration the current high-level plan by searching the decompo-
sition graph of the discrete modelD for a sequence of regions
[Rij]

k
j=1 connectingRi1 = Rinit to Rik = Rgoal.

With high probability p (set to 0.95 in the experiments),
HIGHLEVELPLANNING(D) computes the current high-level
plan by using a shortest-path algorithm (e.g., Dijkstra, A*),
where the edge weights are set toCOST(Ri,Rj). This allows
SyCLoP to bias the selection toward high-level plans with low
COST([Rij]

k
j=1), i.e., high feasibility, which indicate that the

sampling-based motion planner should spend additional time
exploring regions in[Rij]

k
j=1, since[Rij]

k
j=1 may effectively

guide the exploration toward the goal.
Random high-level plans are also used, although less fre-

quently, as a way to correct for errors inherent with the
estimates. This is motivated by observations made in [53],
[55], where random restarts and random neighbors have been
suggested as effective ways to unblock the exploration when
sampling-based motion planners get stuck. With small prob-
ability 1 − p, HIGHLEVELPLANNING(D) computes the current
high-level plan as a random sequence of regions connecting
Rinit to Rgoal. The computation is carried out by using depth-
first search, where the children are visited in a random order.

D. Definition and Computation of Estimates used by the High-
Level Planner and Sampling-based Motion Planner

As discussed in Section III-B,COST(Ri,Rj) estimates in
SyCLoP are based on information gathered by the sampling-
based motion planner during exploration. These estimates can
be defined and computed in a number of ways, as evidenced by
recent work in sampling-based motion planning [7], [8], [18],
[21]–[27], [33], [41]. Drawing from this research and extensive
experimentations, we have made further improvements and
have fine-tuned the estimates presented in the preliminary
work [23], [24]. As a result, estimates in this paper are de-
signed to be computed efficiently and are shown to work well
in practice for solving challenging motion-planning problems
with dynamics. Specifically,COST(Ri,Rj) is defined as

COST(Ri,Rj) =
1 + SEL2(Ri,Rj)

1 + CONN2(Ri,Rj)
α(Ri)α(Rj),

6

where, fork ∈ {i, j},

α(Rk) =
1

(1 + COV(Rk)) FREEVOL4(Rk)
,

and

• COV(Rk) estimates the progress made by sampling-based
motion planner in coveringRk;

• FREEVOL(Rk) estimates the free volume ofRk;
• CONN(Ri,Rj) estimates the progress made by sampling-

based motion planner in extendingT from Ri to Rj ;
• SEL(Ri,Rj) counts the number of timesRi andRj have

been part of a high-level plan or selected for exploration.

In this way, (Ri,Rj) is more likely to be included in the
current high-level plan whenCOST(Ri,Rj) is low, which in-
dicates thatRi andRj have a large free-volume, the sampling-
based motion planner has spent little time exploringRi and
Rj , but still has been able to make considerable progress
in covering and connectingRi to Rj . As evidenced by the
experimental results, this estimation scheme is particularly
well-suited for the interplay between high-level planningand
sampling-based motion planning, which has allowedSyCLoP

to efficiently solve challenging motion-planning problemswith
dynamics. Details related to the definition and efficient imple-
mentation of these estimates follow.

1) Coverage: COV(Ri) estimates the coverage ofRi by
states inT . Coverage estimates were introduced in the context
of Monte Carlo methods as a way to measure the quality of
quasirandom sampling, cf. [56], [57]. One such measure is
dispersion. As noted in [58], while dispersion has been used
in sampling-based motion planning to generate quasirandom
samples [59], its use as a coverage estimate is impeded by the
significant cost required to compute it in high dimensions.

As an alternative to dispersion, in order to efficiently com-
pute COV(Ri), SyCLoP overlays an implicit grid (denoted as
CovGrid) over the workspace and counts the number of grid
cells inRi that contain states of verticesv from T , i.e.,

COV(Ri) = |{c : c ∈ CovGrid∧ v ∈ T ∧ PROJ(v.s) ∈ c∩Ri}|.
The grid is set to a fine resolution to allow for good es-
timates. Experiments in this paper use a512 × 512 (resp.,
512× 512× 512) grid in 2D (resp., 3D) workspaces.

Note that COV(Ri) needs to be updated only when a
new vertexv is added toT . To make this update efficient,
each regionRi maintains its own list of coverage cells,
Ri.cells, and each cellc ∈ Ri.cells maintains its own list of
vertices,c.vertices. When v is added toT , the listsRi.cells
and c.vertices are updated to reflect the new information, as
shown in Algo. 3. More specifically, the projection ofv.s

Algorithm 3 UPDATECOVERAGE(v)

1: Ri ← LOCATEREGION(PROJ(v.s))
2: coords← CELLCOORDS(CovGrid, PROJ(v.s))
3: c← Ri.cells.GET(coords); nrNewCells← 0
4: if c = null then
5: c← CREATECELL(coords); nrNewCells← 1
6: Ri.cells.ADD(c)
7: c.vertices.ADD(v)
8: COV(Ri)←Ri.cells.SIZE()
9: return [Ri, c, nrNewCells]

onto the workspace is computed byPROJ(v.s), which is then
used to locate the regionRi in the workspace decomposition
wherePROJ(v.s) ∈ Ri (Algo. 3:1). The cellc that PROJ(v.s)
belongs to is then added to the listRi.cells, if not already
there (Algo. 3:2–6). A hash-map is used to efficiently search
if c is already inRi.cells (Algo. 3:3). The vertexv is then
associated withc (Algo. 3:7). In this way,COV(Ri) can be
efficiently updated as

COV(Ri) = Ri.cells.SIZE().

2) Free Volume: The purpose of the free volume is to
provideSyCLoP with an estimate on the difficulty of exploring
a particular region. The rationale is that regions that havelarge
free volumes are easier to explore than regions that have small
free volumes. In a preprocessing stage, as shown in Algo. 4,
SyCLoP generates a number of samples uniformly at random
from S. For eachRi ∈ {R1, . . . ,Rn}, SyCLoP then computes
the number of valid(nvalid(Ri)) and invalid (ninvalid(Ri))
samples that fall intoRi, respectively. (Experiments in this
paper use5000 samples. Preprocessing time is small, less than
3s on a single CPU in our setup.) Then,

Algorithm 4 Preprocessing:FREEVOL

1: for Ri ∈ {R1, . . . ,Rn} do
2: nvalid(Ri)← 0; ninvalid(Ri)← 0
3: for i = 1, . . . , k do
4: s← generate sample fromS
5: Ri ← LOCATEREGION(PROJ(s))
6: if VALID (s) = true then
7: nvalid(Ri)← nvalid(Ri) + 1
8: else
9: ninvalid(Ri)← ninvalid(Ri) + 1

FREEVOL(Ri) =
ǫ+ nvalid(Ri)

ǫ+ nvalid(Ri) + ninvalid(Ri)
vol(Ri),

where vol(Ri) is the volume ofRi and ǫ > 0 is a small
constant, which is used to avoid divisions by zero.

3) Connections: CONN(Ri,Rj) estimates the progress
the sampling-based motion planner has made in directly
connectingRi to Rj . A direct connection fromRi to Rj

occurs when an edge(v, vnew) is added toT , such that
PROJ(v.s) ∈ Ri and PROJ(vnew) ∈ Rj . Then, CONN(Ri,Rj)
is defined as the coverage ofRj by states originating from
direct connections ofRi to Rj . The computation is similar to
the coverage procedure of Section III-D1. Pseudocode is given
in Algo. 5. To make this update efficient, each(Ri,Rj)

Algorithm 5 UPDATECONNECTIONS(v, vnew)

1: Ri ← LOCATEREGION(PROJ(v.s))
2: Rj ← LOCATEREGION(PROJ(vnew.s))
3: if (Ri,Rj) ∈ D.E then
4: coords← CELLCOORDS(CovGrid, PROJ(vnew.s))
5: (Ri,Rj).cells← (Ri,Rj).cells∪ {coords}
6: CONN(Ri,Rj)← (Ri,Rj).cells.SIZE()

maintains its own list of coverage cells,(Ri,Rj).cells, as
a hash map. In this way,CONN(Ri,Rj) can be efficiently
updated as

CONN(Ri,Rj) = (Ri,Rj).cells.SIZE().

7

4) Selections:SEL(Ri,Rj) distinguishes between “empty”
and “nonempty” edges. An edge(Ri,Rj) is considered empty
if Ri, Rj have not yet been reached byT , i.e., COV(Ri) =
COV(Rj) = 0. In such cases,SEL(Ri,Rj) counts the number
of times the high-level planner has included(Ri,Rj) in the
selected high-level plans. This allows the high-level planner to
change the empty edges that are included in future high-level
plans, giving the sampling-based motion planner a great degree
of flexibility during exploration. This is especially relevant in
the early stages of exploration, where most of the edges are
empty, sinceT has yet to reach many of the regions.

WhenRi or Rj have been reached byT , i.e.,COV(Ri) 6= 0
or COV(Rj) 6= 0, then SEL(Ri,Rj) counts the number of
times the sampling-based motion planner has selected tree
vertices associated withRi when extendingT toward Rj .
This is to give preference in future iterations to those edges
that have been explored less frequently in the past.

E. Sampling-based Motion Planning: Guided Exploration

GUIDEDEXPLORATION(P, T ,D, [Rij]
k
j=1) uses the current

high-level plan
[
Rij

]k
j=1

as a guide in determining the regions
that should be further explored, as shown in Algo. 6. At each

Algorithm 6 GUIDEDEXPLORATION(P, T ,D, [Rij]
k
j=1)

Input: P = (S,U , FLOW, VALID , sinit , GOAL)
T : search tree;D: discrete model
[Rij]

k
j=1: current high-level plan

Output: A solution trajectory ornull

1: Ravail← AVAILABLE REGIONS([Rij]
k
j=1) ♦ III-E1

2: for several timesdo
3: Ri ← Ravail.SELECT() ♦ III-E2
4: [γ,newCells]←EXPLOREREGION(P,T ,D,Ri,Ravail) ♦III-E3
5: if γ 6= null then return γ
6: if newCells= 0 and URAND[0, 1) ≤ p then return null
7: return null

iteration, a regionRi is first selected and then explored by
extending several branches from the tree vertices associated
with Ri (Algo. 6:3–4). As a result of this exploration, the
sampling-based motion planner has gathered new information,
which is used to update the estimates, as described in Sec-
tion III-D and III-E3. These updates allow the sampling-based
motion planner to select other regions for exploration during
the remaining iterations. If during exploration ofRi, a solu-
tion trajectory is found, thenGUIDEDEXPLORATION terminates
successfully (Algo. 6:5). If exploration ofRij improves the
overall coverage, i.e.newCells> 0, thenGUIDEDEXPLORATION

continues with the next iteration. This indicates that the
sampling-based motion planner is making progress. Otherwise,
with small probabilityp (set to 0.25), GUIDEDEXPLORATION

stops exploring the regions associated with the current high-
level plan (Algo. 6:6). This indicates that a new high-levelplan
should be computed, sinceGUIDEDEXPLORATION is not making
additional progress. Details of the main steps in Algo. 6 follow.

1) AVAILABLE REGIONS([Rij]
k
j=1): Note that regions in[

Rij

]k
j=1

which have not yet been reached byT , i.e.,
COV(Rij) = 0, cannot be considered for further exploration,

since such regions do not contain any tree vertices from
which to extendT . For this reason, the sampling-based motion
planner maintains a set of nonempty regions,Ravail, which
can be considered for further exploration. Initially,Ravail = ∅.
Then,

[
Rij

]k
j=1

is scanned backwards. IfRij is nonempty,
thenRij is added toRavail. WhenRij is added toRavail, it
is also decided (with probabilityp, set to0.95 in this work),
if other regions should be added toRavail. In this way, only
nonempty regions are added toRavail and preference is given
to those regions that appear toward the end of

[
Rij

]k
j=1

, since
such regions are closer to the goal.

2) Ravail.SELECT(): A region Ri is selected fromRavail

with probability
Ri.w∑

Rj∈Ravail
Rj .w

,

where

Ri.w =
FREEVOL4(Ri)

(1 + COV(Ri))(1 + (Ri.nsel)2)
,

(for more details on the estimates see discussions and defini-
tions in Section III-D). This selection scheme gives priority to
those regions that have a high free volume, low coverage, and
where the sampling-based motion planner has spent little time
in the past. The rationale is, as evidenced by experimental re-
sults, that by spending additional time exploring such regions,
the sampling-based motion planner could make more progress
and increase their coverage.

3) EXPLOREREGION(P, T ,D,Ri,Ravail): RegionRi is ex-
plored by extending several branches from the tree vertices
associated withRi, as shown in Algo. 7. At each iteration,

Algorithm 7 EXPLOREREGION(P, T ,D,Ri,Ravail)

Input: P = (S,U , FLOW, VALID , sinit , GOAL)
T : search tree; D: discrete model
Ri: region to be explored; Ravail: available regions

Output: A solution trajectory ornull

1: for several timesdo
2: c← Ri.cells.SELECT()
3: v ← c.vertices.SELECT()
4: UPDATEONSELECT(Ri, c, v)
5: γ ← EXTENDTREE(P, T , v); if γ 6= null then return [γ, 0]
6: newCells← 0
7: for vnew added by EXTENDTREE do
8: newCells← UPDATEONNEWVERTEX(vnew) + newCells
9: if newCells= 0 and URAND(0, 1) ≤ p then

10: return [null, newCells]
11: return [null, newCells]

UPDATEONNEWVERTEX(vnew)
1: [Ri, newCells]← UPDATECOVERAGE(vnew)
2: UPDATECONNECTIONS(vnew.parent, vnew)
3: if Ravail.EXISTS(Ri) = false then
4: Ravail.ADD(Ri)
5: Ravail.UPDATE(Ri)
6: return newCells

UPDATEONSELECT(Ri, c, v)
1: v.nsel← v.nsel+ 1; c.vertices.UPDATE(v)
2: c.nsel← c.nsel+ 1; Ri.cells.UPDATE(c)
3: Ri.nsel←Ri.nsel+ 1; Ravail.UPDATE(Ri)

EXPLOREREGION first selects one of the coverage cells ofRi

8

(Section III-D1) with probability

1

1 + c.nsel
/

∑

c′∈Ri.cells

1

1 + c′.nsel
,

where c.nsel is the number of times the coverage cellc has
been selected in the past (Algo. 7:2). Then, a vertex is selected
from c.verticesusing a similar probability distribution, i.e.,

1

1 + v.nsel
/

∑

v′∈c.vertices

1

1 + v′.nsel
,

wherev.nseldenotes the number of timesv has been selected
in the past (Algo. 7:3). Estimates are then updated to reflect
these new selections (Algo. 7:4). In this way, a vertexv that
has been selected less frequently during past explorationsof
Ri has a higher likelihood of being selected during the current
exploration ofRi. This two-tier selection process has been
proposed in [41] and has been shown to work well in practice.

EXTENDTREE(P, T , v) is then used to extendT from v
(Algo. 7:5) by forward propagation of the system dynamics
(see Section II-B). As a result, new vertices might have
been added toT . If a new region,Rnew, was reached, it
is then added toRavail, so that it becomes available for
further exploration (Algo. 7:7-8). Moreover, the estimates are
also updated to reflect the new information gathered by the
sampling-based motion planner (Algo. 7:7–8).

If EXTENDTREE(P, T , v) improves the overall coverage, i.e.,
newCells> 0, then the exploration ofRi continues. Otherwise,
with small probabilityp (set to0.125), the exploration ofRi

stops (Algo. 7:9–10). In this way, the sampling-based motion
planner spends more time exploring regions that improve the
overall coverage and spends less time exploring regions that
have already been covered well.

4) Implementation of the Select Functions:As discussed,
Ravail.SELECT(), cells.SELECT(), vertices.SELECT() operate by
selecting an itemai from a collection of items{a1, . . . , an}
with probability ai.w/

∑n
j=1 aj .w, where ai.w is a positive

weight associated withai. A straightforward implementation
of SELECT() can be obtained by selecting a weightw uniformly
at random from[0, wtotal], wherewtotal = a1.w+· · ·+an.w, and
then iterating fromi = 1 to n until w ≥ a1.w+· · ·+ai.w. The
total weight,wtotal, is maintained current after each item ad-
dition or weight update. This straightforward implementation,
however, works well only for small collections. More efficient
implementations ofSELECT() with O(log(n)) time, which are
used in this paper, can be obtained by placinga1, . . . , an as
leaves in a weighted complete binary tree, where the weight
of each inner node (start construction from bottom to top) is
equal to the sum of weights of its children. In this case, item
additions and weight updates also takeO(log(n)) time.

IV. EXPERIMENTS AND RESULTS

This section demonstrates the computational efficiency of
SyCLoP in solving challenging high-dimensional motion-
planning problems with dynamics. The experiments also in-
dicate that the synergistic combination of high-level discrete
planning and sampling-based motion planning is a crucial
component in the computational efficiency ofSyCLoP. This

section also studies the role of the workspace decomposition
in this synergistic combination.

A. Experimental Setup

1) Sampling-based Motion Planners used in the Compar-
isons: SyCLoP is compared to state-of-the-art and widely
popular methods, such asRRT [5], [6], ADDRRT [16], EST

[7], [8], and SBL [41]. We note that in all the experiments,
SBL, which is a more recent version ofEST, outperformed
the originalEST. Taking this into account, the results in this
section only include comparisons toRRT, ADDRRT, andSBL.

Standard implementations were followed, as suggested in
the respective research papers and motion-planning books
[10], [11]. These implementations are based on the tree-
search framework (Algo. 1) and are referred to asRRT[TSF],
ADDRRT[TSF], and SBL[TSF]. Many of the data structures
and utilities available in OOPSMP [60] were used to facilitate
implementation. Every effort was made to fine-tune the perfor-
mance of these motion planners for problems with dynamics.

RRT[TSF]: This implementation uses goal bias (set to
0.05), which has been shown to improve the efficiency ofRRT

[5], [6]. The distance metric was set to Euclidean distance
on the position component of the state. Other metrics, e.g.,
weighted combination of distances on position, orientation,
and velocity components, did not work as well.

ADDRRT[TSF]: This extendsRRT[TSF] by implement-
ing SELECTVERTEXFROMTREE(P, T) as in [16].

SBL[TSF]: SBL [41] was developed for geometric path
planning. As a result, not all components ofSBL can be
extended and used in the context of motion planning with
dynamics. TheSBL implementation in this work is obtained by
using the tree-search framework (Algo. 1) and implementing
SELECTVERTEXFROMTREE(P, T) as described in [41].

2) Models of Ground and Flying Vehicles with Second-
Order Dynamics: This paper contains experiments with
second-order dynamical models of cars, planar body thrusters,
unicycles, “flying” unicycle, and high-dimensional tractor-
trailers. The dynamics are modeled by a set of ordinary differ-
ential equations. The scaling factor is1m = 0.14 workspace
units. A description of these models follow.

Car (adapted from [11, pp. 744]):The state s =
(x, y, θ, v, ψ) consists of the position(x, y) ∈ R2 (|x|, |y| ≤
3.75m), orientationθ ∈ [−π, π), velocity v (|v| ≤ 3m/s), and
steering-wheel angleψ (|ψ| ≤ 50◦). The car is controlled by
setting the accelerationu0 (|u0| ≤ 1m/s2) and the rotational
velocity of the steering-wheel angleu1 (|u1| ≤ 100◦/s). The
equations of motions arėx = v cos(θ); ẏ = v sin(θ); θ̇ =
v tan(ψ)/L; v̇ = u0; ψ̇ = u1, where L = 0.5m is the
distance between the front and rear axles. The body length
and width are set toL and0.5L, respectively.

Planar Body with Two Thrusters (adapted from [10,
pp. 406]): The states = (x, y, θ, vx, vy, ω) consists of the po-
sition (x, y) ∈ R2 (|x|, |y| ≤ 3.75m), orientationθ ∈ [−π, π),
translational velocityvx along the x-axis (|vx| ≤ 3m/s),
translational velocityvy along the y-axis (|vy| ≤ 3m/s), and
rotational velocityω (|ω| ≤ 100◦/s). The thruster controls are
u0 (|u0| ≤ 0.5m/s2) andu1 (|u1| ≤ 0.5m/s2). The equations

9

of motion areẋ = vx; ẏ = vy; θ̇ = ω; v̇x = u0 ∗ cos(θ) −
u1 ∗ sin(θ); v̇y = u0 ∗ sin(θ)+u1 ∗cos(θ)+g; ω̇ = −L∗u1,
whereL = 0.25m and the gravitational driftg = 1m. The
body length and width are set to2L.

Unicycle (adapted from [11, pp. 743]):The states =
(x, y, θ, v, ω) consists of the position(x, y) ∈ R2 (|x|, |y| ≤
3.75m), orientationθ ∈ [−π, π), translational velocityv (|v| ≤
3m/s), and rotational velocityω (|ω| ≤ 100◦/s). The unicycle
is controlled by setting the translationalu0 (|u0| ≤ 1m/s2)
and rotationalu1 (|u1| ≤ 25◦/s2) accelerations. The equations
of motion are ẋ = v cos(θ); ẏ = v sin(θ); θ̇ = ω; v̇ =
u0; ω̇ = u1. The body length and width are set to0.5m and
0.25m, respectively.

“Flying” Unicycle (adapted from [18]): In this model,
the robot flies parallel to theXY -plane. To achieve this, the
unicycle state is augmented ass = (x, y, z, θ, v, vz, ω), where
|z| ≤ 3.75m and |vz| ≤ 3m/s. The additional equations of
motion areż = vz and v̇z = uz, whereuz (|uz| ≤ 1m/s2)
is the flying control. The body length, width, and height are
set to1m, 0.5m, and0.25m, respectively. The flying-unicycle
model was chosen to provide test cases for motion-planning
problems with dynamics in 3D workspaces.

Tractor-Trailer (adapted from [11, pp. 731]):In this
model, one or more trailers are attached to the tractor. The
tractor is modeled as a car. The state also keeps track of
the orientation θi of each trailer. As a result, the state
for a tractor pullingN trailers has5 + N variables. The
equations of motions of the car are augmented withθ̇i =
v
d

(∏i−1
j=1 cos(θj−1 − θj)

)
(sin(θi−1) − sin(θ)), where d =

0.15m is the hitch length,θ0 = θ, and 1 ≤ i ≤ N . By
increasing the number of trailers, the tractor-trailer model
provides challenging test cases for high-dimensional motion-
planning problems with dynamics [30].

3) Measuring the Computational Efficiency:For each
motion-planning benchmark, the computational efficiency of
a motion planner, denoted astMotionPlanner, is measured as the
median time to solve30 random queries.

4) Hardware: Experiments were run on Rice Cray XD1
PBS and ADA clusters, where each of the processors runs at
2.2GHz and has up to 8GB of RAM. Each run uses a single
processor and a single thread, i.e., no parallelism.

B. Computational Efficiency ofSyCLoP

1) Experiments on Motion-Planning Problems with Dynam-
ical Models of Ground Vehicles:Fig 2 summarizes the results
of the experiments with several motion-planning benchmarks
and second-order models of ground vehicles, such as unicy-
cles, thrusters, and cars (Section IV-A2). The benchmarks are
chosen to vary in difficulty, where the unicycle benchmark is
the easiest to solve. Random queries are created by placing the
robot in its initial configuration near the bottom (resp., top) of
the workspace and requiring it to pass through the obstacles
and reach the top (resp., bottom) of the workspace. The other
state values, e.g., velocity, are set to zero. Fig 2 illustrates
some typical queries and solution trajectories.

As shown in Fig 2, SyCLoP obtains significant com-
putational speedups overRRT[TSF], ADDRRT[TSF], and

SBL[TSF]. As an example, in the case of the thruster
benchmark (Fig 2(b)),SyCLoP is 37, 31, and 7 times faster
thanRRT[TSF], ADDRRT[TSF], andSBL[TSF], respectively.
Moreover, the efficiency ofSyCLoP becomes more pro-
nounced as harder problems are considered, as indicated by
the rest of the experiments.

2) Experiments on Motion-Planning Problems with Dy-
namical Models of Flying Vehicles:The objective of these
experiments is to test the computational efficiency ofSyCLoP

when the workspace is three-dimensional. The robot used in
the experiments consists of a second-order dynamical modelof
a flying unicycle, as described in Section IV-A2. Preliminary
work [23], [24] did not contain such experiments.

The three-dimensional workspace consists of several walls
placed consecutively at a distance from each-other, all parallel
to theXZ-plane. In each wall, nonoverlapping small holes are
placed at random positions. The opening of each hole along
the X and Z dimensions is selected uniformly at random
from [1.25w, 3.0w], wherew is the body-width of the flying
unicycle. This way, as suggested in [53], provides several
options of varying difficulty to pass from one side of the wall
to the other. Fig. 3 provides an illustration of one wall with
two small randomly-placed holes.

Random queries are created by placing the robot in front of
the first wall and behind the last wall. In this way, a solution
trajectory requires the robot to fly through the holes, passing
all the walls one after the other. In the experiments, the number
of walls is varied from1 to 6 and the number of holesh for
each wall is varied from1 to 4. Fig. 3 contains a summary
of the results whenh = 2. Similar results are obtained for
h = 1, 3, 4 (not shown due to space limitations).

Results in Fig. 3 indicate thatSyCLoP is signifi-
cantly faster thanRRT[TSF], ADDRRT[TSF], andSBL[TSF].
Moreover, the computational efficiency ofSyCLoP be-
comes more pronounced as the number of walls is in-
creased. In fact,RRT[TSF] and ADDRRT[TSF] time out
(tRRT[TSF], tADDRRT[TSF] ≥ 700s) at instances with6 walls.
Even thoughSBL[TSF] does not time out, it still has a high
computational cost:tSBL[TSF] = 670.20s. In contrast,SyCLoP
efficiently solves such problems, i.e.,tSyCLoP = 61.90s.

3) Experiments on Motion-Planning Problems with High-
Dimensional Dynamical Models:The robot consists of
a second-order dynamical model of a tractor-trailer (Sec-
tion IV-A2). By adding more trailers to increase DOFs, the
tractor-trailer provides a challenging high-dimensionalprob-
lem [30]. Recall that number of DOFs is5+N , whereN is the
number of trailers. We note that preliminary work [23], [24]
did not contain experiments with high-dimensional models.

Fig. 4 contains a summary of the experiments. In these ex-
periments, the number of trailers attached to the tractor varies
from 1 to 20, yielding problems with6, . . . , 25 DOFs. As
shown in Fig. 4,SyCLoP is significantly faster thanRRT[TSF],
ADDRRT[TSF], and SBL[TSF]. As an example, on motion-
planning problem instances with 15 DOFs (10 trailers attached
to the tractor),tRRT[TSF] = 262.33s, tADDRRT[TSF] = 357.57s,
and tSBL[TSF] = 482.31s, while tSyCLoP = 29.01s. Moreover,
the computational efficiency ofRRT[TSF], ADDRRT[TSF],
andSBL[TSF] deteriorates rapidly as the number of DOFs is

10

goal

init

(a)

goal

init

(b)

goal

init

(c)

Fig. 2. Results of the experiments with second-order dynamical models of ground vehicles: (a) unicycle, (b) thruster, (c) car. The top portion of each column
illustrates the workspace (shown in light gray) and a solution trajectory to a typical query (trajectory shown in dark color as an(x, y) curve together with
several intermediate robot placements. In the case of the car,the steering angle is also shown. Other state values, e.g., velocity, are not shown.) The bottom
portion indicates the computational efficiency of each motionplanner, measured as the median computational time in solving30 queries. In these experiments,
SBL[TSF] andSyCLoP use a32×32 uniform-grid decomposition of the workspace.

Fig. 3. Results of the experiments with a second-order dynamical model of a flying unicycle. (left) An example of the workspacewith one wall (shown in
gray) and two small holes. A typical random query (initial andgoal placements shown in blue and red) is also shown on the same figure. (right) Results of
the experiments when the number of holes per wall is set to2 and the number of walls is varied from1 to 6. The computational efficiency of each motion
planner is measured as the median computational time in solving30 queries. The maximum running time for each query is set to700s. In these experiments,
SBL[TSF] andSyCLoP use a32×32×32 uniform-grid decomposition of the three-dimensional workspace.

11

init

goal

Fig. 4. Results of the experiments with a second-order dynamical model of a tractor-trailer. (left) A typical workspace (obstacles shown in light gray) and a
solution trajectory to a typical query (trajectory shown indark as several intermediate robot configurations. Other state values, e.g., velocity, are not shown.)
The illustration corresponds to a tractor pulling20 trailers, a25 DOF problem. (right) Computational efficiency of each motion planner as a function of the
number of DOFs, measured as the median computational time in solving 30 queries. The maximum running time for each query is set to700s. In these
experiments,SBL[TSF] andSyCLoP use a32×32 uniform-grid decomposition of the workspace.

Fig. 5. Impact of the synergistic combination of high-level discrete planning
and sampling-based motion planning.SyCLoP[NoHL] corresponds to
the motion-planning layer ofSyCLoP, excluding the interactive combi-
nation with the high-level discrete planning layer. Results are shown for
the motion-planning benchmark with the tractor-trailer dynamical model
(see Section IV-B3), where the number of trailers is varied from 1 to 20
(corresponding to6 to 25 DOFs). Computational efficiency of each motion
planner as a function of the number of DOFs, measured as the median
computational time in solving30 queries. The maximum running time for each
query is set to700s. In these experiments,SyCLoP[NoHL] andSyCLoP
use a32×32 uniform-grid decomposition of the workspace.

increased. In fact,RRT[TSF], ADDRRT[TSF], andSBL[TSF]
time out (set to700s) at problems with17 DOFs,16 DOFs,
and 16 DOFs, respectively. In contrast,SyCLoP solves such
problems quite fast (tSyCLoP = 53.63s) and effectively handles
much higher dimensional problems (tSyCLoP = 438.24s for the
25 DOFs problem instances).

C. Impact of the Synergistic Combination of High-Level Dis-
crete Planning and Sampling-based Motion Planning

The main strength ofSyCLoP is the synergistic combi-
nation of high-level discrete planning and sampling-based
motion planning. To quantify this observation, Fig. 5 compares
SyCLoP to SyCLoP[NoHL]. SyCLoP[NoHL] corresponds to
sampling-based motion planning inSyCLoP, excluding the
synergistic combination with the high-level discrete planning.
More specifically,SyCLoP[NoHL] is obtained by minor mod-
ifications toGUIDEDEXPLORATION (Algo. 6), as shown below:

SyCLoP[NoHL]
1: Ravail← LOCATEREGION(PROJ(vinit .s))
2: while ELAPSEDTIME < tmax do
3: Ri ←Ravail.SELECT()
4: [γ, newCells]← EXPLOREREGION(Ri,Ravail)
5: if γ 6= null then return γ
6: return null

The results in Fig. 5 indicate that without this syn-
ergistic combination, the computational efficiency of the
sampling-based motion planner deteriorates quickly. In fact,
SyCLoP[NoHL] fails to solve many of the high-dimensional
problems thatSyCLoP can solve efficiently. This is to be
expected, sinceSyCLoP showed significant computational
speedups in comparison to other state-of-the-art sampling-
based motion planners, i.e.,RRT[TSF], ADDRRT[TSF], and
SBL[TSF]. As detailed in Section III, high-level plans guide
the sampling-based motion planner to extend the tree closerto
the goal. The exploration provides valuable feedback informa-
tion that is used bySyCLoP to refine the high-level plan for the
next motion-planning step. As the search progresses, the high-
level plans become increasingly feasible and guide the motion
planner closer to the goal until it eventually reaches the goal.
This combination of high-level planning and sampling-based
motion planning makes it possible forSyCLoP to efficiently
solve challenging high-dimensional problems with dynamics.

D. Impact of Workspace Decomposition

As described in Section III-A, the workspace decomposi-
tion provides a simplified high-level discrete model, which
is used bySyCLoP to combine high-level discrete planning
with sampling-based motion planning. This section provides a
quantitative study of the impact of the workspace decomposi-
tion on the computational efficiency ofSyCLoP. We note that
our preliminary work [24], which carried out a similar study,
used different test cases, and in particular, it did not contain
experiments with high-dimensional models.

12

32×32 grid T6 T8 T14 CDT

Fig. 6. Computational efficiency ofSyCLoP as a function of the decomposition granularity. (top) An illustration of the32×32 grid decomposition and
several triangulations. (bottom) Results are shown for the motion-planning benchmark with the tractor-trailer dynamicalmodel (see Section IV-B3), where15
trailers are attached to the tractor (corresponding to20 DOFs).

Grid Decompositions:As noted, the results presented
in Section IV-B were obtained by using a uniform grid
decomposition of the workspace, where the grid was di-
vided equally into32 parts along each dimension. A ques-
tion that arises relates to the granularity of the grid de-
composition and its impact on the computational efficiency
of SyCLoP. To study this question, we repeated many of
the experiments in Section IV-B by using uniform grids
of various granularities, i.e., grids with1×1, 2×2, 4×4,
8×8, 16×16, 24×24, 32×32, 40×40, 48×48, 64×64, 80×80,
96×96, 112×112, 128×128, 144×144, 160×160, 176×176,
192×192, 208×208, 224×224, 240×240, and256×256 cells.

Triangular Decompositions:In addition to grid decom-
positions, triangulations have been widely used. As in the
study of grid decompositions, we repeated many of the ex-
periments in Section IV-B by using triangulations of various
granularities. Such triangulations were obtained by setting
the maximum area of each triangle in triangulationTN to
0.000637755 × 2N , and then varyingN = 0, 1, . . . , 14. The
Triangle [61] package was used for the computations.

Fig. 6 shows a summary of the results obtained for the
motion-planning problem with the second-order dynamical
model of a tractor-trailer (Section IV-B3) with15 trailers
attached to the tractor (20 DOFs). Fig. 6 shows that the
decomposition granularity directly impacts the computational
efficiency of SyCLoP. SyCLoP is faster when the decompo-
sition is neither too fine- nor too-coarse grained. Although
finding the optimal granularity can require extensive fine-
tuning, Fig. 6 shows thatSyCLoP is significantly efficient for
a wide range of grid and triangular decompositions. Similar
trends were observed for all the motion-planning problems of
Section IV-B (not shown here due to space limitations).

As an alternative to finding the optimal decomposition gran-

TABLE I
COMPUTATIONAL EFFICIENCY OFSYCLOP WHEN USING CONFORMING

DELAUNAY TRIANGULATIONS (CDT) COMPARED TO OTHER

SAMPLING-BASED MOTION PLANNERS

tSyCLoP tRRT tADDRRT tSBL
[CDT] [TSF] [TSF] [TSF]

unicycle: Fig. 2(a) 0.73s 10.39s 24.50s 5.87s
thruster: Fig. 2(b) 12.73s 249.24s 213.37s 54.66s

car: Fig. 2(c) 8.68s 163.24s 249.96s 39.46s
tractor-trailer: Fig. 4

14 DOFs 20.03s 183.51s 194.97s 134.60s
16 DOFs 58.45s 595.70s X X
18 DOFs 171.18s X X X
20 DOFs 275.22s X X X
22 DOFs 252.59s X X X
24 DOFs 490.51s X X X

Entries marked withX indicate a timeout, which was set to700s per query.

TABLE II
COMPUTATIONAL EFFICIENCY OFSYCLOP WHEN USING CONFORMING

DELAUNAY TRIANGULATIONS (CDT) COMPARED TOSYCLOP WHEN

USING OTHER TRIANGULAR AND GRID DECOMPOSITIONS

tSyCLoP[CDT]/ tSyCLoP[CDT]/
tSyCLoP[best-tri] tSyCLoP[best-grid]

unicycle: Fig. 2(a) 2.10 [T7] 2.21 [G64×64]
thruster: Fig. 2(b) 1.88 [T4] 0.99 [G64×64]

car: Fig. 2(c) 2.95 [T8] 1.99 [G32×32]
tractor-trailer: Fig. 4

14 DOFs 2.00 [T6] 2.19 [G128x128]
16 DOFs 1.29 [T7] 1.02 [G64×64]
18 DOFs 2.78 [T9] 1.48 [G32×32]
20 DOFs 4.79 [T3] 3.60 [G112×112]
22 DOFs 1.47 [T5] 1.53 [G32×32]
24 DOFs 1.74 [T8] 1.39 [G48×48]

tSyCLoP[CDT] denotes the computational efficiency ofSyCLoP when using
conforming Delaunay triangulation.
tSyCLoP[best-grid] denotes the best computational efficiency achieved by
SyCLoP when using one of the grid decompositions.
tSyCLoP[best-tri] denotes the best computational efficiency achieved by
SyCLoP when using one of the triangular decompositionsT0, . . . , T14.
Decomposition that achieves the best computational efficiency is denoted
inside parentheses

13

ularity, we considered conforming Delaunay triangulations for
the workspace decomposition. Conforming Delaunay Trian-
gulations (CDTs) have been widely used in computational
geometry. A CDT for an environment with obstacles is similar
to a Delaunay triangulation for a set of points, which maxi-
mizes the minimum angle among all possible triangulations,
but could potentially differ in some places in order for the
CDT to take into account polygonal edge constraints (which
is handled by adding additional vertices) [61], [62].

Table I summarizes the results obtained bySyCLoP when
using a CDT, denoted bySyCLoP[CDT], in comparison to
other sampling-based motion planners. As shown in Ta-
ble I, SyCLoP[CDT] is significantly faster thanRRT[TSF],
ADDRRT[TSF], and SBL[TSF]. As an example, on tractor-
trailer problems with 14 DOFs, SyCLoP[CDT] is one-
order of magnitude faster thanRRT[TSF], ADDRRT[TSF],
and SBL[TSF]. As the dimensionality of the problem in-
creases, the computational efficiency ofSyCLoP[CDT] be-
comes even more pronounced asRRT[TSF], ADDRRT[TSF],
and SBL[TSF] time out at problems with18, 16, 16 DOFs,
respectively. One reason for the efficiency ofSyCLoP[CDT]

is that a CDT produces triangulations that eliminate narrow
angles as much as possible. As a result, it is easier for the
sampling-based motion planner to cover the triangle during
exploration. Moreover, a CDT provides high-level plans that
do not go through workspace obstacles, which further facili-
tates explorations.

Table II summarizes results obtained bySyCLoP when
using CDTs in comparison toSyCLoP when using other
triangular or grid decompositions. Table II shows that the com-
putational efficiency ofSyCLoP[CDT] is comparable to the
best computational efficiency thatSyCLoP achieves by using
other triangular or grid decompositions. In this way, CDTs
provide workspace decompositions that require no fine-tuning
and allowSyCLoP to obtain close to optimal computational
efficiency.

V. A PPLICATIONS OFSYCLOP TO MOTION PLANNING FOR

HYBRID SYSTEMS

Although not the focus of this paper,SyCLoP is also
well-suited for hybrid systems. Hybrid systems go beyond
continuous models by employing discrete logic to instanta-
neously modify the underlying robot dynamics and switch
to a different mode in order to respond to mishaps or
unanticipated changes. While the combination of discrete
logic and continuous dynamics poses significant challenges
to current motion-planning methods, it is particularly well-
suited toSyCLoP, which synergistically combines high-level
discrete planning with sampling-based motion planning. The
work in [49] builds upon the idea of combining high-level
discrete planning and sampling-based motion planning to
effectively solve challenging high-dimensional problemsfor
hybrid systems. Experiments on a nonlinear hybrid robotic
system with over one million modes and experiments with
an aircraft conflict-resolution protocol with high-dimensional
continuous state spaces (60 dimensions) show computational
speedups of up to two orders of magnitude over related work.

VI. D ISCUSSION

To effectively solve challenging motion-planning problems
with dynamics, this paper developed a multi-layered approach,
SyCLoP, that synergistically combined high-level discrete
planning and sampling-based motion planning. High-level
discrete planning guides the sampling-based motion planning
during the search for a solution. Information gathered during
the search is in turn fed back from the sampling-based
motion planner to the high-level planner in order to com-
pute increasingly feasible high-level plans in future iterations.
In this way, high-level plans become increasingly useful in
guiding the sampling-based motion planner toward a solution.
Simulation experiments on high-dimensional motion-planning
problems with second-order dynamical models of ground- and
flying-robotic vehicles demonstrated significant computational
speedup of up to two orders of magnitude over state-of-the-art
motion planners.

As we consider increasingly challenging problems, it be-
comes important to make use of parallel or multi-threaded
computational resources in order to significantly improve the
computational efficiency ofSyCLoP. Another direction for
research relates to the improvement of the individual com-
ponents inSyCLoP and their interplay.

ACKNOWLEDGMENT

This work has been supported in part by NSF CNS 0615328
(EP, LK,MV), a Sloan Fellowship (LK), NSF CCF 0613889
(MV), and developed on equipment supported by NSF CNS
0454333 and NSF CNS 0421109 in partnership with Rice
University, AMD, and Cray.

REFERENCES

[1] J. Reif, “Complexity of the mover’s problem and generalizations,” in
IEEE Symp. Found. Comp. Sci., San Juan, Puerto Rico, 1979, pp. 421–
427.

[2] J. T. Schwartz and M. Sharir, “A survey of motion planning and related
geometric algorithms,”Artificial Intelligence, vol. 37, pp. 157 – 169,
1988.

[3] J. Canny,The Complexity of Robot Motion Planning. Cambridge, MA:
MIT Press, 1988.

[4] L. E. Kavraki, P.Švestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,”IEEE Trans. Robot. Autom., vol. 12, no. 4, pp. 566–580, 1996.

[5] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” Computer Science Department, Iowa State University, Ames,
Iowa, Tech. Rep. 98-11, 1998.

[6] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”
Int. J. Robot. Res., vol. 20, no. 5, pp. 378–400, 2001.

[7] D. Hsu, J.-C. Latombe, and R. Motwani, “Path planning in expansive
configuration spaces,” inIEEE Int. Conf. Robot. Autom., Albuquerque,
NM, 1997, pp. 2719–2726.

[8] D. Hsu, R. Kindel, J.-C. Latombe, and S. Rock, “Randomized kino-
dynamic motion planning with moving obstacles,”Int. J. Robot. Res.,
vol. 21, no. 3, pp. 233–255, 2002.

[9] J.-C. Latombe,Robot Motion Planning. Boston, MA: Kluwer, 1991.
[10] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E.

Kavraki, and S. Thrun,Principles of Robot Motion: Theory, Algorithms,
and Implementations. MIT Press, 2005.

[11] S. M. LaValle, Planning Algorithms. Cambridge, MA: Cambridge
University Press, 2006.

[12] K. I. Tsianos, I. A. Sucan, and L. E. Kavraki, “Sampling-based robot
motion planning: Towards realistic applications,”Comp. Sci. Rev., vol. 1,
pp. 2–11, 2007.

14

[13] J. Laumond, P. Jacobs, M. Taix, and R. Murray, “A motion planner for
nonholonomic mobile robots,”IEEE Trans. Robot. Autom., vol. 10, pp.
577–593, 1994.

[14] F. Lamiraux and J. Laumond, “Smooth motion planning for car-like
vehicles,”IEEE Trans. Robot. Autom., vol. 17, no. 4, pp. 498–501, 2001.

[15] E. Frazzoli, M. Dahleh, and E. Feron, “Real-time motion planning for
agile autonomous vehicles,”J. of Guidance Control and Dynamics,
vol. 25, no. 1, pp. 116–129, 2002.

[16] L. Jaillet, A. Yershova, S. M. LaValle, and T. Simeon, “Adaptive tuning
of the sampling domain for dynamic-domain RRTs,” inIEEE/RSJ Int.
Conf. Intell. Robot. Syst., Edmonton, Canada, 2005, pp. 4086–4091.

[17] J. Bruce and M. Veloso, “Real-time multi-robot motion planning with
safe dynamics,”Multi-Robot Systems: From Swarms to Intelligent Au-
tomata, vol. 3, pp. 159–170, 2005.

[18] A. M. Ladd and L. E. Kavraki, “Motion planning in the presence of
drift, underactuation and discrete system changes,” inRobotics: Sci. and
Systems, Boston, MA, 2005, pp. 233–241.

[19] M. Kalisiak and M. van de Panne, “RRT-blossom: RRT with a local
flood-fill behavior,” in IEEE Int. Conf. Robot. Autom., Orlando, FL,
2006, pp. 1237–1242.

[20] R. Alterovitz, T. Simeon, and K. Goldberg, “The Stochastic Motion
Roadmap: A Sampling Framework for Planning with Markov Motion
Uncertainty,” inRobot.: Sci. Syst., Atlanta, GA, 2007.

[21] K. E. Bekris and L. E. Kavraki, “Greedy but safe replanning under
kinodynamic constraints,” inIEEE Int. Conf. Robot. Autom., Rome, Italy,
2007, pp. 704–710.

[22] T. Nahhal and T. Dang, “Test coverage for continuous andhybrid
systems,” inInt. Conf. Comp. Aided Verif., ser. Lecture Notes in Comp.
Sci., Berlin, Germany, 2007, vol. 4590, pp. 449–462.

[23] E. Plaku, L. E. Kavraki, and M. Y. Vardi, “Discrete search leading
continuous exploration for kinodynamic motion planning,” inRobotics:
Sci. and Systems, Atlanta, GA, 2007, pp. 326–333.

[24] ——, “Impact of workspace decompositions on discrete search leading
continuous exploration (DSLX) motion planning,” inIEEE Int. Conf.
Robot. Autom., Pasadena, CA, 2008, pp. 3751–3756.

[25] I. A. Şucan, J. F. Kruse, M. Yim, and L. E. Kavraki, “Kinodynamic
motion planning with hardware demonstration,” inIEEE/RSJ Int. Conf.
Intell. Robot. Syst., Nice, France, 2008, pp. 1161–1166.

[26] I. A. Şucan and L. E. Kavraki, “Kinodynamic motion planning by
interior-exterior cell exploration,” inInt. Work. Algo. Found. Robot.,
Guanajuato, Mexico, 2008.

[27] K. Tsianos and L. E. Kavraki, “Replanning: A powerful planning
strategy for hard kinodynamic problems,” inIEEE/RSJ Int. Conf. Intell.
Robot. Syst., Nice, France, 2008, pp. 1667–1672.

[28] M. W. Spong, S. Hutchinson, and M. Vidyasagar,Robot Modeling and
Control. John Wiley and Sons, 2005.

[29] B. Donald, P. Xavier, J. Canny, and J. Reif, “Kinodynamicmotion
planning,” Journal of the ACM, vol. 40, pp. 1048–1066, 1993.

[30] J. Laumond, “Controllability of a multibody mobile robot,” IEEE Trans.
Robot. Autom., vol. 9, no. 6, pp. 755–763, 1993.

[31] J. Laumond and J. Risler, “Nonholonomic systems: controllability and
complexity,” Theor. Comp. Sci., vol. 157, pp. 101–114, 1996.

[32] P. Cheng, G. Pappas, and V. Kumar, “Decidability of motionplanning
with differential constraints,” inIEEE Int. Conf. Robot. Autom., Rome,
Italy, 2007, pp. 1826–1831.

[33] B. Burns and O. Brock, “Single-query motion planning with utility-
guided random trees,” inIEEE Int. Conf. Robot. Autom., Rome, Italy,
2007, pp. 3307–3312.

[34] M. Rickert, O. Brock, and A. Knoll, “Balancing exploration and
exploitation in motion planning,” inIEEE Int. Conf. Robot. Autom.,
Pasadena, CA, 2008, pp. 2812–2817.

[35] J. T. Schwartz and M. Sharir, “On the piano movers’ problem: II. General
techniqies for computing topological properties of algebraic manifolds,”
Comm. on Pure and Appl. Math., vol. 36, pp. 345–398, 1983.

[36] D. Zhu and J.-C. Latombe, “New heuristic algorithms for efficient
hierarchical path planning,”IEEE Trans. Robot. Autom., vol. 7, pp. 9–20,
1991.

[37] R.-P. Berretty, M. H. Overmars, and A. F. van der Stappen,“Dynamic
motion planning in low obstacle density environments,”Computational
Geometry: Theory and Applications, vol. 11, no. 3, pp. 157–173, 1998.

[38] H. Kurniawati and D. Hsu, “Workspace-based connectivity oracle: An
adaptive sampling strategy for PRM planning,” inInt. Work. Algo.
Found. Robot., ser. Springer Tracts in Advanced Robotics, New York,
NY, 2006, vol. 47, pp. 35–51.

[39] J. P. van den Berg and M. H. Overmars, “Using workspace information
as a guide to non-uniform sampling in probabilistic roadmap planners,”
Int. J. Robot. Res., vol. 24, no. 12, pp. 1055–1071, 2005.

[40] S. Rodriguez, S. Thomas, R. Pearce, and N. Amato, “RESAMPL: A
Region-Sensitive Adaptive Motion Planner,” inInt. Work. Algo. Found.
Robot., ser. Springer Tracts in Advanced Robotics, 2006, vol. 47, pp.
285–300.

[41] G. Śanchez and J.-C. Latombe, “On delaying collision checking inPRM
planning: Application to multi-robot coordination,”Int. J. Robot. Res.,
vol. 21, no. 1, pp. 5–26, 2002.

[42] F. Lingelbach, “Path planning using probabilistic cell decomposition,”
in IEEE Int. Conf. Robot. Autom., Orlando, FL, 2004, pp. 467–472.

[43] Y. Yang and O. Brock, “Efficient motion planning based on disassem-
bly,” in Robotics: Sci. and Systems, Cambridge, MA, 2005, pp. 97–104.

[44] S. russle and P. Norvig,Artifical Intelligence: A Modern Approach,
2nd ed. Prentic Hall, 2002.

[45] E. M. Clarke, O. Grumberg, and D. A. Peled,Model Checking. MIT
Press, 2000.

[46] W. Zhang,State-space Search: Algorithms, Complexity, Extensions,and
Applications. New York, NY: Springer Verlag, 2006.

[47] P. Chen and Y. Hwang, “SANDROS: A motion planner with perfor-
mance proportional to task difficulty,” inICRA, Nice, France, 1992, pp.
2346–2353.

[48] A. Stentz, “Optimal and efficient path planning for partially-known
environments,” inIEEE Int. Conf. Robot. Autom., San Diego, CA, 1994,
pp. 3310–3317.

[49] E. Plaku, L. E. Kavraki, and M. Y. Vardi, “Hybrid systems:From
verification to falsification by combining motion planning anddiscrete
search,”Formal Methods in System Design, 2008.

[50] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine, “The algorithmic
analysis of hybrid systems,”Theor. Comp. Sci., vol. 138, no. 1, pp.
3–34, 1995.

[51] C. J. Tomlin, I. Mitchell, A. Bayen, and M. Oishi, “Computational tech-
niques for the verification and control of hybrid systems,”Proceedings
of the IEEE, vol. 91, no. 7, pp. 986–1001, 2003.

[52] A. Bicchi and L. Pallottino, “On optimal cooperative conflict resolution
for air-traffic management systems,”IEEE Trans. Intell. Transp. Syst.,
vol. 1, no. 4, pp. 221–231, 2000.

[53] E. Plaku, K. E. Bekris, B. Y. Chen, A. M. Ladd, and L. E. Kavraki,
“Sampling-based roadmap of trees for parallel motion planning,” IEEE
Trans. Robot., vol. 21, no. 4, pp. 597–608, 2005.

[54] M. de Berg, O. Cheong, M. van Kreveld, and M. H. Overmars,Computa-
tional Geometry: Algorithms and Applications, 3rd ed. Springer-Verlag,
2008.

[55] R. Geraerts and M. Overmars, “A comparative study of probabilistic
roadmap planners,” inInt. Work. Algo. Found. Robot., Nice, France,
2002, pp. 43–58.

[56] H. Niederreiter,Random Number Generation and Quasi-Monte Carlo
Methods. Society for Industrial and Applied Mathematics, 1992.

[57] M. Drmota and R. F. Tichy,Sequences, discrepancies and applications.
Springer, Berlin, 1997.

[58] J. Esposito, J. Kim, and V. Kumar, “Adaptive RRTs for validating
hybrid robotic control systems,” inInt. Work. Algo. Found. Robot., Zeist,
Netherlands, 2004, pp. 107–132.

[59] S. LaValle, M. Branicky, and S. Lindemann, “On the relationship
between classical grid search and probabilistic roadmaps,”Int. Journal
of Robotics Research, vol. 23, no. 7–8, pp. 673–692, 2003.

[60] E. Plaku, K. E. Bekris, and L. E. Kavraki, “OOPS for Motion Planning:
An Online Open-source Programming System,” inIEEE Int. Conf.
Robot. Autom., Rome, Italy, 2007, pp. 3711–3716.

[61] J. R. Shewchuk, “Delaunay refinement algorithms for triangular mesh
generation,”Computational Geometry: Theory and Applications, vol. 22,
no. 1-3, pp. 21–74, 2002.

[62] ——, “General-dimensional constrained delaunay and constrained reg-
ular triangulations, i: Combinatorial properties,”Discrete & Computa-
tional Geometry, vol. 39, pp. 580–637, 2008.

