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Abstract— This paper shows how to effectively combine a
sampling-based method primarily designed for multiple query
motion planning (Probabilistic Roadmap Method - PRM) with
sampling-based tree methods primarily designed for singlequery
motion planning (Expansive Space Trees, Rapidly-Exploring
Random Trees, and others) in a novel planning framework that
can be efficiently parallelized. Our planner not only achieves a
smooth spectrum between multiple query and single query plan-
ning but it combines advantages of both. We present experiments
which show that our planner is capable of solving problems that
cannot be addressed efficiently withPRM or single-query planners.

A key advantage of our planner is that it is significantly more
decoupled thanPRM and sampling-based tree planners. Exploiting
this property, we designed and implemented a parallel version of
our planner. Our experiments show that our planner distributes
well and can easily solve high-dimensional problems that exhaust
resources available to single machines and cannot be addressed
with existing planners.

Index Terms— Motion planning, sampling-based planning, par-
allel algorithms, roadmap, tree, PRM, EST, RRT, SRT.

I. I NTRODUCTION

H IGH-DIMENSIONAL problems such as those arising
in planning with flexible objects [35], [37], [45], re-

configurable robots [56], complex planning instances [52],
manipulation planning [51], and computational biology search
problems [6], [7] test the limits of current motion planner
implementations. One important avenue for solving such prob-
lems is to effectively use parallelism in motion planning. Our
work describes a robust planner, which provides a smooth
transition from single query to multiple query planners and
can be used for problems that are beyond the capabilities
of current planners. The planner can be used in a sequential
implementation or a powerful parallel implementation.

Sampling-based planners have been used extensively during
the last decade for multiple query or single query motion
planning [1], [3], [9], [10], [25], [30], [32], [34], [35], [40],
[47], [49], [52]. In multiple query motion planning, typically
a roadmap is built during a preprocessing phase in order to
quickly respond to on-line queries [10], [32], [37]. Alterna-
tively, in single query planning, there is no preprocessing
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Fig. 1. A scene from our benchmarks. In problem “narrow4h2”,each robot
must go through two very narrow passages.

phase and all computations occur during query resolution.
Such planners typically explore the space using a single or
a bi-directional tree [8], [25], [26], [39], [40], [49], [52].
Recent papers (e.g., [25], [40]) contain extensive references
to sampling-based motion planners.

The Probabilistic Roadmap Method (PRM) is an efficient and
easy to implement planner primarily designed for multiple
query motion planning problems [29]–[32], [47], [54].PRM
operates by sampling configurations in the free configuration
space,Cfree, and connecting them using a local planner. Al-
though a typical implementation uses a very simple local plan-
ner and uniform pseudo-random sampling, it has been shown
that a variety of alternate approaches ranging in sophistication
and cost can be applied without sacrificing correctness in
hopes of obtaining a faster planner [20]. Indeed, two of the key
issues in the context ofPRM are the power of the local planner
[4], [11], [28], [32] and the way sampling is performed [3],
[12], [13], [20], [21], [23], [24], [27], [32], [38], [55].

In this paper we replace the local planner ofPRM with a
single query sampling-based motion planner. Among the single
query planners that have been developed recently, Expansive
Space Trees (ESTs) 1 [25], [26] and Rapidly-Exploring Ran-
dom Trees (RRTs) [39], [40] have been very successful and are
used in our work. However, other sampling-based tree planners
can be used (e.g., [35]).

The idea of using multiple trees has been mentioned in [39]
and used in [41], [46], [53]. In [41], a single-query method
is developed that takes advantage of the exploration done in
solving previous queries. Initially a bi-directionalRRT creates
two trees to answer a single query. At the end, the trees are not
discarded but kept to answer subsequent queries. The planner
proceeds by generating random configurations and attempting

1The acronymEST to describe Expansive Space Trees does not appear in
the original papers, but is used in this paper for convenience.
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to connect each new configuration to every tree created as a
result of answering previous queries. In [46], a roadmap is
initially constructed usingPRM and then enhanced usingRRTs
to connect different connected components of the roadmap.
The approach taken in [53] is for single-query planning. The
method keeps some of the samples that the initialRRT could
not connect to as possible roots from where to grow other trees.
Attempts are made to connect neighboring roots together to
form local trees or to connect the roots to already formed local
trees and the trees rooted at the initial and goal configurations.

Our planner creates a roadmap of trees that integrates the
global sampling properties ofPRM with the local sampling
properties of single query tree-based planners. Earlier versions
of our planner [1], [9] were termed Probabilistic Roadmap of
Trees (PRT), but as suggested in [13], [42], the probabilistic
sampling could be replaced with other sampling schemes. To
emphasize the importance of sampling, we name our planner
Sampling-based Roadmap of Trees (SRT).

Our work is important in many respects. We propose an in-
tegration scheme that fully exploits successful sampling-based
methods. Firstly, we obtain a planner which is faster thanPRM

and more robust than the tree planners that we used, namely
ESTs and RRTs. SRT provides a smooth spectrum between
single query and multiple query planning that combines the
advantages of both. In our work, we take advantage of recent
very effective sampling methods employed byESTs andRRTs
and provide a new sampling scheme forPRM. It should be
noted that the proposed overall sampling ofSRT is in the spirit
of non-uniform sampling and refinement techniques used in
earlier work of PRM. Secondly, the local exploration of the
configuration space can be done independently by using tree
planners such asESTs andRRTs. This property makesSRT
significantly more decoupled thanPRM and tree planners such
as ESTs andRRTs and allows for an efficient parallelization.
Although many subroutines ofPRM can be run effectively in
a highly distributed fashion, efficient coordination of various
processing resources requires significant additional algorith-
mic design. By increasing the power of the local planner
and by using more complex milestones,SRT can distribute its
computation almost evenly among processors, requires little
communication, and allows us to solve very high-dimensional
problems and problems that exceed the resources available to
the sequential implementation.

This paper presents experiments with up to72 degrees of
freedom (DOFs) whereSRT obtains a solution at a fraction
of the running time needed byPRM, EST, or RRT. Fig. 1
shows an example with24-DOFs. We were able to obtain
nearly linear speedup for parallelSRT. As with other motion
planners, generalizations ofSRT to many other kinematic
planning problems are straightforward and the use ofRRTs
and ESTs as subroutines gives a natural way to extend the
planner to kinodynamic planning instances [18], [25], [40].

In section II we describe theSRT algorithm. Section III de-
scribes the parallelization of theSRT algorithm. In section IV
we describe the experimental setup, the set of benchmarks
used to test the efficiency of our planner, and the results
obtained. We conclude in section V with a discussion onSRT

and possibilities for future work.

TABLE I

SAMPLING-BASED ROADMAP OF TREES(SRT) ALGORITHM .

Input: K, number of milestones.
Output: A roadmapGT = (VT , ET ).

1: VT ← ∅, ET ← ∅, Q← ∅, EC ← ∅.
2: while |VT | < K do
3: T ← build tree rooted at a collision-free random config.
4: VT ← VT ∪ {T}.
5: Q← Q ∪ {qT }, whereqT is the representative ofT .
6: for all T ∈ VT do
7: Sclose ← a set ofnc closestqT ′ ∈ Q to qT .
8: Srand ← a set ofnr randomqT ′ ∈ Q to qT .
9: EC ← EC ∪ {(T, T ′) : qT ′ ∈ Sclose ∪ Srand}.

10: for all (T1, T2) ∈ EC do
11: if not CONNECTED(T1, T2) and CONNECT(T1, T2) then
12: ET ← ET ∪ {(T1, T2)}.

II. SRT PLANNER

SRT constructs a roadmap aimed at capturing the connec-
tivity of Cfree and then uses the roadmap to answer multiple
queries [1], [9].SRT is designed primarily as a multiple query
planner, but it should be noted that it is most effective for
difficult planning problems, as our experiments in section
IV suggest. For such problems, there is no clear distinction
between single versus multiple query methods.

The nodes of the roadmap are not single configurations
but trees, which are referred to as milestones. Connections
between milestones are computed by sampling-based tree
planners. The tree planners that we have used areRRTs [39],
[40] andESTs [25], [26]. The pseudocode forSRT is in Table I.

A roadmap is an undirected graphG = (V, E) over a finite
set of configurationsV ⊂ Cfree and each edge(q′, q′′) ∈ E
represents a local path fromq′ to q′′. The undirected graph
GT = (VT , ET ) is an induced subgraph of the roadmap which
is defined by partitioningG into a set of treesT1, . . . , TK and
contracting them into the vertices ofGT . In other words,VT =
{T1, . . . , TK} and (Ti, Tj) ∈ ET if there exist configurations
qi ∈ Ti andqj ∈ Tj are connected by a local path. As shown
in Table I, the roadmap construction proceeds in three stages:
milestone computation (lines 1–5), edge selection (lines 6–9),
and edge computation (lines 10–12).

A. Milestone Computation

In SRT, the trees of the roadmapGT are computed by
sampling their roots uniformly at random inCfree and then
using a sampling-based tree planner to explore the region
around the root configuration. If the initial,qinit, and the goal,
qgoal, configurations of a query are known in advance, they
should be used as roots to makeSRT even more efficient.
Each treeT is incrementally extended, where at each iteration
a new random configuration,qrand, is generated and a local
planner, e.g., straight-line planner, attempts to connectsome
configurationq ∈ T to qrand. If the local planner succeeds,
then the configurationqrand and the edge(q, qrand) are added
to T (see [25], [40]).
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B. Edge Selection

Each treeT defines a representative configurationqT which
is computed as an aggregate of the configurations inT . Our
implementation uses the centroid. IfQ = {qT1

, . . . , qTK
} is

the set of representatives, then for eachqTi
∈ Q, we determine

nc closest andnr random representativesqTj
and add each

(Ti, Tj) to the graph of candidate edgesGC = (VT , EC).
A distance metric defines closeness and the closest neighbors
are found usingkd-trees [17]. Random neighbors are used to
offset any problems with the distance metric.

C. Connected Component Heuristic

The objective of our planner is to determine the existence
of a path. To this end, we avoid computing candidate edges
that would create cycles. Since a query would never succeed
due to an edge that is part of a cycle, it is indeed sensible
not to consume time and space computing and storing such
edges. In some cases, however, the absence of cycles may
lead the query phase to construct unnecessarily long paths.
This drawback can be mitigated by applying post-processing
techniques, such as smoothing, on the resulting path.

D. Edge Computation

Candidate edges are computed by a sampling-based tree
planner. For each candidate edge(Ti, Tj), np close pairs
of configurations ofTi and Tj are quickly checked with a
fast local planner. Equally spaced points along the straight
line between two configurations are tested for collision using
bisection, which increases the chances of quick rejection of
paths in collision [20]. If any local path is found, no further
computation takes place. Otherwise, a more complex tree-
connection algorithm is executed, e.g., bi-directionalRRT or
EST. During the tree connection, additional configurations are
typically added to the treesTi and Tj . If the tree-planner is
successful, the edge(Ti, Tj) is added toET and the graph
components to whichTi andTj belong are merged into one.

E. Queries

Queries are solved by connectingqinit and qgoal to the
roadmap and proceeding by graph search. Two trees,Tinit and
Tgoal rooted atqinit andqgoal, respectively, are grown for few
iterations and added to the roadmap. Neighbors ofTinit and
Tgoal, denotedSinit and Sgoal, respectively, are computed as
a union of nc closest andnr random milestones. The tree-
connection algorithm alternates between attempts to connect
Tinit to each milestone inSinit andTgoal to each milestone in
Sgoal. A path is found if at any pointTinit and Tgoal lie on
the same connected component of the roadmap. The quality
of the path is improved by applying path smoothing.

F. Parameters

SRT has several parameters which we now summarize:
K, the number of milestones used in the construction of
the roadmap;m, the number of configurations used in the
generation of a milestone;nc, the number of closest neighbor

TABLE II

OTHER PLANNERS AS INSTANCES OFSRT.

K m nc nr np ni

PRM any 1 any any 1 0
RRT 0 0 1 0 0 any
EST 0 0 1 0 0 any

milestones;nr, the number of random neighbor milestones;
np, the number of close pairs to check with a straight-line
planner before running the tree-connection algorithm;ni, the
number of iterations to run the tree-connection algorithm.

A nice feature ofSRT is that by setting these parameters
differently, SRT can behave exactly asPRM, RRT, or EST as
illustrated in Table II.

III. PARALLEL SRT PLANNER

High-dimensional problems arising from complex robotic
systems test the limits of current motion planners and require
the development of efficient parallelized motion planners that
take full advantage of all the available resources. Despitethe
need for fast solutions for such problems, little work exists
on parallel motion planners, especially when contrasted with
the work on sequential motion planners. In [43], a parallel
algorithm for 6-DOFs manipulators is developed based on
the property that the configuration space obstacle for a union
of objects is the union of the configuration space obstacle
of the individual objects. In [15], [16], a parallel versionof
the randomized path planner [8] is proposed that uses the
OR paradigm, i.e., different processors compute the same
algorithm and as soon as a solution is found, the computation
stops. The work in [22] discretizes and then decomposes the
configuration space into hypercubes and cyclically assignsthe
exploration of the hypercubes to the available processors.The
method is impracticable for high-dimensional problems due
to the discretization of the configuration space. The works
in [5] and [14] focus on embarrassingly parallel algorithms
for PRM and RRT, respectively, which avoid any interprocess
communication and in the context ofPRM andRRT are limited
to memory-shared systems.

In this section, we describe the design and implementation
of a parallel version ofSRT designed for solving very high-
dimensional problems that exceed the resources available to
single machines and that cannot be efficiently addressed with
existing planners. The efficiency of our parallel planner stems
from its hierarchical structure that allows the division of
computation into large blocks. Our algorithm can be appliedto
memory-shared or message-passing systems. The description
of the algorithm is in terms of message-passing systems.

A. Data and Control Flow Dependencies

Before relating the details, we discuss data and control
flow dependency in each stage of theSRT algorithm. During
milestone computation, there are no dependencies. Each mile-
stone can be processed in parallel. Additional parallelization is
stymied by the sampling scheme we use to generate milestones
and would be considerably more involved. Random edge
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selection can be done in parallel; however, the distribution of
the closest edge selection is more difficult since it requires
the construction of a search structure that depends on the
representatives of the milestones. Finally, edge computations
are not entirely independent of each-other. Since milestones
can change after an edge computation as a result of adding
new configurations to the milestones and since computing an
edge requires direct knowledge of both milestones, the edge
computations cannot be efficiently parallelized without some
effort. Furthermore, computation pruning due to component
analysis (see section II-C) entails control flow dependencies
throughout the computation of the edges. Our experiments
with the sequential implementation revealed that the bulk of
the run time occurs in milestone and edge computation.

B. Computation of ParallelSRT

We have chosen a scheduler–processor architecture for our
parallel implementation. The processors are responsible for
milestone and edge computations. The scheduler arbitrates
milestone ownership, handles edge selection, assigns edgecan-
didates to processors, and manages the connected component
data structure. ParallelSRT is described in Table III.

1) Milestone Computation:The milestone computation is
described in Table III under COMPUTE M ILESTONES. Each
processorPi computes a setTPi

of milestones and sends to the
scheduler their representatives untilK milestones have been
computed. The setTPi

is owned byPi and stored locally inPi,
while the set of the representatives is stored in the scheduler.
The communication during this stage is limited, non-blocking,
and occurs only between the scheduler and the processors. The
scheduler maintains a mapσ, such thatσ(k) = Pi, if the k-th
milestone representative is sent to the scheduler byPi.

2) Edge Selection:The scheduler computes the graph
GC = (VT , EC) of candidate edges as described in the
sequential case Table I. There is no parallelization of thisstage
since it is only 1–2% of the total computation time and requires
complex search structures. Each setTPi

induces a subgraph
LPi

= (TPi
, EPi

) of GC referred to as the local graph. Since
each milestone ofLPi

is owned by and stored locally inPi,
computation of the edges ofLPi

requires no communication.
3) Edge Computation:The edge computation is described

in Table III under COMPUTE EDGES. For each processorPi,
the scheduler selects an edgeei = (T ′, T ′′) uniformly at
random fromLPi

, deletesei from GC and LPi
, and assigns

the computation ofei to Pi. The scheduler sends toPi the
indices of the two milestonesT ′ and T ′′. In response,Pi

runs the tree-connection algorithm onT ′ and T ′′ and if the
connection is successful, it sends to the scheduler the indices
of two configurationsq′ ∈ T ′ andq′′ ∈ T ′′ that are connected
by a local path. In that case, the scheduler addsei to GT and
all edges(Ti, Tj) ∈ GC such thatTi and Tj lie in the same
connected component ofGT are deleted fromGC as they
will not change the connected component structure ofGT .
The above steps are repeated until there are no more edges in
GC . At each step, certainLPi

’s may be empty due to edge
deletions and cause some of the processors, sayP1, . . . , Pℓ,
to become idle. Our implementation handles this situation by
repartitioning the milestones owned by these processors.

4) Partition Computation:The partitioning is described in
Table III under COMPUTE PARTITIONS. Given the graphGC ,
the problem of finding “good” partitions is formulated as
an optimization problem: determine a partitionTP1

, . . . , TPℓ

of the milestones that maximizes
∑ℓ

i=1 |EC ∩ EPi
|. This

is an instance of the graph partition intoℓ parts problem
which is known to be NP-hard forℓ ≥ 2. Graph partition
problems, however, arise in many computational tasks, notably
in distributed computing, and effective heuristic approaches
have been found [44]. We use the classical Kernighan-Lin
algorithm [33] which is a greedy local optimization approach.
Once the partitions are computed, they must be assigned to
the processors in such a way that the number of milestones
that need to be exchanged is minimized. This is an instance of
the maximum bipartite matching problem and can be solved
efficiently with the Hungarian algorithm [48].

The scheduler recomputes the mapσ so that it reflects
the changes due to partitioning and the assignment operation.
Denote the updated map byσ′, i.e., σ′(k) = Pi if the k-
th milestone is assigned toPi. Then the scheduler sends the
updated map to all the processors involved in the partitioning.
Processors are now responsible for implementing the parti-
tioning and the assignment operation. In particular,Pi needs
to send thek-th milestone toPj if σ(k) = Pi and σ′(k) =
Pj , and Pi needs to receive thek-th milestone fromPj if
σ(k) = Pj and σ′(k) = Pi. The communication betweenPi

andPj is non-blocking. Each processor posts the requests for
its send and receive operations and continues immediately with
edge computations. The communication becomes blocking
only if computing a particular edgee = (T ′, T ′′) requires
the completion of one or two receive operations onT ′ or T ′′.

IV. EXPERIMENTS AND RESULTS

The experiments in this paper were chosen for two purposes:
to testSRT on problems that cannot be efficiently solved by
PRM and single-query planners and to evaluate the performance
of the parallelSRT compared to the sequential implementation.
In this way, we hope to gain insight on the difficult and largely
unsolved problem of sampling schemes for motion planning.
It must be noted that the authors made an effort to choose
difficult benchmarks and representative problems given the
limited amount of space that can be devoted to experimental
setup. This task is particularly difficult due to the absenceof
benchmark sets for path planning.

A. Benchmarks

We ran our experiments on a set of benchmarks chosen to
vary in type and in difficulty. An illustration of our benchmarks
can be found in Fig. 1 and Fig. 2.

Problem “narrow4h2” consists of four non-convex parts
(robots) that must wiggle their way through two small holes as
they exchange places from one side of a wall (obstacle) to the
other side of a second wall (obstacle), as shown in Fig. 1. This
benchmark tests howSRT handles narrow-passage problems,
which are known to be difficult forRRT, EST, andPRM.

Problems “narrow6” and “narrow8” are similar to “nar-
row4h2”, except they have six and eight non-convex parts
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TABLE III

PARALLEL SAMPLING-BASEDROADMAP OF TREES(SRT) ALGORITHM .

Scheduler ProcessorPi

1: INVOKE COMPUTE M ILESTONES.
2: INVOKE COMPUTE EDGES.

PARALLEL SRT
1: INVOKE COMPUTE M ILESTONES.
2: INVOKE COMPUTE EDGES.

1: Q← ∅, i← 0.
2: while i < K do
3: Wait for someqT to arrive.
4: Q← Q ∪ {qT }; i← i + 1.
5: Broadcastfinish to processors.

COMPUTE
M ILESTONES

1: TPi
← ∅.

2: Post request for message from scheduler.
3: while finish has not been receiveddo
4: T ← generate a milestone;TPi

← TPi
∪ {T}.

5: Send representativeqT to the scheduler.

1: GC = (VT , EC)← graph of candidate edges.
2: LPi

= (Vi, Ei)← local graph, for allPi.
3: W = {P1, . . . , Pn}.
4: while unprocessed edges remain inGC do
5: INVOKE COMPUTE PARTITIONS.
6: for i: Pi ∈ W and |Ei| > 0 do
7: ei ← randomly selected fromEi; sendei to Pi

8: Ei ← Ei − {ei}; W ←W − {Pi}.
9: if computed edges have arrivedthen

10: W ←W ∪ {Pi : Pi computedei}.
11: Update connected components,GC andLPi

’s.
12: Broadcastfinish to processors.

COMPUTE
EDGES

1: Post request for message from scheduler.
2: while finish has not been receiveddo
3: while no message has been receiveddo
4: Complete a pending send operation.
5: Complete a pending receive operation.
6: if partition message has been receivedthen
7: INVOKE COMPUTE PARTITIONS.
8: if ei = (v1, v2) has been receivedthen
9: Complete pending receives (if any) onTv1

, Tv2
.

10: Try to connectTv1
andTv2

.
11: Send result to scheduler.
12: Post request for message from scheduler.

1: S = {Pi : Ei = ∅}.
2: ComputeG′

C = (VS, ES), whereVS =
S

P∈S
VP

3: andES = {(v1, v2) ∈ E : v1, v2 ∈ VS}.
4: PartitionG′

C into LPi
’s for Pi ∈ S.

5: for i: Pi ∈ S do
6: σ(v)← Pi for all v ∈ VPi

.
7: Sendσ to Pi for all Pi ∈ S.

COMPUTE
PARTITIONS

1: Complete all pending send/receive operations.
2: Receiveσ from server.
3: for i = 1 to K do
4: if Ti ∈ TPi

and Pi 6= σ(i) then
5: Post request to sendTi to σ(i).
6: if Ti 6∈ TPi

and Pi = σ(i) then
7: Post request to receiveTi from σ(i).

(robots), respectively, and a single wall (obstacle) with asmall
square hole in it. These benchmarks test how efficiently motion
planners solve high-dimensional narrow-passage problems.

Problem “pentomino” [2] consists of twelve pieces (robots)
filling a 3× 4× 5 box, as shown in Fig. 2(a). The objective is
to disassemble the initial configuration by moving each piece
an arbitrary distance away from all the other pieces. This
benchmark tests the efficiency of motion planners in solving
high-dimensional problems in uncluttered environments.

Problems “tunnel1” and “tunnel2” consist of one and two
non-convex parts (robots), respectively, that must go through a
long and narrow tunnel (obstacle), as shown in Fig. 2(b). These
benchmarks further test how efficiently motion planners solve
narrow-passage problems.

Problems “fence1”, “fence2”, and “fence4” consist of one,
two, and four non-convex parts (robots), respectively, placed
in a box split by a regular fence-like wall (obstacle), as shown
in Fig. 2(c). Each robot must go from one side of the fence
to the opposite side. These benchmarks test how efficiently
SRT solves problems which its building blocks cannot solve
efficiently. Using benchmarks with different number of robots
also tests the efficiency of the motion planner as the number
of DOFs increases.

Problem “combo1” consists of a single non-convex part
(robot) that must go through a fence (obstacle) and then

through a long and narrow tunnel (obstacle), as shown in
Fig. 2(d). This benchmark combines the “fence” and “tunnel”
benchmarks in order to test the efficiency ofSRT in solving
problems which are known to be difficult forPRM, RRT, and
EST. The holes in the fence have different dimensions to
further highlight the opportunistic nature ofRRT andEST and
increase their likelihood of failure by making some of the
holes so small that the robot cannot wiggle its way through.
The tunnel is also narrow, barely allowing the robot to move
through it, making it difficult forPRM with uniform sampling
to generate many configurations inside the tunnel.

Problem “rooms1” consists of four rooms forming a2× 2
grid, as shown in Fig. 2(e). Every pair of rooms is separated
by fences (obstacles), except the first and the fourth ones,
which are separated by a wall (obstacle). The objective is to
move one non-convex part (robot) from the first room to the
fourth room. Problem “rooms2” is similar except it has two
robots. As the “fence” benchmarks, the “rooms” benchmarks
further test the efficiency ofSRT in solving problems which
its building blocks cannot solve easily.

Problems “random4” and “random-chain” consist of four
non-convex parts (robots) and a12-DOFs articulated arm
(robot), respectively, in a box filled with random polyhedral
objects (obstacles), as shown in Fig. 2(f). These benchmarks
test how efficient motion planners are in solving problems with
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Fig. 2. Path planning problems.

cluttered environments and a high number of collision checks.
Problem “puma-bars” consists of a 6R articulated limb

(robot) similar to a Puma560 surrounded by several vertical
bars (obstacles), as shown in Fig. 2(g). The movements of the
puma robot are severely constrained making it difficult to solve
any queries. This benchmark tests how wellSRT distributes its
computation for problems that require long computation times.

B. Motion Planning for Multiple Robots

In our experiments, we considered multiple non-convex,
rigid bodies and multiple open kinematic chains operating in
a three dimensional workspace with rigid, non-convex static
obstacles. As with other motion planners, generalizationsto
many other kinematic planning problems are straightforward
and the use ofRRTs andESTs as subroutines gives a natural
way to extendSRT to kinodynamic planning instances [18],
[25], [40]. We applied several optimizations to the multi-robot
case for rigid bodies and open kinematic chains that involved
heuristic replanning of robots in collision [1], [9].

C. Hardware and Software Setup

The implementation was carried out inANSI C/C++ us-
ing the GNU compilers and libraries. Additionally, we made
use of theSWIFT++ collision detection library [19], the
MPICH/MPI for communication andOpenGL for visual-
ization. The processing nodes consisted of eleven dualAMD
Athlon 1900MPs with one gigabyte of memory each. The
scheduler node was anAMD Athlon 1800XP with 500
megabytes of memory. The network topology was switched

100Mbps for the processing nodes with a 1Gbps backbone
to the scheduler node. All of the nodes ranDebian Linux
with kernel 2.4.21.

D. Sampling Methods

In our experiments, we used sampling-based motion plan-
ners. There is extensive research on how sampling should be
done, especially in the context ofPRM. In the original formu-
lation of PRM [32], uniform random sampling is employed. In
recent years, other sampling methods have been developed that
attempt to improve the performance of the motion planners
[3], [12], [13], [21], [23], [24], [27], [55], especially inthe
presence of narrow passages. We expect that any sampling
method that improvesPRM, RRT, or EST, would also improve
SRT, sincePRM, RRT, andEST are the building blocks ofSRT.
Furthermore,SRT retains the global sampling property ofPRM
and uses it to offer toRRT and EST more opportunities to
explore different parts of the configuration space.

A comprehensive testing with all available sampling meth-
ods is just not possible, given the space restrictions of this
paper. In our experiments, we compare the performance of
SRT to PRM, RRT, andEST using several sampling methods. The
results of our experiments indicate that any sampling method
that improves the performance of the building blocks ofSRT,
also improves the performance of the overallSRT.

In addition to the uniform random sampling [32], we
present experiments where gaussian [12], bridge [27], and two
variants of obstacle-based [3] sampling, denoted obstacle1 and
obstacle2, are used. A summarized description of many of
these methods can be found in [12].
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TABLE IV

PARAMETER SETTING FORSRT.

K m nc nr np ni

cat1 400-500 10-50 7-10 4-6 15-25 25-35
cat2 750-1000 50-100 12-15 6-9 25-35 40-70
cat3 1500-2000 100-150 15-18 8-10 50-60 100-125

E. Parameter Setting

Through extensive experimentation on many different
benchmarks, we have found three different categories of
parameter values that yield good performance forSRT on
cat1, cat2andcat3benchmarks, as indicated in Table IV. The
performance ofSRT on these categories depends more on the
number of milestones,K, and the number of configurations
per milestone,m, than it does on the values of the other
parameters. That is, for the parametersnc, nr, np and ni,
the values in thecat3 category can be used to solve the
problems in thecat1andcat2categories with only a negligible
increase in the running time ofSRT (see Section II-F for
a summary ofSRT parameters). There is clearly a tradeoff
betweenK and m. The largerm is, the easier it is for tree-
connections to succeed. On the other hand, generating many
configurations per milestone requires computation time that
could be more useful if spent in tree-connections. SinceSRT

provides a smooth spectrum betweenPRM and RRT or EST,
larger values forK and smaller values form makeSRT behave
more likePRM and less likeRRT or EST, and vice-versa. Our
experiments indicate thatSRT should use more milestones and
a smaller number of configurations per milestone for problems
which PRM is better suited and fewer milestones and a larger
number of configurations per milestone for problems which
RRT or EST are the better choice.

The results of our experiments are for good parameter
selections for each method. We ran each benchmark several
times with an initial guess for the parameters. Then based on
the results of the experiments, we modified our guesses until
the particular motion planner was able to solve the benchmark
consistently in as little time as possible. In a new example,
selecting the optimal parameters can be difficult, particularly
for SRT, because of the number of the parameters and the
relation betweenK and m. In general, generating no more
than several hundred milestones and using milestones with
several dozens of configurations seemed to be the best setting.
For the experiments of Table V, we used the following values.

1) SRT parameters:For all our experiments withSRT, we
set nc = 15, nr = 8, andnp = 20. The values of the other
parameters varied. Our choices were guided by Table IV.

The “pentomino” benchmark is in thecat1 category, since
it has no obstacles; we setK = 400, m = 20, andni = 30.

The “fence1”, “fence2”, “fence4”, “narrow4h2”, “narrow6”,
and “narrow8” benchmarks belong to thecat3 category be-
cause of the very small dimensions of the openings making it
almost impossible for the robots to wiggle their way through.
In addition, many of these benchmarks have several robots. For
these benchmarks, we setK = 2000, m = 100, andni = 100.

The “tunnel1” benchmark fits into thecat2 category since
the openings in the tunnel are slightly larger than those in

the “fence” and “narrow” benchmarks. We setK = 1000,
m = 50, andni = 70.

The “tunnel2” benchmark is harder because it has two
robots instead of one, and thus, considered betweencat2 and
cat3 categories. A similar classification holds for “rooms1”,
“rooms2”, and “combo1” benchmarks since the openings in
the fences and the tunnels are slightly larger than those in the
“fence” and “narrow” benchmarks. For these benchmarks, we
setK = 1600, m = 50, andni = 70.

2) PRM parameters:The performance ofPRM is determined
by two parameters,K and nc. For the “fence1”, “fence2”,
“narrow4h2” benchmarks, we setK = 150000 andnc = 125.
For the “tunnel1” benchmark with uniform sampling, we set
K = 50000 andnc = 75, and for the non-uniform sampling
cases, we setK = 35000 and nc = 75. For the benchmarks
in Table V(c), we setK = 60000 and nc = 100. For the
other benchmarks of Table V, we could not find parameters
that would solve the problem in less than5 hours.

3) RRT and EST parameters:RRT andEST iterate over the
connection strategy until the two trees are connected or a
predefined number of iterations has been reached. For this
reason, we setni = 500000 to allow RRT andEST to iterate
as much as it was needed to find a solution.

F. Comparison ofSRT with Other Planners

SRT can be made intoPRM, RRT, or EST by setting its
parameters as in Table II. We tested the performance of all
these motion planners on the benchmarks of section IV-A.
Table V contains a summary of our results. In each case, we
report the running time in seconds, averaged over sixteen runs.

In Table V(a), we compare the performance ofSRT to other
planners when uniform sampling is used. Our experiments
showed thatPRM, RRT, or EST could not solve the “fence2”,
“narrow6”, or “narrow8” problems even after5 hours of com-
putation, whileSRT solved these problems in867.6s,2935.2s,
and 7270.2s on average, respectively. For the benchmarks
“fence1”, “fence2”, “narrow4h2”, we observe a significant
reduction in the running time ofSRT versusPRM, RRT, andEST.
The running time improvement is less significant in the case
of the “pentomino” benchmark due to the short time needed
to solve this puzzle. As Table V(a) indicates,PRM with basic
uniform random sampling is generally slow since it requires
a considerable amount of time to preprocess the configuration
space. Importantly, for the cost of two or three bi-directional
RRT or EST queries,SRT can preprocess the configuration
space to obtain a structure that answers queries more robustly
and more quickly than the corresponding sampling-based tree
planners. The differences between the methods were more
pronounced in the examples with more complex scenes and
with more robots. We use fairly standard implementations of
PRM, EST, andRRT. We think it is likely that improvements to
either subroutine would be an improvement toSRT.

In Table V(b, c), we compare the performance ofSRT to
PRM, RRT, andEST using several sampling methods aimed at
improving the performance of the building blocks ofSRT in
scenes with narrow passages. The purpose of these experi-
ments is to show that improvements in the sampling employed
by PRM, RRT, or EST also improve the performance ofSRT.
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TABLE V

COMPARINGSRT TO PRM, RRT, AND EST.

benchmark PRM RRT EST SRT[RRT] SRT[EST]
fence1 5638.80s 7209.00s X 114.60s 351.00s
fence2 14007.00s X X 868.18s 872.78s
fence4 X X X 3307.40s 3158.51s
random4 X 6133.80s X 2242.39s 1577.97s
narrow4h2 14809.20s 9045.00s X 1666.95s 1290.25s
narrow6 X X X 3131.71s 2935.10s
narrow8 X X X 7270.20s 7525.80s
pentomino X 168.48s 47.38s 58.29s 19.89s

(a) Summary of the results when uniform random sampling is used.

sampling PRM RRT EST SRT[RRT] SRT[EST]
uniform 463.83s X X 89.35s 85.31s
gaussian 409.22s X X 51.45s 77.41s
bridge 377.86s X X 38.54s 84.27s
obstacle1 335.67s X X 38.84s 43.78s
obstacle2 334.75s X X 44.27s 36.30s

(b) Summary of the results for the “tunnel1” benchmark when several sampling methods are used.

benchmark PRM RRT EST SRT[RRT] SRT[EST]
tunnel2 2697.67s obstacle2 X X 262.75s obstacle2 290.96s obstacle2
rooms1 2391.54s obstacle2 X X 193.00s obstacle2 149.17s obstacle2
rooms2 4448.97s obstacle1 X X 542.96s obstacle1 406.77s obstacle1
combo1 1136.12s obstacle1 X X 136.59s obstacle1 190.89s obstacle1

(c) Summary of the results for many benchmarks when several sampling methods are used.
Only the best average running time and the sampling method used to obtain it are indicated.

Entries forRRT andEST show average time per query. Entries forPRM, SRT[RRT] andSRT[EST] show average time to build
the roadmap and then solve ten random queries; average time per query is not shown separately since it is less than0.1s.
Entries marked withX show that the problem could not be solved even after5 hours of computation. Entries in bold show
the best running time across the row. Each running time is obtained as an average of sixteen runs.

Table V(b) contains the results of our experiments for the
“tunnel1” benchmark.RRT and EST were not able to solve
the queries even after5 hours of computation. We believe
this is due to the small dimensions of the tunnel that barely
allow the robot to move making it hard forRRT and EST

to connect queries on the opposite sides of the tunnel. Such
connections requireRRT andEST to first gear the exploration
from query configurations towards the openings of the tunnel
and then progress inside the tunnel. This is difficult since in
their opportunistic approachesRRT andEST spend most of the
time trying to connect configurations on the opposite sides
of the dividing wall, which does not have any openings. On
the other hand,PRM is able to solve this problem even when
uniform sampling is used due to the large number of samples
it generates making it possible to connect some configurations
inside the tunnel. The large number of samples needed, how-
ever, takes its toll on the running time ofPRM. The performance
of PRM can be improved by using different sampling methods,
especially obstacle-based methods. As shown in Table V(b),
the average running time ofPRM is reduced from463.83s
to 334.75s when uniform and obstacle-based sampling are
used, respectively.SRT, which retains the global sampling
property ofPRM, is able to offer toRRT and EST easier tree
connections which could have some of their configurations
inside the tunnel or near the openings of the tunnel. In this
way, SRT is able to perform better thanPRM, RRT, andEST.

Furthermore, as our experiments indicate, improvements tothe
sampling done byPRM carry over toSRT. As an example,
the average running time ofSRT[RRT] is reduced from89.35s
to 38.84s and the running time ofSRT[EST] is reduced from
85.31s to 36.30s when uniform and obstacle-based sampling
are used, respectively. Similar results were obtained for other
benchmarks, as summarized in Table V(c).

In Table V(c), we summarize the results of our experi-
ments for the “tunnel2”, “rooms1”, “rooms2”, and “combo1”
benchmarks. In addition to the average running time, we also
indicate the sampling method, i.e., uniform, gaussian, bridge,
obstacle1, or obstacle2, that was most effective. Similar to the
performance on the “tunnel1” benchmark,RRT andEST did not
solve any of the benchmarks in less than5 hours despite the
sampling method used. The performance ofPRM was improved
by the non-uniform sampling methods, and as in the “tunnel1”
benchmark, the improvements were more significant when the
obstacle-based sampling methods were used. As indicated in
Table V(c), these improvements carried over toSRT reducing
its running time to a fraction of the running time ofPRM.

G. Discussion and Insights on Sampling Methods

It is well known thatPRM, RRT and EST are sensitive to
the interplay between the distance metric and the incremental
planner [4], [39]. We also made this observation in our
experiments. In environments with thin features, in particular
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the “fence”, “rooms”, and “combo” environments,RRT and
EST tended to produce many configurations that were stuck
near the obstacles. As bothRRT andEST are opportunistic, it is
difficult for these methods to abandon the current region of the
configuration space and explore other regions that might lead
to successful connections. As part ofSRT, RRT andEST may
still get stuck on particular regions when connecting two trees.
However, these connections run only for few iterations and
immediately after,RRT andEST explore new regions as they
try to connect other trees. Thus,SRT allows RRT andEST to
quickly explore many different regions significantly improving
the likelihood for successful connections. In environments with
a single narrow feature,RRT andEST are forced to do a similar
amount of work to answer a single query to the preprocessing
phases ofPRM or SRT. This phenomena also accounts for the
better performance ofRRT on the random example compared
to other examples where solving a query can often be done
without considering the whole configuration space. Finally, we
believe that the efficiency ofSRT derives in part from offering
the tree-based planners easier queries as they come from the
nearest neighbor clustering and also from the fact thatRRT

and EST make use of locality and are capable of answering
easier queries while avoiding difficult and irrelevant parts of
the configuration space.

Our planner has several opportunities for early exit. In
collision detection, bisection checking on a path allows for
early exit for paths with many collisions. In thePRM layer,
only checking edges between different components improved
the running time. Also, the tree-based planners can make an
early exit by quickly checkingnp close pairs for connection
with a straight-line planner before running bi-directional RRT
or EST. SinceSRT uses all of these exit opportunities, the time
improvements are most significant.

In some of our experiments, the running time ofSRT was far
superior toPRM. This occurs for several reasons.SRT checks
fewer edges but works harder for each edge. Also, the nearest
neighbor queries lead to super-linear growth in the running
time. On more difficult examples,PRM needs many milestones
to succeed and thekd-tree has many points in it. As the
number of points in the tree grows, this cost begins to dominate
the running time since it is the only super-linear cost in the
implementation. The hierarchical representation ofSRT yields
much smaller trees and this problem does not manifest as
seriously.

Our experiments confirmed an observation that has been
made earlier aboutPRM. Uniform random sampling is very
easy to implement and in many cases the simplest way to
solve a path planning problem, but it is not always the most
efficient. Our experiments also indicate that improvementsin
the sampling methods used byPRM, RRT, or EST improve the
performance ofSRT. By exploiting efficient sampling schemes,
such asEST and RRT, a planner with better performance is
obtained. Other combinations of sampling methods can be
used, but a comprehensive testing of all combinations is not
possible due to time and space limitations.

We also note that in the reported experimentsqinit and
qgoal were not used as milestone roots during the roadmap
construction to make the problem even more difficult forSRT.

Fig. 3. Speedup of parallelSRT for the “fence2” benchmark withRRT as the
local planner ofSRT. Similar speedups are obtained for the other benchmarks.

Fig. 4. Distribution of computation of parallelSRT for the “fence4”
benchmark withRRT as the local planner ofSRT running on22 processors.
Similar distributions of computation are obtained for the other benchmarks.

H. Measuring Parallel Efficiency

To measure the parallel efficiency ofSRT, we ran on
various benchmarks the parallel code with 1, 2, 4, 8, 16
and 22 processors - the maximum number of processors we
had available. Run times are averaged over sixteen runs. In
Table VI, we report results forSRT with RRT and EST as
its local planners. In each case, we report time with 1 and
22 processors (time[1] and time[22]). Also, for the parallel
runs, we report the percentage of time spent in milestone
computation (mc), edge computation, (ec), communication
(comm), waiting (idle), and parallel efficiency (eff), which is
calculated byts/(tf · N), wherets is sequential time,tp is
parallel time, andN is the number of processors.

The plot in Fig. 3 is for “fence2” and indicates the speedup
obtained for different numbers of processors. The plot in
Fig. 4 is for “fence4” and presents logged data showing how
processors spend their time. These plots are characteristic of
the behavior of the algorithm on the other benchmarks as well.

The overall efficiency of the parallelSRT is reasonably
high on average,88.8%, and in all our experiments in the
range67−99%. We also had a benchmark where superlinear,
1.12%, speedup was obtained. The speedup graph in Fig. 3 is
almost linear which suggests that the efficiency constant isnot
decaying with the number of processors. However, the parallel
SRT places a load on the scheduler which is proportional to the
number of processors. As the number of processors increases,
this will eventually become a problem. A possible solution
might be to increase the number of schedulers or to have a
hierarchy of schedulers. This is left as future work [50].

Nevertheless, there are several advantages of the parallel
SRT. It is fairly simple and makes little use of any blocking
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TABLE VI

PARALLEL SRT VERSUSSEQUENTIAL SRT.

time[1] time[22] mc ec comm idle eff
benchmark a b a b a b a b a b a b a b
fence2 868.18 872.78 42.82 41.54 41.08 27.76 45.39 63.11 9.65 6.57 3.88 2.56 0.92 0.95
fence4 3307.40 3158.51 151.84 149.23 40.08 23.65 55.51 70.40 2.03 4.49 2.38 3.41 0.99 0.96
narrow4h2 1666.95 1290.25 93.21 79.51 39.02 27.15 50.28 58.13 6.18 9.36 4.52 5.36 0.81 0.74
narrow6 3131.71 2935.10 173.41 176.15 45.00 26.05 45.09 65.33 6.92 5.83 2.99 2.79 0.82 0.76
random4 2242.39 1577.97 125.56 107.83 30.36 13.17 64.12 78.97 3.91 4.88 1.61 2.98 0.81 0.67
random-chain 10050.48 10691.09 512.28 551.93 23.30 21.86 72.19 74.29 2.21 1.55 2.30 2.30 0.89 0.88
puma-bars 8097.04 10207.89 327.32 414.10 2.48 2.06 87.60 89.39 8.44 7.64 1.48 0.91 1.12 1.12

Columns (a) and (b) refer to data forSRT[RRT] andSRT[EST], respectively. Columns (time[1]) and (time[22]) show the running time in seconds
of the sequentialSRT and the parallelSRT with 22 processors, respectively. Columns (mc), (ec), (comm), and (idle) show the percentage of the
running time of the parallelSRT spent in milestone computation, edge computation, communication, and idle, respectively. Column (eff) shows
the efficiency of the parallelSRT.

communication. Milestone and edge computations are also
nearly fully distributed and storage is also distributed evenly.

Virtually all of the communication overhead occurs during
the edge computations. This stage would be the most reason-
able place to attempt to make further improvements. The graph
partition scheme we used in our implementation optimized the
sum of the number of edges in theLPi

’s. A better quantity
to optimize would be to maximize the minimum number of
edges over allLPi

’s. This would favor better load balancing.

V. D ISCUSSION

We observed in our experiments thatSRT is a powerful
planner which combines advantages of traditional sampling-
based single query and multiple query planners. By varying
SRT’s parameters, a smooth spectrum between single query
planners andPRM can be obtained from our implementation,
as discussed in section IV-E. The sampling done inSRT has
common attributes with earlier refinement and non-uniform
sampling techniques used inPRM [32]. We believe that the
efficiency ofSRT derives (1) from offering the sampling-based
tree planner easier queries as they come from the closest
neighbor clustering and (2) the fact that the global sampling
property ofPRM is retained so that efficient sampling-based
expansion heuristics, such asRRT andEST, do not get trapped.

Our planner was effective for high-dimensional problems,
which were constructed by putting multiple non-convex rigid
robots in various scenes. In many cases the advantages of
SRT were striking.SRT is designed primarily as a multiple-
query planner, but it should be noted that it is most effective
for difficult planning problems. For such problems, distinction
between single versus multiple query methods is not clear. If
the initial and the goal configurations are known in advance,
they should be used as roots of the milestones during the
roadmap construction stage to makeSRT even more efficient
for single-query planning. Also, note that in difficult examples,
we obtained a roadmap of the configuration space for a fraction
of the cost of solving a single query by a sampling-based tree
planner, such asRRT andEST.

The efficiency ofSRT is not limited to the specific single
query planners that we used. We observed thatSRT exhibits
similar behavior no matter whetherRRT or EST is being used
as its local planner. In fact, other sampling-based tree planners
with good coverage properties can be substituted.

Furthermore, we suggested a parallel implementation of
SRT and obtained an efficient division of labor allowingSRT
to tackle problems of unprecedented complexity. We plan to
scale ourSRT implementation to a cluster with several hundred
nodes. To do this, it is likely that some decentralization ofthe
scheduling computations will become necessary [50]. Our goal
is to apply our work to increasingly hard planning problems
dealing with flexible robots [35], [37], [45], reconfigurable
robots [56], manipulation planning [51], complex planning
instances [52], and computational biology applications [6], [7].
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