IEEE Transactions on Robotics, 26(3):469-482, 2010. DOI: 10.1109/TR0O.2010.2047820

Motion Planning with Dynamics by a
Synergistic Combination of Layers of Planning

Erion Plaku  Lydia E. Kavraki ~ Moshe Y. Vardi

motion-planning problem with dynamics

/ SyCLoP: multi-layered approach \

discrete high-level high-level
model discrete planning plan

Abstract—Effectively incorporating robot dynamics into mo-
over the last decade. Toward this goal, this work proposes a
novel multi-layered approach, termed Synergistic Combination
of Layers of Planning (SyCLoP), that synergistically combines
Initially, SyCLoPuses a workspace decomposition to construct
a discrete model of the motion-planning problem. At each progress estimation
iteration, high-level planning, which draws from research in Al
a sequence of decomposition regions that can effectively guide ;a;:ﬂ:‘"sl;ma:ii‘;
motion planning as it extends a tree during the search for a /
solution trajectory. In return, information gathered by motion
regions, is fed back to high-level planning. In this way, the
planning layers in SyCLoP are not independent, but work in  Fig. 1. Proposed multi-layered approa8y,CLOP, synergistically combines
tandem to compute in future iterations increasingly feasible high- high-level discrete planning and sampling-based motionrifen
The synergistic combination of high-level discrete planning and ) ) ) ) ]
sampling-based motion planning allowsSyCLoP to effectively models and to incorporate robot dynamics directly into mmoti
solve challenging motion-planning problems with dynamics. Sim- planning [5]-[8], [13]-[27] (see [9]-[12] for more overviss).
ground and flying vehicles demonstrate computational speedups [8] have now been widely used in motion planning with
of up to two orders of magnitude over state-of-the-art motion . h . | icall | h
planners. In addition, SyCLoP is well-suited for hybrid systems, dynamics. These motion planners typically explore theestat
logic to instantaneously modify the dynamics. with trajectories obtained by applying controls and sirtintg
the dynamics. This greatly facilitates the design of cdtgrs,
which are needed in order to generate hardware commands that
. INTRODUCTION
A basic component of robot autonomy is the ability of thebtained in simulation [28].
robot to plan the motions needed to reach a goal destinationynhile significant progress has been made, motion planning
while avoiding collisions. In its early years, research iation  with dynamics still constitutes a significant challengekifig
the environment on which the robot operates [1]{3]. Thigan considerably increase the dimensionality and the cempu
geometric setting served to fuel research in samplingéasgtional complexity of the motion-planning problem [2952].
motion planning, giving rise to popular methods such as theThe contribution of this paper is a novel multi-layered ap-
i 1 S . .
Tree &RT) [5], [6], Expansive Space Tre&%T") [7], [8], and  combpination ofLayersof Planning GyCLoP), that synergis-
many others, as surveyed in [9]-[12]. tically combines high-level discrete planning and sangslin
The success of sampling-based approaches and the ngggbd motion planningsyCLoP draws from our prelimi-
straints in robot motion led researchers to go beyond getitnetynd contains new simulation experiments on motion-plapnin
Erion Plaku, Lydia E. Kavraki, and Moshe Y. Vardi are with tbepart- prOblems with r_1|gh-d|menS|onaI dynamlcal m.Odels of ground
ment of Computer Science, Rice University, Houston, TX, 77@omail: and flying vehicles.SyCLoP, as other sampling- and tree-
Preliminary versions of this work by the same authors appearBabotics: ; ;
Science and Systems, Atlanta, GA, 2007, pp. 326-333 and IREEdnf. on space. As demonStrate.d m this p_aper, hOW.ever’ as.a result
Robotics and Automation, Pasadena, CA, 2008, pp. 3751-3786.paper Of the synergistic combination of high-level discrete pizy
and presents results on additional motion-planning problenaving high- faster (up to two orders of magnitude) than state-of-the-
dimensional second-order dynamical models of ground and flyétdgcles. . . . . . .
Manuscript received April 3, 2009. art motion planners in solving challenging motion-plamnin

tion planning has been an active area of research in robotics

high-level discrete planning and sampling-based motion planning.

and logic, searches the discrete model for a feasible plan, i.e.,

planning, such as progress made in connecting decomposition

level plans and quickly grow the tree toward the goal.

ulation experiments with high-dimensional dynamical models of Sampling-based methods, suchR&r [5], [6] and EST [7],

which move beyond continuous models by employing discrete Space by maintaining a tree data structure, which is extkénde

can enable the robot to follow in the physical world soluson

planning considered only geometric models of the robot amgto account the robot dynamics in addition to its geometry

Probabilistic RoadMapRRM [4], Rapidly-exploring Random nroach to motion planning with dynamics, termgghergistic

to produce in simulations solutions that respect physioal c nary work [23], [24], further improves the proposed method,

{pl akue, kavraki , vardi }@s. ri ce. edu. based motion planners, uses a tree exploration of the state

combines the preliminary versions, further improves the psegomethod, and sampling-based motion plannirgy,CLoP is considerably
1The acronymEST does not appear in the original papers. problems with dynamics.



In motion planning with dynamics, tree-based approachesnsisted of two independent layers. Examples includey earl
have become the norm. Over the years, numerous strategisners, such as SANDROS [47], and more recent work in
have been proposed to effectively guide the tree explaratimotion planning for physical systems. As an example, the
of the state spaceRRT [5], [6] uses a distance metric andwork in [48] first obtains near-optimal high-level discrgtans
nearest neighbors to introduce a \Voronoi bias to the tre&a D* search and then uses controllers to closely follow the
exploration.EST [6], [7] maintains a density distribution overdiscrete plan in the physical world.
the states in the tree to guide the exploration toward areasSyCLoP builds further upon this idea of a two-layered
of low density. The work in [33] defines the utility of eachapproach to motion planning with dynamics by
state in an information-theoretic sense and extends ttee tre(i) incorporating state-of-the-art sampling-based mmwtio

from those states that would increase the overall utilitye T planning in the second layer, and, more importantly,
work in [34] extends the tree using a framework that aims(ii) instead of treating the planning layers as independent
to balance exploration with exploitation of the configuoati from each othersy CLoP synergisticallycombines high-
space. Other tree-based motion planners use decompedition level planning and sampling-based motion planning.

guide the exploration. In fact, the idea of using decompmsit More specifically, since the discrete model can provide many
appeared early in motion-planning literature. Key theoegt alternative high-level plans, as shown in Fig. 1, the plagni
results and some of the first motion planners were obtainggers in SyCLoP work in tandem to evaluate the feasibility
using decompositions, cf. [1], [2], [9], [35], [36]. Whenof current plans and to compute increasingly feasible pians
sampling-based motion planners became popular, the idaaure iterations. The feasibility of a high-level plan istie
of decomposition-based approaches has been revisited mamted based on information gathered during motion planning
times. In the context of roadmap motion planners, the work guch as progress made in connecting decomposition regions,
[37]-[40] uses decompositions to guide the sampling siyatetime spent in exploration, and region coverage. In order to
during roadmap construction. In tree-based motion plaginincompute the feasibility estimates efficientlyyCLoP uses a
the work in [41] uses a grid and simple selection strategieecond workspace decomposition, which is more fine grained
to extend the tree from less-populated cells. The work than the workspace decomposition used for computing high-
[42] uses approximate cell decompositions of the configamat |level plans. Drawing from earlier work in sampling-based
space to guide the search toward the goal. The work in [4@jotion planning [18], [21]-[27], [33], [41], earlier vexsis of
uses partial workspace decompositions to speed up exjpioratour work [23], [24], and extensive experimentations, weenot
of configuration space. In motion planning with dynamics, ththat the feasibility estimates in this paper are designebeto
work in [21], [27] uses a potential field over a grid to guide&omputed efficiently and are shown to work well in practice fo
the tree exploration toward the goal. The work in [18] uses gblving challenging motion-planning problems with dynasni
subdivision scheme to extend the tree from regions that haveAiming to strike a balance between greedy and methodical
been selected less frequently in the past. The work in [22] alsearch,SyCLoP gives priority to highly feasible plans, but at
uses subdivision, but guides exploration toward regiorth withe same time it does not ignore other less feasible plans. In
low coverage. We acknowledge that due to the large body this way, SyCLoP has the flexibility to extend the tree along
research in sampling-based motion planning, the summaryféasible directions while able to radically change direwcti
this paper, which focused on recent work, covers only a smillinformation from motion planning suggests other more
fraction of related work. We refer the reader to recent booKeasible plans.
and surveys for more complete overviews [10]-[12]. The synergistic combination of high-level planning and
SyCLoP relies on a combination of high-level discretesampling-based motion planning allo®gCLoP to effectively
planning and sampling-based motion planning in order &wlve challenging motion-planning problems with dynamics
effectively solve challenging motion-planning problemghw Simulation experiments with second-order dynamical mod-
dynamics. Fig. 1 provides a schematic representation sf tldls of ground and flying vehicles demonstrate computational
combination. Initially,SyCLoP uses a workspace decomposispeedups of up to two orders of magnitude over state-o&the-
tion to construct a high-level discrete model of the motiormotion planners. The computational efficiencySyfCLoP be-
planning problem. The discrete model is represented ingermomes more pronounced when considering high-dimensional
of a graph whose vertices are regions in the decompositiorotion-planning problems with dynamics. Simulation exper
and whose edges denote the physical adjacency of the regionents in these cases show tBaCLoP remains efficient, while
Drawing from research in logic and Al [44]-[46], high-levelthe computational efficiency of the other motion planners in
planning inSyCLoP exploits the simple observation that anythe comparisons deteriorates rapidly as the number of degre
solution trajectory corresponds to sorhggh-level plan i.e., of-freedom (DOFs) increases.
a sequence of neighboring decomposition regions thatsstartIn addition to motion planning with dynamicSyCLoP is
and ends at regions associated with the initial and goadstatwell-suited for hybrid systems [49]. Hybrid systems move
respectively. Although the converse does not hold in génarabeyond continuous models by employing discrete logic to
high-level plan can, however, provide a general directiom@ instantaneously modify the dynamics to respond to mishaps
which to extend the tree. Sampling-based motion planniag thor unanticipated changes [50]. Hybrid systems are used in
can attempt to obtain a solution trajectory by extendingithe a wide variety of settings, such as in embedded controllers
from one region to its neighbor in the high-level plan. in the automotive industry, and also for modeling biologica
In motion-planning literature, two-layered approachegehanetworks and air-traffic management systems [51], [52].



The paper is organized as follows. The motion-planning 1) Dynamics: When a system is at a statee S and a
problem with dynamics and a basic tree-search framewaotkntrolu € U{ is applied fort € R=° time units, the system’s
commonly used to solve such problems are described in Setate evolves according to the underlying dynamics andeat th
tion Il. SyCLoP is described in Section Ill. Experiments andend the system may be at a new staig, € S. Such behavior
results are described in Section IV, which also includesidyst is captured by a flow functioLow : S x U x RZ% — S,
on the impact of the discrete model and the interplay betweemere, for eachs € S, u € U, andt € R=°, FLow(s, u,t)
high-level planning and sampling-based motion planning autputs the new statg,, € S obtained by applying the input
the efficiency ofSyCLoP. Applications of SyCLoP to motion w for ¢ time units when the system is at stateConsistency
planning for hybrid systems are discussed in Section V. Thethe flow function is ensured by the following requirements
paper concludes with a discussion in Section VI. « (Identity)Vs € S,u € U: s = FLow(s, u, 0).

o (Transitivity) Vs € S,u € U, t1,ts € RZ:

FLow(s,u,t1 + ta) = FLow(FLOW(s, u,t1),u, t2).

For many systems, dynamics are commonly described by
A. The Motion-Planning Problem with Dynamics a set of differential equationg : S x ¢/ — S. Closed-form

Robots are often controlled by applying external inputs. %olutlons (if available) or numerical integrations can tsed

o : . 0 computeFLow from g. Several examples of second-order
an example, a car is driven by applying acceleration and-rot ; . . :
ing the steering wheel. The dynamics describe the evolutigxnamlcs_ are given in Se_ctlon IV'. . .

of a system’s state. This section defines the motion—plemnip !n addmonb to d'ﬁgrent'al gqluaglonj, phy_s 'CS_Eﬁse.d ?Lmu d
problem using a general formulation that treats the dynami tions can be used to model the dynamics. Physics-base

as a black box. Similar to the abstraction of collision cliegk simulations provide an increased level of realism by also

. . ' L . odeling friction, gravity, and interactions of the roboithv

in sampling-based approaches, the definition of dynamies a X T ’ : . :
pling PP y g;e environment, which cannot be easily described analjic

black-box allows the motion planner to access the necess )é o ints indi desired
components for planning purposes, while hiding the inties ).State Constraints:State cqnstralnts in |pgte a desire
invariant that states should satisfy, e.g., collision dsoce,

of the robot and its interactions with the environment. . X ) ;

bounds on velocity, turning radius. This work allows for gen
Definition II-A.1. A motion-planning problem with dynamicseral specifications as a functiosmLip : S — {true,fal se},
is a tupleP = (S,U, FLow, VALID, sjnit, GOAL ), where whereVaLiD (s) = true iff s satisfies the state constraints.

. S is a state space consisting of a finite set of variables 3) Motion-Planning Goal: The motion-planning goal is
that describe the state of the system; specified as desired constraints that a goal state shousdysat

. U is a control space consisting of a finite set of inpug-g- desired configuration, velocity. As in the casevefip,
variables that can be applied to the system; this work allows for general specifications &AL : S —
. FLow : SxUxR2? — S is a flow function that simulates {t " ue,f al se}, where GoaL(s) = true iff s satisfies the
the system dynamics when an input is applied to ﬂﬁ@otlon-planmng goal. In many cases, as in this papenL
system for a certain time duration. is defined as a small ball centered at a goal state, i.e.,
e VALID : S — {true,fal se} specifies state constraints;
e sinit € S is an initial state;
e GoAL:S — {true,fal se} specifies the goal. where sgoar € S is the goal statep : S x § — R=20 is a
A solution to the motion-planning probleRis a valid trajec- distance metric, and > 0 is a distance threshold.
tory v : [0,7] — S that starts atsjn; and satisfies the motion-
planning goal, i.e.,y(0) = sinir; GoAL((T))
Vt € [0,T] : VALID (y(t)) = t r ue. Moreover,y

II. PRELIMINARIES

GoAL(s) = true iff p(s, sgoa) < 0,

= true; and g A Basic Tree-Search Framework for Motion Planning with
is obtained by pynamics in Sampling-based Approaches

applying tosj,;: a sequence of input controls , us, ..., uy € . ] . o
U for certain time durationd}, Ty, ..., Ty € R0, ie., Motion planning with dynamics is generally approached
as a search problem for a valid trajectoyy: [0,7] — S
v = Sinit o (u1,T1) o...0 (un, Tn), that satisfies the motion-planning goal. Many samplingetdas

motion planners follow a common framework that searches
wherev,4 o (up,Tg) denotes the extension of the trajectoryor a solution by extending in the state spate tree rooted
~va : [0,T4] — S by applying the input contral to the state at the initial states;,;; [5]-[8], [12], [17]-[19], [21]-[27], [33].
~v4(Ta) for T4 time units, i.e., Pseudocode is given in Algo. 1.
A search data structure is maintained as a tfeewhere
va(t), f 0<t<Ty each vertexv € T has a backpointer.parent to its parent.
(vao(us, Tp))(t) = {FLOW(’YA(TA),UByt_TB), otherwise Moreover, v is associated with a state € S, written as
v.s, and the edgév.parentv) indicates that a valid trajectory
connectsv.parents to v.s. A description of Algo. 1 follows.
Below we briefly discuss common representations used inl) INniTiIALIizE TREE(P): During initialization, the root ver-
sampling-based motion planning to model dynamics, statxuvj, is associated withj,; and is added t@". As the search
constraints, and the motion-planning goal. proceeds iteratively] is extended by adding new vertices.



Algorithm 1 A Basic Tree-Search Framework Algorithm 2 SyCLoP

Input: P = (S,U, FLOW, VALID, sinit, GOAL) Input: P = (S,U, FLOW, VALID, sinit, GOAL)
tmax € R”%: upper bound on computation time tmax € R”%: upper bound on computation time
e € R”°: propagation step Output: A solution trajectory omul |
Nadd € N_: nr. st_eps to add new vertex to tree 1 T « INITIALIZE TREE(P) Sll-Ba
Output: A solution trajectory omul | 2. D « DISCRETEMODEL(P) Slll-A
T « INITIALIZE TREE(P) OI-B1 3 INITESTIMATES(P, T, D) OIN-D
while ELAPSEDTIME < tmax dO 4: while ELAPSEDTIME < tmax dO
v < SELECTVERTEXFROMTREE(P, T) $lI-B2 5 [Rij]§:1 < HIGHLEVELPLANNING (D) SlI-C
v < EXTENDTREE(P, T, v, €, Nadd) Ql-B3 6 < GUIDEDEXPLORATION(P, T, D, [Ri;]5-1) SII-E
if v #null then return ~ {solution trajectory 7 if v #null then
return nul | 8 return - $solution trajectory
EXTENDTREE(P, T, v, €, Nadd) 9:  UPDATEESTIMATES(P, T, D) SHI-D
0: return nul |

1: [u, maxXpsiep} +— SAMPLECONTROLANDMAXNRSTEPYP, T,v) 1
2. s < v.s; count+ 0
3: for ¢ =1... maxnstepsdo

4:  s; < FLOW(s;-1,u,€); count+ count+ 1 . :
if VALID (s,) — f al se then toward the goal. To effectively guide the searcy,CLoP

return f al se synergistically combines high-level discrete planningthwi

5

6

7:  goal« GOAL(s;) sampling-based motion planning, as illustrated in Algo. 2.

8: if goal=true or count> naqsthen

9: Unew:[$, u, t, parent < NEWV ERTEX(s;, u, COUNtx €, v) ) .

0 T <+ T U {vnen}; count 0 A. High-Level Discrete Model

1 if goal=true then return TRAX(T', vnew-s) The high-level discrete model provides a simplified high-
level planning layer that can be used to effectively guide
sampling-based motion planning. This allo&sCLoP to ben-

2) SeLECTVERTEXFROMTREE(P, T): This function selects efit from research in computer logic and Al, where high-level

at each iteration a vertex< 7" from which to extendr. Over  pjanning plays an important role [44]-[46]. LeY denote the

the years, numerous strategies have been proposed thatrelyyorkspace, i.e., the two- or three-dimensional environmen

distance metrics, nearest neighbors, probability distitns, (including the obstacles) on which the robot operates. The

and many others [10], [11]. As an example, the initial vemsiogjscrete models in this paper are based on decompositions of

of RRT [5] first samples a state < S uniformly at random  the workspace/V into nonoverlapping regions (except at the
and then selects € 7 whosev.s is the closest ta according poundary), i.e. )V = Ri UR,U---UR,, and

to a distance metric. ; -

R . VRi, Rj € W : Interiof R;) N Interio R ;) = 0.
. 3) EETENDTREtFT(P’ 7, Ul’.;’tnaf”d) ’ Thl§ﬂéggctlog te;(tfnfli In order to map states to workspace decomposition regions,
romw Dy computing a valid trajectory : - at starts SyCLoP first uses a projectioroJ: S — W to map a state

atv.s. A common strategy is to fapply some Inpute U to . s € S to the corresponding point iy by extracting the
v.s and follqw.the system dynam|cs until the St""te'consn"’“nﬂ)%sition component from. SyCLoP then uses a region-locator
are not satisfied or a maximum number of stepsxpsteps function LOCATEREGION : W — {R1,..., R} to map each

5 reeded 10, 1) T 7t s 90l S9ece apacepont 10 e corespondng egin .
y d Vp € W : LoCATEREGION(p) = R; iff p € R;.

along new directions. Intermediate states along the ti@jgc ) )
defined by the state.s, input controlu, and time duration, !N this way, a states < S is mapped toR;, whereR; =
are added td, as suggested in [5], [6], [10], [11], [33], [53]. LOCATEREGION(PROYs)).

The implementation 0EXTENDTREE relies on an iterative ~ 1he computation of workspace decompositions is an active
procedure. Lemaxpsepsdenote the maximum number of stepesearch area in computational geometry [54]. Simple decom
and lete > 0 denote the step size (Algo. 1:1). Initially,Positions can be obtained by imposing a uniform grid aver
so = v.s (Algo. 1:2). At thei-th iteration, s; is computed Where each cell constitutes a decomposition regtonin this
ass; = FLOW(s;_1, u, ) (Algo. 1:4). If s; is invalid, then the CaS€,LOCATEREGION can be implem_e_nted to run in constant
computation stops (Algo. 1:5-6). Otherwise, a check is pdime. Other workspace decompositions can be obtained by
formed to determine whethey; satisfies the motion-planning ffiangulations. In the case of triangulatiorispcATEREGION
goal (Algo. 1:7). A new vertex is added @ if s; satisfies the ¢an be implemented to run in polylogarithmic time [54]. The
motion-planning goal or several successful steps have bé&act of workspace decompositions on the overall computa-
taken since the last addition t& (Algo. 1:8-10). If the tional efficiency ofSyCLoP is studied in Section IV-D.
motion-planning goal is satisfied, then the solution trajgc The discrete model also keeps information about the regions
is computed by concatenating the trajectories associatthd wAssociated with the initial and goal states of the motion-

10:
11:

the tree edges connecting to vnew (Algo. 1:11). planning problem, i.e Rinit = LOCATEREGION(PROJ(Snit)) and
Rgoal = LOCATEREGION(PROJs502)) ). Putting it all together, the
I1l. SyCLoP discrete model is a tuple

The efficiency of the basic tree search (Section I1-B) de- P = W,{R1,..., Ry}, £, LOCATEREGION, Rinit, Rgoal)-
pends on the ability of the framework to quickly extefid A solution with respect to the discrete model, referred t@as



high-level plan, is a sequence of regio[ansj];?:1 connecting o Use sampling-based motion planning to extehdUse

Rinit 10 Rgoar [Rij]j:l as a guide in determining the regions that
should be further explored (Algo. 2:6, Section IlI-E).

« Update CosT(R;,R;) estimates based on information
gathered by the sampling-based motion planner during

_ ) ) exploration (Algo. 2:9, Section IlI-D).

~ Consider a high-level plafR;, ]5_; Sampling-based mo- | yse the updateccost(R;,R;) values to discover in

tion planning inSyCLoP uses[R;, i, as a guide in determin- future iterations new high-level plans that effectively

ing the regions that should be further explored. Sifieg |¥_, guide the exploration toward the goal (Algo. 2:5-9).

CONNECtSRinir 10 Rgoas Dy exploring regions 'qR%‘]j:l’ the s demonstrated by the experiments, this synergistic com-
fhation of high-level discrete planning and samplingdahs

rationale is that sampling-based motion planning can ma
significant progress in extendirifj toward the goal region. motion planning througlcosT(R;, R;) estimates is a crucial

A cgntra} issue is then V\{hich high—Ieve.I plan to chopse %mponent 0fSy CLoP.
each iteration (Algo 2:5), sinc® can provide exponentially
many alternative high-level plans. To address this issae, f
each(R;,R;) € D.E, SyCLoP maintains a running estimate C. High-Level Planning: Guiding the Search

CosT(R;, R;) HIGHLEVELPLANNING (D) (Algo. 2:5) computes at each
on the feasibility of having the sampling-based motion pkm iteration the current high-level plan by searching the depo-
spend additional time attempting to extefidirom R; to R;. sition graph of the discrete mod®l for a sequence of regions
In this way, wherCost(R;, R;) is low, SyCLoP estimates that [Rij]§:1 connectingR;, = Rinit 10 R;, = Rgoar
it is feasible spending more time exploriti®&;, R;). With high probability p (set t00.95 in the experiments),

CosT(R;, R;) is computed based on information gatheretliGHLEVELPLANNING (D) computes the current high-level
by the sampling-based motion planner during each exptoratiplan by using a shortest-path algorithm (e.g., Dijkstra),A*
of R; andR;. The topic of estimate computations in samplingwhere the edge weights are set@ost(R;, R;). This allows
based motion planning has gained considerable attentionSyxCLoP to bias the selection toward high-level plans with low
recent years [18], [21]-[27], [33], [41]. Drawing from thiSCOST([Rij]le), i.e., high feasibility, which indicate that the
body of research, earlier versions of our work [23], [24]sampling-based motion planner should spend additionad tim
and extensive experimentations, the estimates in thisrpape&ploring regions ir{Rij];?:l, since[Rij];?:1 may effectively
are designed to be computed efficiently and are shown daide the exploration toward the goal.
work well in practice for solving challenging motion-plang Random high-level plans are also used, although less fre-
problems with dynamics. In particula€osT(R;, R,;) depends quently, as a way to correct for errors inherent with the
on the number of time®; andR; have been explored in theestimates. This is motivated by observations made in [53],
past, the coverage dR;, and R; by 7T, the free volume of [55], where random restarts and random neighbors have been
R; andR;, and the progress made in extendigfrom R; suggested as effective ways to unblock the exploration when
to R;. Based on this informatiorCost(R;, R;) is estimated sampling-based motion planners get stuck. With small prob-
to be low, i.e., high feasibility, when the free volume Bf ability 1 — p, HIGHLEVELPLANNING (D) computes the current
andR; is high and when the sampling-based motion plannaigh-level plan as a random sequence of regions connecting
has spent little time explorin@®; andR;, but still has made Ry to Rgoar The computation is carried out by using depth-
considerable progress in covering and conneclgandR;. first search, where the children are visited in a random order
Details are provided in Section IlI-D.

The computation of a high-level pla{mij]é?:l then essen-

tially becomes a search algorithm on a weighted graph, whdte Definition and Computation of Estimates used by the High-

Level PI ds ling-based Motion PI
COST([R”]?:J:COST(Ril,RiQ)+-~-+COST(RZ-k_1,Rik). evel Planner and Sampling-based Motion Planner

Drawing from research in logic and Al [44]-[46], the combina_ AS discussed in Section 1ll-BCosT(R;, R;) estimates in
tion of search strategies in high-level planning (Algo)ziBns Y CLoP are based on information gathered by the sampling-

to balance greedy and methodical search by selecting mg@sed motion planner during exploration. These estimatas c
frequently high-level plans with logosT([R;,]_,), i.e., high be defined and computed in a number of ways, as evidenced by

feasibility, and selecting less frequently high-levelrganith ecent work in sampling-based motion planning [7], [8], ]i18
high CosT([R;,]¥_,). Details are provided in Section III-C. [21]-[27], [33], [41]. Drawing from this research and exsere

The core part oy CLoP, illustrated in Fig. 1 and Algo. 2:4— expenmentanons, we ha}ve made further |mprovemeqts_ and
9 , proceeds by repeating the following steps until a soﬂutig‘a\’e fine-tuned the estimates .present.ed in the preliminary
is found or a maximum amount of time has elapsed: work [23], [24]. As a result, estimates in this paper are de-

Use hiah-level planning te th thiah-| signed to be computed efficiently and are shown to work well
+ Use high-ievel planning to compute the current high-leve practice for solving challenging motion-planning pretris

k .
plan [Rw]jzl by searchingD. Use theCosT(Ri,R;j)  with dynamics. SpecificallycosT(R;, R;) is defined as
estimates to bias search toward high-level plans with
low Cost([Ri.]%_,), i-e., high feasibility (Algo. 2:5, 1+ SeL}(Ri, R;)
1+ Conn?(Ri, R;)

B. Interplay of High-Level Planning and Sampling-based Mo-
tion Planning

i5]5=1 _ _ ‘ .
Section IlI-C). ~ CosT(Ri, R;) a(R:) a(R;),



where, fork € {i,j}, onto the workspace is computed BgoJv.s), which is then
1 used to locate the regioR; in the workspace decomposition

a(Ry) = 1 , where ProJ(v.s) € R; (Algo. 3:1). The cellc that PrRoJ(v.s)
(14 Cov(Ry)) FrREeVOL(Ry) belongs to is 2hen added to the li&;.cells if not already
and there (Algo. 3:2-6). A hash-map is used to efficiently search
« Cov(Ry) estimates the progress made by sampling-basédc is already inR;.cells (Algo. 3:3). The vertexv is then
motion planner in coveringRy; associated withe (Algo. 3:7). In this way,Cov(R;) can be
o FREEVOL(Ry) estimates the free volume @&y; efficiently updated as
» CoNN(R;, R;) estimates the progress made by sampling- Cov(R;) = R;.cellsSize().

based motion planner in extendifg from R; t0 R;; 2) Free Volume: The purpose of the free volume is to

« SEL(R;, R;) counts the number of timeR; andR; have  ide syl o with an estimate on the difficulty of exploring
been part of a high-level plan or selected for exploration, 4 icyiar region. The rationale is that regions that Haxge
In this way, (R;,R;) is more likely to be included in the free volumes are easier to explore than regions that havé sma
current high-level plan whe@osT(R;, R;) is low, which in-  free volumes. In a preprocessing stage, as shown in Algo. 4,
dicates thalk; andR; have a large free-volume, the samplingsy ¢ op generates a number of samples uniformly at random
based motion planner has spent little time explorfdgand from S. For eachR; € {R1,..., Ry}, SyCLoP then computes
R;, but still has been able to make considerable progrege number of valid(nyai(R;)) and invalid (ninvaid(R:))
in covering and connectin®; to R;. As evidenced by the samples that fall intdR;, respectively. (Experiments in this
experimental results, this estimation scheme is partiyulapaper us&000 samples. Preprocessing time is small, less than

well-suited for the interplay between high-level plannimg(j 3s on a sing|e CPU in our Setup_) Then,
sampling-based motion planning, which has allov@gdLoP

to efficiently solve challenging motion-planning problewish  Algorithm 4 PreprocessingereeVoL
dynamics. Details related to the definition and efficientlenp 1. for R, € {R,,...,R..} do

mentation of these estimates follow. 2 nvaid(Ri) + 0; ninvaia(Rs) < 0

1) Coverage: Cov(R;) estimates the coverage @&; by 3:fori=1,...,kdo

states in7". Coverage estimates were introduced in the context: 8 ¢ generate sample fro
. : Ri < LOCATEREGION(PROJ(s))
of Monte Carlo methods as a way to measure the quality 02: if VALID (s) — t r ue then
quasirandom sampling, cf. [56], [57]. One such measure is. Nvaid(Rs) < nuaia(Ri) + 1
dispersion. As noted in [58], while dispersion has been usegt else
in sampling-based motion planning to generate quasirandofy  ninvaid(R:) < ninvaid(R:) + 1
samples [59], its use as a coverage estimate is impeded by the
significant cost required to compute it in high dimensions. ey
. . . . .. o € + nvaiid(R:)

As an alternative to dispersion, in order to efficiently com- FReeVOL(R;) = R C I S—
pute Cov(R;), SyCLoP overlays an implicit grid (denoted as o ET el o) T Thinvalid\ 7es)
CovGrid over the workspace and counts the number of grifhere vol(R;) is the volume ofR; ande > 0 is a small
cells in R, that contain states of verticesfrom T, i.e., constant, which is used to avoid divisions by zero.

CoV(Ri) = |{c: c € CovGridA v € T A ProXv.5) € cN R} 3) Connections: ConN(R;, R;) estimates the progress

Do . . the sampling-based motion planner has made in directl
The grid is set to a fine resolution to allow for good es- Ping P y

timates. Experiments in this paper USSR x 512 (resp connectingR; to R;. A direct connection fromR; to R;
: L " h i h th
512 x 512 x 512) grid in 2D (resp., 3D) workspaces. occurs when an edgév, vney) Is added to7, such that

Note that Cov(R;) needs to be updated only when PROAv-5) € R; and ProJvnen) € ;. Then, CONN(R;, ;)

; . - is defined as the coverage ®f; by states originating from
new vertexv s add_ed .tOT'. To makg this update efficient, direct connections oR,; to R;. The computation is similar to
each region’R; maintains its own list of coverage cells

R,.cells and each celt € R,.cells maintains its own list of ‘the coverage procedure of Section 11I-D1. Pseudocode e&ngiv
i i . in Algo. 5. To make this update efficient, ea¢R;, R ;
vertices, c.vertices When v is added to7, the listsR;.cells 9 P R, R;)

and c.verticesare updated to reflect the new information,
shown in Algo. 3. More specifically, the projection ofs

vol(R;),

“Algorithm 5 UPDATECONNECTIONS v, Unen)

1: R; < LOCATEREGION(PROXv.5))
- : R; < LOCATEREGION(PROY vnew:s))
Algorithm 3 UPDATECOVERAGE(v) L if (Rs,R;) € D.E then

2
3
: R; < LOCATEREGION(PROJv.5)) 4:  coords«+ CELLCOORDY CovGrid PROXvnew-S))
5
6

=

2: coords+ CELLCOORDS CovGrid PROJv.s)) © (R4, Ryj).cells« (R;, R;).cellsU {coordg

3: ¢ + R;.cellsGET(coordy; nrNewCells«— 0 : CONN(R:, R;) < (Ri, R;).cellsSize()

4: if c=nul | then

g %&ngEAA;E((:CE)LL(COOMs; nivewCells— 1 maintains its own list of coverage cell§R;, R;).cells as
7. c.ve;iicesADD(v) a hash map. In this wayConn(R;,R;) can be efficiently
8: CoV(R;) + Ri.cellsSIzE() updated as

9

s retun [R, ¢, niNewCell CoNN(R;, Rj) = (Ri, R;).cellsSizE().




4) Selections:SEL(R;, R;) distinguishes between “empty” since such regions do not contain any tree vertices from
and “nonempty” edges. An edg®;, R ;) is considered empty which to extends". For this reason, the sampling-based motion
if R;, R; have not yet been reached By, i.e., Cov(R;) = planner maintains a set of nonempty regiof&,yi, Which
Cov(R;) = 0. In such casesseL(R;, R,) counts the number can be considered for further exploration. Initialgayai = 0.
of times the high-level planner has includéR;, R;) in the Then, [R; ]k , is scanned backwards. R;; is nonempty,
selected high-level plans. This allows the high-level pkmo thenR;, is added toR avair WhenR;; is added toR avain it
change the empty edges that are included in future high-leve also decided (with probability, set t00.95 in this work),
plans, giving the sampling-based motion planner a greakegegif other regions should be added R,y In this way, only
of flexibility during exploration. This is especially relaut in  nonempty regions are added Ry, and preference is given
the early stages of exploration, where most of the edges g&hose regions that appear toward the en@@‘] ., since
empty, since7 has yet to reach many of the regions. such regions are closer to the goal.

When7R,; or R; have been reached 9y, i.e.,Cov(R;) # 0 2) RavairSELECT(): A region R; is selected fromR aai
or Cov(R;) # 0, then SEL(R;,R;) counts the number of with probability

times the sampling-based motion planner has selected tree Riw
vertices associated witiR; when extending7 toward R ;. >R eRMuR"“”
This is to give preference in future iterations to those adge

that have been explored less frequently in the past. where

FReeVoL?(R;)
(1+ Cov(R;))(1+ (R;.nse)?)’
GUIDEDEXPLORATION(P, T, D, [R; ]1? ) uses the current (for more details on the estimates see discussions and -defini

=l tions in Section 11I-D). This selection scheme gives ptiotd

. k
hr:gh Iﬁvellglsn[f ;]J 1 85 Ia glé'de n ﬁetermm'lor:lg thg reAg'onEBose regions that have a high free volume, low coverage, and
that should be further explored, as shown in Algo t €aflhere the sampling-based motion planner has spent little ti

in the past. The rationale is, as evidenced by experimeetal r

Ri.w =

E. Sampling-based Motion Planning: Guided Exploration

Algorithm 6 GuIDEDEXPLORATION(P, T, D, [Ry;]5_;) sults, that by spending additional time exploring suchagsgj
Input: P = (S,U, FLOW, VALID, sinit, GOAL) the sampling-based motion planner could make more progress
T: se};’:lrch tree;D: discrete model and increase their coverage.
[Ri,]5=1: current high-level plan 3) ExPLOREREGION(P, T, D, R;, Ravai): RegionR; is ex-
Output: A solution trajectory omul | . .
plored by extending several branches from the tree vertices
1: Ravail < AVAILABLE REGIONS([R;]5_,) ¢ II-E1  associated withR;, as shown in Algo. 7. At each iteration,
2: for several timeglo
31 Ri < Ravai-SELECT() & -E2 -
4 [y.newCell3+ EXPLOREREGION(P,T D, R:,Ravai) GlI-E3  AlQOrithm 7 ExpLOREREGION(P, T, D, Ri, Ravai)
5. if y#null then return v Input: P = (S,U, FLOW, VALID, sinit, GOAL)
6. if newCells= 0 and URANDI[0,1) < p then return nul | T search tree; D: discrete model
7: return nul | ‘Ri: region to be explored; Ravai: available regions

Output: A solution trajectory omul |

iteration, a regionR; is first selected and then explored by1 for several timesio
extending several branches from the tree vertices associat? ¢ < Ri-CellSSELECT()

: rticeSSELECT
with R; (Algo. 6:3—-4). As a result of this exploration, the ,. IL)JI:DACT‘I/E%I\IICSeESLECT(RiOC v)

sampling-based motion planner has gathered new informatios: ~ < EXTENDTREE(P, T, v); if v # nul | then return [y, 0]
which is used to update the estimates, as described in Sex- newCells— 0
tion 11l-D and I1I-E3. These updates allow the samplingdzhs 7:  for vnew added by ETENDTREE do
motion planner to select other regions for exploration oigri 8 . MEWCElS< UPDATEONNEWV ERTEX(vnen) + newCells
h S . i . | . | . if newCells= 0 and URAND(0, 1) < p then
the remaining iterations. If during exploration &;, a solu- . return [nul |, newCell$
tion trajectory is found, thei®uIDEDEXPLORATION terminates 11: return [nul I, newCeII$
successfully (Algo_ 6:5). If exploration ok;, improves the UPD ATEONNEWVERTEX(vneW)
continues with the next |terat|on This indicates that the: UPDATECONNECTIONS VnewParentvnew)
sampling-based motion planner is making progress. Otlserwi 3: if Rawi.EXISTS(R;) = f al se then
with small probabilityp (set t00.25), GUIDEDEXPLORATION g RR?VGIADD(RR)-
stops exploring the regions associated with the currertt-hig retalf’r”r‘] ﬁ:VﬁTCEe(”Sl)
level plan (Algo. 6:6). This indicates that a new high-lepkin :
hould b d si . Ki UPDATEONSELECT(R;, ¢, v)
S od. e compute ,Sln@uDEDEXPLQRAHON |_$ notmaking 1., hsel v. nsel+ 1; c.verticesUPDATE(v)
additional progress. Details of the main steps in Algo. ®f@l 2. ¢ nsel« c.nsel+ 1; R,.cellsUPDATE(c

)
1) AvaiLaBLE REGIONS([R;;]%_,): Note that regions in 3: Ri.nsel< Ri.nsek 1; Ravi UPDATE(R:)

[Rij}le which have not yet been reached Wb,

Cov(R;,;) = 0, cannot be considered for further explorationExpLoreREGION first selects one of the coverage cells7of




(Section IlI-D1) with probability section also studies the role of the workspace decompnsitio
1 1 in this synergistic combination.
14 c.nse/ 1+ ¢ .nsel

' eR; .cell .
¢ el A. Experimental Setup

where c.nselis the number of times the coverage celhas 'S lina-based Motion Pl din the C
been selected in the past (Algo. 7:2). Then, a vertex is &lec. ) Sampling-based Motion Planners used in the Compar-

from c.verticesusing a similar probability distribution, i.e., :c')sc()):jl:arsyrr?(;?hlj)(:;z, Csoun;ﬁa;;g_rt&f?é?:i;gg&?_n[ﬁ%? EV;I_I(_]I ely

1 / Z 1 [7], [8], and SBL [41]. We note that in all the experiments,
1+ v.nse 1+ v'.nsef SBL, which is a more recent version &ST, outperformed

h q h ber of fi has b | dthe original EST. Taking this into account, the results in this
wherev.nseldenotes the number of imesnas been selecte section only include comparisons RRT, ADDRRT, and SBL.

in the past (Algo. 7:3). Estimates are then updated to reflectStandarol implementations were followed, as suggested in

these new selections (Algo. 7:4). In th.is way, a vemebhgt the respective research papers and motion-planning books
has been selected less frequently during past exploratibn 10], [11]. These implementations are based on the tree-
R; has a higher likelihood of being selected during the curre Ea}ch framework (Algo. 1) and are referred toRRI[ TSF]
exploration of R;. This two-tier selection process has beeRDDRRT[ TSF], and SBL['TSF] Many of the data structu}es
proposed in [41] and ha§ been shown to work well in practicgnd utilities a\,/ailable in OOPSMP [60] were used to fadita
FXTEN_DTRbEE(ZD’T”g Is then ysedftoh extend frgm Y implementation. Every effort was made to fine-tune the perfo
(Algo. 7'5). y forward propagation of the s_ystem dynamiCance of these motion planners for problems with dynamics.
(see Section 1I-B). As a resul_t, new vertices might h_ave RRT[TSF] : This implementation uses goal bias (set to
been added ta7. If a new region, Rnew Was reached, it 0.05), which has been shown to improve the efficiencyraf

:cs tt:en adldedt_ tORz’I"”’ 370_ 7tt;at'\;lt becometf] ava;_labl; for[5], [6]. The distance metric was set to Euclidean distance
urther exploration (Algo. 7:7-8). Moreover, the estimmare on the position component of the state. Other metrics, e.g.,

also u'pdated to refl_ect the new information gathered by tWi‘eighted combination of distances on position, orientgtio
sampling-based motion planner (Algo. 7:7-8). and velocity components, did not work as well.

If(:EﬁITENBTtF;]EE(fH 7,v) Ilmptr_oveitéhe ovtt?rall CO\éetLage’."e" ADDRRT[ TSF] : This extendsRRT[ TSF] by implement-
newtells> 0, then he exploralion Ok; Continues. erwise, ing SELECTVERTEXFROMTREE(P, T) as in [16].

with small probabilityp (set t00.125), the exploration ofR; SBL[ TSF] : SBL [41] was developed for geometric path

stops (Algo. 7:9-10). In this way, the sampling-based nmotiq lanning. As a result, not all components 8BL can be

planner spends more time explormg regions that improve tr2>e<tended and used in the context of motion planning with
overall coverage and spends less time exploring regiorns tr&a . . Lo : :
have already been covered well ynamics. TheSBL implementation in this work is obtained by

4) Implementation of the Select Functions discussed using the tree-search framework (Algo. 1) and implementing

. ' SELECTVERTEXFROMTREE(P,T) as described in [41].
Ravai-SELECT(), cellsSELECT(), verticesSELECT() operate by 2) Models of Ground and Flying Vehicles with Second-
selecting an itemu; from a collection of items{ay,...,a,} o

; . n ; . rder Dynamics: This paper contains experiments with
with probability a;.w/>";_; a;.w, where a;.w is a positive :
. . A= ; . . second-order dynamical models of cars, planar body thmsiste
weight associated with;. A straightforward implementation = . o . ' .
; . . . unicycles, “flying” unicycle, and high-dimensional tracto
of SELecT() can be obtained by selecting a weightniformly . . . .
trailers. The dynamics are modeled by a set of ordinary diffe
at random fron0, wiotal, Wherewioa = a1.w+- - -+a,.w, and

then iterating from = 1 ton, until w > ay w+ - -+as.w. The ential equations. The scaling factorlis» = 0.14 workspace

total weight,w is maintained current after each item adynits. A description of these models follow.
gnt, wiotah Car (adapted from [11, pp. 744]):The states =

dition or weight update. This straightforward implemeitat : o 9

however, works well only for small collections. More effinie (x’y»e’“*/’) CODS'StS of the posﬂmr@x,y) € R® (|, |y| <

implementations oBeLecT() with O(log(n)) time, which are 3.75m), orientationt € [, ), veloCity v (ju| < 3m/s), and
' steering-wheel anglé (]i| < 50°). The car is controlled by

used in this paper, can be obtained by placing. . ., a, as ﬁtting the acceleration, (|uo| < 1m/s?) and the rotational

leaves in a weighted complete binary tree, where the We%elocity of the steering-wheel angte (jus| < 100°/s). The

of each inner node (start construction from bottom to top) IS Lations of motions are — 0); § = vsin(9); 6 —
equal to the sum of weights of its children. In this case, itef (8= veosty); Y = usmiy); O =

o . . vtan(y)/L; © = wup; ¢ = wy, where L = 0.5m is the
additions and weight updates also taltlog(n)) time. distance between the front and rear axles. The body length

and width are set td. and0.5L, respectively.
Planar Body with Two Thrusters (adapted from [10,

This section demonstrates the computational efficiency pp. 406]): The states = (z,y, 0, v,, vy, w) consists of the po-
SyCLoP in solving challenging high-dimensional motion-sition (z,y) € R? (|z], |y| < 3.75m), orientationd € [—m, ),
planning problems with dynamics. The experiments also itranslational velocityv, along the x-axis |¢.| < 3m/s),
dicate that the synergistic combination of high-level di¢e translational velocityv, along the y-axis|¢,| < 3m/s), and
planning and sampling-based motion planning is a cruciadtational velocityw (Jw| < 100°/s). The thruster controls are
component in the computational efficiency ®fCLoP. This g (Jug| < 0.5m/s?) anduy (Juz| < 0.5m/s?). The equations

v’ Ec.vertices

IV. EXPERIMENTS ANDRESULTS



of motion are: = v,; Yy = vy; 0 = w; vy, = ug * cos(d) — SBL[TSF]. As an example, in the case of the thruster

uy *sin(0); vy = ug *sin(0) +uy xcos(0) +g; w = —L=u;, benchmark (Fig 2(b))SyCLoP is 37, 31, and 7 times faster

where L. = 0.25m and the gravitational drify = 1m. The thanRRT[ TSF], ADDRRT[ TSF], andSBL[ TSF], respectively.

body length and width are set &7.. Moreover, the efficiency ofSyCLoP becomes more pro-
Unicycle (adapted from [11, pp. 743])The states nounced as harder problems are considered, as indicated by

(z,y,0,v,w) consists of the positiofz,y) € R? (|z|, |y| the rest of the experiments.

3.75m), orientationd € [—, ), translational velocity (Jv| < 2) Experiments on Motion-Planning Problems with Dy-

3m/s), and rotational velocityw (Jw| < 100°/s). The unicycle namical Models of Flying VehiclesThe objective of these

is controlled by setting the translationah (Jug| < 1m/s?) experiments is to test the computational efficiencysptLoP

and rotationak:; (Ju;| < 25°/s%) accelerations. The equationsvhen the workspace is three-dimensional. The robot used in

IA I

of motion arez = wcos(f); y = vsin(f); § = w; © = the experiments consists of a second-order dynamical nuddel
up; w = up. The body length and width are set@dm and a flying unicycle, as described in Section IV-A2. Prelimyar
0.25m, respectively. work [23], [24] did not contain such experiments.

“Flying” Unicycle (adapted from [18]): In this model, The three-dimensional workspace consists of several walls

the robot flies parallel to th&(Y -plane. To achieve this, the placed consecutively at a distance from each-other, adllighr
unicycle state is augmented as= (x,y, z,6,v,v,,w), where to the X Z-plane. In each wall, nonoverlapping small holes are
|z| < 3.75m and |v,| < 3m/s. The additional equations of placed at random positions. The opening of each hole along
motion are = v, andv, = u., whereu, (Ju.| < 1m/s?) the X and Z dimensions is selected uniformly at random
is the flying control. The body length, width, and height arfom [1.25w, 3.0w], wherew is the body-width of the flying
set tolm, 0.5m, and0.25m, respectively. The flying-unicycle unicycle. This way, as suggested in [53], provides several
model was chosen to provide test cases for motion-planniagtions of varying difficulty to pass from one side of the wall
problems with dynamics in 3D workspaces. to the other. Fig. 3 provides an illustration of one wall with
Tractor-Trailer (adapted from [11, pp. 731]):In this two small randomly-placed holes.
model, one or more trailers are attached to the tractor. TheRandom queries are created by placing the robot in front of
tractor is modeled as a car. The state also keeps tracktlé first wall and behind the last wall. In this way, a solution
the orientationd; of each trailer. As a result, the staterajectory requires the robot to fly through the holes, pasgsi
for a tractor pulling N trailers has5 + N variables. The all the walls one after the other. In the experiments, thelmm
equations of motions of the car are augmented viith= of walls is varied froml to 6 and the number of holes for
Y H;;ll cos(f;_1 — 0;)) (sin(f;_1) — sin(f)), where d = each wall is varied froml to 4 _Fig. 3 contains a summary
0.15m is the hitch lengthg, = 0, and1 < i < N. B of the results wherh = 2. Similar results are obtained for

increasing the number of trailers, the tractor-trailer @od” = 1,3, 4 (not shown due to space limitations).
provides challenging test cases for high-dimensional oneti ~ Results in Fig. 3 indicate thatSyCLoP is signifi-
planning problems with dynamics [30]. cantly faster tharRRT[ TSF] , ADDRRT[ TSF] , andSBL[ TSF] .

3) Measuring the Computational EfficiencyFor each Moreover, the computational efficiency ofyCLoP be-
motion-planning benchmark, the computational efficienéy §°Mes more pronounced as the number of walls is in-

a motion planner, denoted agosonpianner is Measured as thecreased. In fact,RRT[ TSF] and ApDRRT[ TSF] _time out
median time to solv0 random queries. (trrr[TsF) » tabDRRT[ TSF) > 700S) at instances witlt walls.

4) Hardware: Experiments were run on Rice Cray xp1Even thoughsBL[ TSF] does not time out, it still has a high

PBS and ADA clusters, where each of the processors runsCgnPutational costissi [ ts, = 670.20s. In contrastSy CLoP

2.2GHz and has up to 8GB of RAM. Each run uses a singfdiCiently solves such problems, i.@syciop = 61.90s.
processor and a single thread, i.e., no parallelism. 3) Experiments on Motion-Planning Problems with High-
Dimensional Dynamical Models:The robot consists of

] o a second-order dynamical model of a tractor-trailer (Sec-

B. Computational Efficiency @yCLoP tion IV-A2). By adding more trailers to increase DOFs, the

1) Experiments on Motion-Planning Problems with Dynantractor-trailer provides a challenging high-dimensiopabb-
ical Models of Ground VehiclesFig 2 summarizes the resultslem [30]. Recall that number of DOFsist- N, whereN is the
of the experiments with several motion-planning benchmarkumber of trailers. We note that preliminary work [23], [24]
and second-order models of ground vehicles, such as unidyd not contain experiments with high-dimensional models.
cles, thrusters, and cars (Section IV-A2). The benchmaris a Fig. 4 contains a summary of the experiments. In these ex-
chosen to vary in difficulty, where the unicycle benchmark igeriments, the number of trailers attached to the tractaesa
the easiest to solve. Random queries are created by pldengftom 1 to 20, yielding problems with6,...,25 DOFs. As
robot in its initial configuration near the bottom (respp)ta@f shown in Fig. 4SyCLoP is significantly faster thaRRT[ TSF] ,
the workspace and requiring it to pass through the obstack®DRRT[ TSF], and SBL[ TSF] . As an example, on motion-
and reach the top (resp., bottom) of the workspace. The oth#nning problem instances with 15 DORS) (railers attached
state values, e.g., velocity, are set to zero. Fig 2 illietra to the tractor)trrr| tsr) = 262.33S, tapprrr| TsF] = 357.57S,
some typical queries and solution trajectories. andtsg[Tsr = 482.31s, while tsycop = 29.01S. Moreover,

As shown in Fig 2,SyCLoP obtains significant com- the computational efficiency oRRT[ TSF], ADDRRT[ TSF],
putational speedups OVeRRT[ TSF], ADDRRT[ TSF], and andSBL[ TSF] deteriorates rapidly as the number of DOFs is



time [s]

RRT[TSF] ADDRRT[TSF] SBL[TSF]  SyCLoP

(@)

10
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Fig. 2. Results of the experiments with second-order dyndmicalels of ground vehicles: (a) unicycle, (b) thruster, @). @he top portion of each column
illustrates the workspace (shown in light gray) and a sotutirajectory to a typical query (trajectory shown in darkoraas an(z,y) curve together with

several intermediate robot placements. In the case of thehmsteering angle is also shown. Other state values, elggity, are not shown.) The bottom
portion indicates the computational efficiency of each mopitamner, measured as the median computational time in soBdrgueries. In these experiments,
SBL[ TSF] andSyCLOP use a32x32 uniform-grid decomposition of the workspace.
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Fig. 3. Results of the experiments with a second-order dyrelmiodel of a flying unicycle. (left) An example of the workspaeith one wall (shown in
gray) and two small holes. A typical random query (initial agmhl placements shown in blue and red) is also shown on the sgore.firight) Results of
the experiments when the number of holes per wall is s& é&md the number of walls is varied frointo 6. The computational efficiency of each motion
planner is measured as the median computational time in sobdrgueries. The maximum running time for each query is sét0f@s. In these experiments,
SBL[ TSF] and Sy CLOP use a32x32x 32 uniform-grid decomposition of the three-dimensional workspa
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solution trajectory to a typical query (trajectory showndark as several intermediate robot configurations. Othée staues, e.g., velocity, are not shown.)
The illustration corresponds to a tractor pulliag trailers, a25 DOF problem. (right) Computational efficiency of each motioarpier as a function of the
number of DOFs, measured as the median computational time imgd queries. The maximum running time for each query is sef(@0s. In these
experimentsSBL[ TSF] and Sy CLoP use a32x32 uniform-grid decomposition of the workspace.

9 11 8]

700 ¢ timeout >,~~“”‘MA Sy CLoP[ NoHL]
600 £ e 1: Roavail <~ LOCATEREGION(PROYvinit.s))
500 E & SyCLoP[NoHL] i % 2: while ELAPSEDTIME < tmax dO
— = 31 Ri ¢ Ravai. SELECT()
2 400 & SyCLoP . 4: [y, newCell$ + EXPLOREREGION(R;, Ravail)
) E A’ 5. if y#null then return ~
£ 300 6: return nul |
= 200 4
100 | A‘
0E T T NI S The results in Fig. 5 indicate that without this syn-
[ ISD(l)%S 17 19 21 23 =5 ergistic combination, the computational efficiency of the
Fig. 5. Impact of the synergistic combination of high-levedalite planning sampling-based motion planner deteriorates quickly. kt, fa

and sampling-based motion plannin§y CLOP[ NoHL] corresponds to
the motion-planning layer ofSyCLOP, excluding the interactive combi-
nation with the high-level discrete planning layer. Resudre shown for
the motion-planning benchmark with the tractor-trailer dymzal model
(see Section IV-B3), where the number of trailers is varieshirl to 20

SyCLoP[ NoHL] fails to solve many of the high-dimensional
problems thatSyCLoP can solve efficiently. This is to be
expected, sinceSyCLoP showed significant computational
speedups in comparison to other state-of-the-art sampling

(corresponding t& to 25 DOFs). Computational efficiency of each motionhgsed motion planners, i.eRRT[ TSF], ADDRRT[ TSF], and

planner as a function of the number of DOFs, measured as the med

computational time in solving0 queries. The maximum running time for each
query is set tar00s. In these experimentSy CLoP[ NoHL] andSyCLoP
use a32x32 uniform-grid decomposition of the workspace.

increased. In factRRT[ TSF] , ADDRRT[ TSF], and SBL[ TSF]
time out (set to700s) at problems withi7 DOFs, 16 DOFs,
and 16 DOFs, respectively. In contrassyCLoP solves such
problems quite fastt§yq op = 53.63s) and effectively handles
much higher dimensional problemsyfc op = 438.24s for the
25 DOFs problem instances).

?BL[ TSF] . As detailed in Section lll, high-level plans guide
the sampling-based motion planner to extend the tree ctoser
the goal. The exploration provides valuable feedback mfor
tion that is used by CLoP to refine the high-level plan for the
next motion-planning step. As the search progresses, gie hi
level plans become increasingly feasible and guide theamoti
planner closer to the goal until it eventually reaches thal.go
This combination of high-level planning and sampling-lthse
motion planning makes it possible f@yCLoP to efficiently
solve challenging high-dimensional problems with dynanic

C. Impact of the Synergistic Combination of High-Level Didd. Impact of Workspace Decomposition

crete Planning and Sampling-based Motion Planning
The main strength oSyCLoP is the synergistic combi-

As described in Section IlI-A, the workspace decomposi-
tion provides a simplified high-level discrete model, which

nation of high-level discrete planning and sampling-basésl used bySyCLoP to combine high-level discrete planning

motion planning. To quantify this observation, Fig. 5 congsa
SyCLoP to SyCLoP[ NoHL] . SyCLoP[ NoHL] corresponds to
sampling-based motion planning ®yCLoP, excluding the
synergistic combination with the high-level discrete plany.

More specifically,SyCLoP[ NoHL] is obtained by minor mod-
ifications toGuIDEDEXPLORATION (Algo. 6), as shown below:

with sampling-based motion planning. This section proside
guantitative study of the impact of the workspace decomposi
tion on the computational efficiency &y CLoP. We note that
our preliminary work [24], which carried out a similar stydy
used different test cases, and in particular, it did not &iont
experiments with high-dimensional models.
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Fig. 6. Computational efficiency dBy CLOP as a function of the decomposition granularity. (top) Ansthation of the32x32 grid decomposition and
several triangulations. (bottom) Results are shown for théanglanning benchmark with the tractor-trailer dynaminaddel (see Section IV-B3), wherfié
trailers are attached to the tractor (correspondin@ddOFs).

Grid Decompositions:As noted, the results presented TABLE |
. . . . . - COMPUTATIONAL EFFICIENCY OF SYCL OP WHEN USING CONFORMING
in Section IV-B were obtained by using a uniform grid DELAUNAY TRIANGULATIONS (CDT) COMPARED TO OTHER
decomposition of the workspace, where the grid was di- SAMPLING-BASED MOTION PLANNERS
vided equally into32 parts along each dimension. A ques-
. . . . tsyCLoP tRRT { ADDRRT tsBL
tion that arises relates to the granularity of the grid de- [CDT] [TSF] [TSF [TSF

composition and its impact on the computational efficienCy unicycle: Fig. 2(@)| 0.73s 10.39s 24.50s 5.87s

of SyCLoP. To study this question, we repeated many of thruster: Fig. 2(b)| 12.73s  249.24s  213.37s  54.66s
car: Fig. 2(c)| 8.68s 163.24s  249.96s 39.46s

the experiments in Section IV-B by using uniform grids yactor-trailer: Fig. 4

of various granularities, i.e., grids withx1, 2x2, 4x4, 14 DOFs | 20.03s  183.51s  194.97s  134.60s
16 DOFs | 58.45s  595.70s X X
8x8, 16x16, 24x24, 32x 32, 40x40, 48x48, 64x 64, 80x 80, 18 DOFs | 171 185 x ¥ ¥
96x96, 112x112, 128x128, 144x 144, 160x160, 176x 176, 20 DOEs | 275.225 X X X
192x192, 208 x208, 224 x 224, 240x 240, and256x256 cells. 22 DOFs | 252.59s X X X

Triangular Decompositionsin addition to grid decom- 24 DOFs | 490.51s X X X

positions, triangulations have been Widely used. As in tHetries marked withX indicate a timeout, which was set T00s per query.

study of grid decompositions, we repeated many of the ex- TABLE Il

periments in Section IV-B by using triangulations of vasou COMPUTATIONAL EFFICIENCY OFSYCL OP WHEN USING CONFORMING
.\ . . . . DELAUNAY TRIANGULATIONS (CDT) coMPARED TOSYCLOP wHEN

granularities. Such triangulations were obtained by sgtti USING OTHER TRIANGULAR AND GRID DECOMPOSITIONS

the maximum area of each triangle in triangulati®® to

0.000637755 x 2V, and then varyingV = 0,1,...,14. The tsyaLopt com / tsyaLoprcom /

Triangle [61] package was used for the computations. Gnicycler Fig 2) tsyqz"_%’e[}:]t”] tSyzc.IéciP[[ge;i;(izld]

Fig. 6 shows a summary of the results obtained for the thruster: Fig. 2(b) 1.88 [I4] 0.99 [Geax64]
motion-planning problem with the second-order dynamicaltractor_‘t:f‘arizle':r':gl':igf‘?1 2.95 [I3] 1.99 [G52x32]
model of a tractor-trailer (Section IV-B3) with5 trailers 14 DOFs 2.00 [T6] 2.19 [Grasz125]
attached to the tractor2( DOFs). Fig. 6 shows that the 16 DOFs 1.29 [I7] 1.02 [Geaxea)
decomposition granularity directly impacts the computadi ;g 882 i:;g gz} 3.16?)8[éci?2§?i]2]
efficiency of SyCLoP. SyCLoP is faster when the decompo- 29 DOFs 1.47 [T35] 153 [Ga2x32]
sition is neither too fine- nor too-coarse grained. Although 24 DOFs 1.74 [I5] 1.39 [Gasxas]

finding the optimal granularity can require extensive fin@s,q opcom denotes the computational efficiency 8y CLOP when using

tuning, Fig. 6 shows thagyCLoP is significantly efficient for conforming Delaunc'éy trlf;lngutlr?tw;- . tional ffc Hioved b
. . - s - CLoP[ best-grid] denotes the best computational efficiency achieved by
a wide range of grid and triangular decompositions. Slmlléjg,a_épwhgn u]sing one of the grid decompositions.
trends were observed for all the motion-planning problems @5, op(pest-tri] denotes the best computational efficiency achieved by
Section IV-B (not shown here due to space limitations). ~ SyCLOP when using one of the triangular decompositidfis . . ., T'4.
. . . " Decomposition that achieves the best computational effigieacdenoted
As an alternative to finding the optimal decomposition grafysige parentheses
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ularity, we considered conforming Delaunay triangulasidor VI. DISCUSSION
the workspace decomposition. Conforming Delaunay Trian-.l_O effectivelv solve challending motion-planning probem
gulations (CDTs) have been widely used in computational y ging P gp

geometry. A CDT for an environment with obstacles is similavévIth dynamics, this paper developed a multi-layered apgoa

. . . . yCLoP, that synergistically combined high-level discrete
to a Delaunay triangulation for a set of points, which maxi- . : . . .
. 2 . . . “planning and sampling-based motion planning. High-level
mizes the minimum angle among all possible triangulation

but could potentially differ in some places in order for the fscrete planning guides the sampling-based motion prignni

. . . during the search for a solution. Information gathered rayri
CDT to take into account polygonal edge constraints (Whl(ﬂjle sgearch is in turn fed back from the 2amp|ing[ul?;sed

is handled by adding additional vertices) [61], [62]. . : ;
Table | . th its obtained b wh motion planner to the high-level planner in order to com-
able | summarizes the results obtained $)Ci.oP when pute increasingly feasible high-level plans in futureatens.

using a CDT, denoted bgyCLoP[ CDT], in comparison to In this way, high-level plans become increasingly useful in

other samphng—base_d r_not_u_nn planners. As shown in Tabiding the sampling-based maotion planner toward a saiutio
ble I, SyCLoP[ CDT] is significantly faster tharRRT[ TSF],

I Simulation experiments on high-dimensional motion-plagn
:EArZﬁsrRT[prToSl;]e}nzndW?tiLH Sgdlis g/]G(_ezli[n(gDi], 0ins tr(;c;(?r- Pﬂ_)blems with segond-order dynamica_l m_o_dels of gro_und- and
; ' flying-robotic vehicles demonstrated significant comgote!
order of magnitude faste_r tham[ _TSF] , ADDRRT] TSF] ' speedup of up to two orders of magnitude over state-of-the-a
and SBL[ TSF] . As the dimensionality of the problem in-

. . motion planners.
creases, the computational efficiency ®fCLoP[ CDT] be- . . . . .
As we consider increasingly challenging problems, it be-
comes even more pronounced RET[ TSF] , ADDRRT] TSF] , comes important to make use of parallel or multi-threaded
and SBL[ TSF] time out at problems with8, 16, 16 DOFs, P b

. - computational resources in order to significantly improke t
_respectlvely. One reason f_or the e_fhmencySyf_CLc_)P[ 0T] computational efficiency ofSyCLoP. Another direction for
is that a CDT produces triangulations that eliminate narrow ; A

. e : research relates to the improvement of the individual com-

angles as much as possible. As a result, it is easier for the : T

. ; . . ponents inSyCLoP and their interplay.
sampling-based motion planner to cover the triangle during
exploration. Moreover, a CDT provides high-level plansttha

do not go through workspace obstacles, which further facili ACKNOWLEDGMENT
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