
Guided Expansive Spaces Trees: A Search Strategy for Motion- and Cost-Constrained
State Spaces

Jeff M. Phillips
Dept. of Computer Science, Rice University,
6100 Main St. Houston, TX 77005, USA

jeffp@cs.rice.edu

Nazareth Bedrossian
C. S. Draper Laboratories,

2200 Space Park Blvd. Suite 210
Houston, TX 77058, USA

Lydia E. Kavraki
Dept. of Computer Science, Rice University,
6100 Main St. Houston, TX 77005, USA

kavraki@cs.rice.edu

Abstract— Motion planning for systems with constraints on
controls or the need for relatively straight paths for real-time
actions presents challenges for modern planners. This paper
presents an approach which addresses these types of systems
by building on existing motion planning approaches. Guided
Expansive Spaces Trees are introduced to search for a low cost
and relatively straight path in a space with motion constraints.
Path Gradient Descent, which builds on the idea of Elastic
Strips, finds the locally optimal path for an existing path. These
techniques are tested on simulations of rendezvous and docking
of the space shuttle to the International Space Station and of a
4-foot fan-controlled blimp in a factory setting.

I. INTRODUCTION

The need for autonomous service of satellites and au-
tonomous maintenance of the International Space Station (ISS)
requires real-time obstacle avoidance. Advanced technology
programs such as the DARPA Orbital Express program [18]
are now underway to demonstrate the various technologies re-
quired to achieve autonomous in-orbit servicing capability. The
rendezvous control problem has been extensively researched
[13], [10].

Likewise, control of an autonomous agent, such as a small
fan-controlled blimp, in a factory-type setting requires the
planning of relatively straight and efficient paths. Obstacles
need to be avoided and the path should not wander. Modeling
the motion of and controlling small blimps has also been the
focus of several research studies [11], [2].

This paper presents a path planning algorithm for handling
such systems. We test our algorithm by finding fuel-efficient
paths to dock the space shuttle to the ISS amidst a shower of
realistically moving asteroids as well as on a blimp efficiently
maneuvering through a factory hall mazed with pipes.

The initial phase of the algorithm finds an efficient path
using guided Expansive Spaces Trees (guided ESTs) to focus
a randomized search on the low cost region while expanding
a tree similar to ESTs [9], [8], a probabilistic sample-based
search technique [12], [16]. Our method generates waypoints
by probabilistically branching off of existing waypoints. It
weights each waypoint based on, not only the number of close
waypoints, but also the estimated total cost (A* cost) of going
through that waypoint on a path to the goal. This not only
focuses the search towards the goal, but it greatly reduces the
number of waypoints rejected from having too high cost.

The second phase of the algorithm refines the existing path
according to a cost function by following the gradient of the
path. This path gradient descent technique is similar to work

on Elastic Strips [17], [4], [15], but does not enforce elastic
properties of the path, an unrealistic constraint in this situation,
and takes more robust precautions in repelling from obstacles.

There has been a long history of sample-based probabilistic
path planning methods. Some build a roadmap (a graph) in
the configuration space [12], [3] and some construct trees for
single queries [9], [16]. However, for the particular class of
problems we address, none of the existing techniques met
our demands as well as the method presented here. The
existing techniques expansion properties were important for
robustly finding paths, but the problems we address also
require the paths generated to obey certain cost constraints
and be relatively straight. This work provides further evidence
that the way sampling is done and sensitivity of such schemes
to distance metrics is far from solved.

Section II gives a brief background in kinodynamic motion.
Section III outlines the guided EST algorithm, and IV outlines
the path gradient descent algorithm. Section V summarizes our
set of experiments. And VI concludes the paper and looks at
future directions of this research.

II. KINODYNAMIC MOTION
Kinodynamic motion planning [16] performs in a state

space. A state is defined by a static representation (position,
orientation, and other state variables) of an object, derivatives
of that representation w.r.t. time, and time. Here we consider
two modeled systems.

Orbital dynamics for rendezvous and docking problems
can be effectively modeled with the Clohessy-Wiltshire (CW)
equations (1) [6], which are a linear function of change in
time, t, and orbital rate, n. These equations allow the system
to be planned relative to the target vehicle, instead of relative
to the earth. For small changes in altitude, orbital rate, n, can
be modeled as constant.

x f
y f
z f
˙x f
˙y f
˙z f

 =

1 0 6(nt − sin(nt)) 4
n sin(nt)−3t 0 2

n (1− cos(n∗ t))

0 cos(nt) 0 0 sin(nt)
n 0

0 0 4−3 cos(n∗ t) 2
n (cos(nt)−1) 0 sin(nt)

n
0 0 6n(1− cos(nt)) 4 cos(nt)−3 0 2 sin(nt)
0 −n sin(nt) 0 0 cos(nt) 0
0 0 3n sin(nt) −2 sin(nt) 0 cos(nt)

xi
yi
zi
ẋi
ẏi
żi

(1)
Orientation and angular rate can similarly be modeled with

a set of linear functions of time. Controls can be modeled as
instantaneous changes in velocity or rate, resulting from short
jet firings.

The model for blimp motion maneuvering in a factory
setting is very similar to differential drive motion [1]. The

blimp modeled in the paper has three independent fans, used
for control. The first two fans face along the main forward axis
of the blimp and are separated by a distance l. The weight of
the central control box prevents nonzero pitch and roll, but
yaw can be controlled by the difference in the controls of the
first two fans: u1 and u2.

θ̈ = u1−u2
l

θ̇ f = θ̇i + u1−u2
l t

θ f = θi + θ̇it + 1
2(u1−u2

l)t2
(2)

The horizontal acceleration can then be written:

ẍ = (u1 + u2)cos(θi + θ̇it + 1
2 (u1−u2

l)t2)
ÿ = (u1 + u2)sin(θi + θ̇it + 1

2 (u1−u2
l)t2)

(3)

The control for the third fan, u3, determines vertical dis-
placement and can be modeled independently of the first two
controls. A damping term, Ω, is added:

z̈ = u3
ż f = (żi + u3t)(1−Ω)
z f = zi +(2−Ω

2)żit + 1
2 (1−Ω)u3t2

(4)

Vertical displacement and yaw can thus be described explic-
itly, but the equations for the horizontal displacement have no
closed form and their Taylor approximation is insufficiently
accurate. Thus horizontal displacement and velocity is calcu-
lated using Runga-Kutta 3/8, which also takes linear velocity
damping into effect. Constant control is assumed over a time
step. Only reasonably valued controls are considered and
maximum values on angular rate and velocity are enforced.

III. GUIDED EXPANSIVE SEARCH TREES

Guided EST is a variation of conventional probabilistic
path planning strategies: PRM [12], RRT [16], and most
similarly EST [9], [8]. Guided ESTs have advantages over
the conventional techniques when the state space is governed
by higher dimensional kinodynamic constraints and when
minimizing the control cost of the entire path is important.
Guided ESTs borrow from conventional expansion techniques
for robustness in finding paths, and also use path cost statistics
to guide the tree in the window of acceptably low-cost paths.

Conventional probabilistic path planning algorithms rely on
a metric to determine whether two configurations are “close.”
But in kinodynamic state spaces, it is not obvious when two
configurations should be considered “close.” Often a 1-norm
or weighted 1-norm of the vector of the configuration is used
in a kd-tree [7], or a Range Tree [7], or only the 1-norm
of the static representation is used, ignoring the derivatives
and time. These techniques do not necessarily accurately
represent the reachability of the configuration–the intended
reason for the metric. For instance, two configurations which
are “close” based on a 1-norm metric will likely not be able
to reach one another with a reasonable cost. Guided ESTs
address some of these concerns.

A. Guided EST Algorithm

The basic algorithm is the same as the EST [9] algorithm,
except that the weighting function is changed. The pseudo
code below outlines the algorithm. At each iteration, an exist-
ing waypoint–a configuration in the state space–is chosen at
random from a distribution, based on its weight. The waypoint
is then expanded by applying a randomly chosen control to
produce a new waypoint after some chosen time step. If the
edge is in collision or if the new waypoint violates a velocity
or rate constraint, then it is discarded. Valid waypoints are
added to the tree and are assigned a weight. Then if the new
waypoint can connect to the goal, the path is returned.

Algorithm 1 Guided ESTs
1: for i = 0 to N do
2: p = choose waypoint()
3: n = expand waypoint(p)
4: if (n is not valid) : continue
5: add to tree(p,n)
6: assign weight(n);
7: if (n connects to goal) : return add to tree(n,goal)
8: end for

The weighting function for the EST algorithm only looks
at the number of neighbors (# neighbors) within a range:

weight =
1

#neighbors
(5)

The guided EST algorithm differs in that it additionally
takes into account the out-degree, number of out-going edges
from the waypoint; the order of the waypoint, how recently
it was created; and the A* cost, estimated total cost to the
goal computed as the sum of the control required to reach the
waypoint from the root and the estimated control cost to reach
the goal. These statistics are taken to the power, α , β , γ , and
δ , respectively.

weight =
(order)γ

(#neighbors)α · (out−degree)β · (A∗cost)δ (6)

The out-degree term prevents a highly weighted waypoint
from being expanded too many times. This is incremented
even if the expanded-to waypoint is not valid. The A* cost

term focuses the search towards the goal and prevents the tree
from often expanding high cost waypoints which already are
likely to expand into waypoints which violate a velocity or rate
constraint. The order term, like the number of neighbors term,
tends to keep the tree expanding on the frontier. For some
extremely high dimensional problems [14] when proximity
queries are unrealizable because it is too expensive or no good
metric exists, the algorithm can still be effective after dropping
the number of neighbors term from (6). However, if a good
metric and way to efficiently perform proximity queries exist,
then using the number of neighbors is more robust.

In Figure 1 the way the guided EST algorithm focuses the
search (on the right) is compared to EST (on the left). Note
how guided EST finds the goal with much less space searched.

Fig. 1. 2D EST and guided EST : darker edges created first

B. Proximity Queries

The purpose of using the number of neighboring waypoints
in the weighting function is to bias the search towards ex-
panding on the frontier. So, whether two waypoints are close
should be defined based on the control cost between the
two configurations. This indicates how likely one waypoint
is to expand into the region of the other. Conventional data
structures for quick proximity queries, kd-trees [7] and Range
Trees [7], can not handle such a distance function. Metric
Trees [5], however, can make proximity queries efficiently
with an arbitrary metric. Unfortunately, control cost is not a
metric because it violates symmetry and the triangle inequality.
In fact, Metric Trees only returned between 70% and 100%
of the data within a range on random inputs, substituting
control cost as the metric. However, the missing neighbors
did not seem to qualitatively effect the tree expansion in a
3D visualizer and did not seem to perform any different with
the same number of waypoints compared to a brute force
approach.

Experimentally we found that metric trees needed rebalanc-
ing often, causing their amortized query time to be slow. This
problem can be alleviated and query time reduced by building
several metric trees indexed by different time ranges. Because
waypoints are limited to only expanding within a limited time
frame, only neighbors within a limited time range need to
be considered and thus a limited number of our time-indexed
Metric Trees. This also reduces the amount of rebalancing
because the center of mass of a Metric Tree within a limited
time range tends to drift less. Time-indexed Metric Trees with
a cost distance function are used for all experimental results.

IV. PATH GRADIENT DESCENT

Although guided ESTs produce cost-constrained paths, ap-
plications such as the space shuttle docking on the space
station want to minimize the cost function. Preexisting paths
can be refined to obtain lower cost paths by calculating and
following the gradient of the cost function. An entire path has
many variables over which to minimize, but by analyzing each
waypoint on the path individually and incrementally following
that waypoint’s gradient, the approach becomes manageable.

A. Path Representation

A path is stored as an array of waypoints, the controls
applied to them, and the time between controls. Figure 2
shows a cartoon of a path segment where the circles are
waypoints, wp, the solid lines, u, are impulsive controls in-
stantaneously changing the derivative part of the configuration
at the waypoint, and the dotted lines are the integration of the
change of configuration over time. Alternatively, the controls
and the integrated path can be combined for continuous control
systems, such as for a blimp.

Fig. 2. Path segment

B. Path Cost Function

The cost function (7) which favors paths a safe distance
from obstacles and low control cost is the sum of a term to
penalize being near obstacles and a term to penalize for high
control cost. The cost function can be written in terms of the
controls applied and elapsed time and its gradient is taken in
terms of the control.

costwpi+1(ui) =
avoid(obstacles,wpi+1(ui))
+control(ui)

(7)

In the case where the propagation equations are linear, like
the CW equations [6], the control cost part of the function can
be calculated explicitly. An arbitrary set of linear equations φ
which propagate a kinodynamic configuration forward as a
function of time, can be written generically:

[
x f
ẋ f

]
=

[
φ11 φ12
φ21 φ22

][
xi
ẋi

]
(8)

The control function takes into account the control applied
at the particular waypoint and at its neighboring waypoints.
Consider the waypoint labeled wpi+1 in Figure 2. When wpi+1
is perturbed, the controls ui, ui+1, ui+2 must be altered. ui will
determine the value of wpi+1, then ui+1 can be solved for to
extend wpi+1 to reach the position at wpi+2 and ui+2 can be
solved for to appropriately adjust the derivative part of wpi+2:

ui+1 = φ−1
12 (xi+2 −φ11xi+1)− ẋi+1

xi+1 = φ11xi + φ12(ẋi + ui)
ẋi+1 = φ21xi + φ22(ẋi + ui)

ui+2 = ẋi+2 + ui+2′−φ21xi+1 −φ22(ẋi+1 + ui+1).

(9)

ui+2′ is the original value of the third control.
The avoid function is illustrated in Figure 3. Previous

work in deforming paths [17], [4] propelled obstacles from
waypoints and also put an elastic force on the path segments

Fig. 3. Graphical representation of obstacle avoidance function calculation.
c1c2 and c2c3 are path segments. A and B are obstacles.

between waypoints to prevent the path from stretching too
far. By ensuring that the obstacles remain outside an ε-
ball surrounding each waypoint and ensuring that the path
remained within this series of ε-balls, no collision will occur.
However, the elasticity of the path has no direct meaning in
our cost function and should be avoided. Without the elastic
term, if an obstacle is close to the path between two waypoints
and about equidistant from both waypoints, the cost gradient
will force the waypoints apart, but not dramatically increase
the actual path clearance from the obstacle.

Our solution simplifies the path to a series of line segments
between waypoints (c1c2 and c2c3 in Figure 3), and propels
obstacles (A and B in Figure 3) from the line segments. By
guaranteeing the actual path stays within some δ -distance of
the line segment and that the obstacles stay further than δ
from the line segment, it can guarantee no collisions.

In this approach the waypoint only has a repelling cost
on the obstacle if the edge’s closest point to the obstacle is
between the waypoints (Region A in Figure 3), or if both
edges would have their closest point to the obstacle if they
were extended past the waypoint (Region B in Figure 3). These
regions can be easily calculated with dot products over vectors.
In Equation (10) −→v is a vector and u is a unit vector.

−−−−−→
dis1(c2) =

−−−−−→
(c2 −A)− (

−−−−−→
(c2 −A) · (c2 − c1))(c2 −A)−−−−−→

dis2(c2) =
−−−−−→
(c2 −A)− (

−−−−−→
(c2 −A) · (c2 − c3))(c2 −A)

−−−−−→
dis3(c2) =

−−−−−→
(c2 −B)− (

−−−−−→
(c2 −B) · (c1 − c2))(c2 −B)+−−−−−→

(c2 −B)− (
−−−−−→
(c2 −B) · (c3 − c2))(c2 −B)−−−−−→

grad(c2) = � 1−−−−−→
dis1(c2)2

+� 1−−−−−→
dis2(c2)2

+� 1−−−−−→
dis3(c2)2

(10)

C. Algorithm

To minimize the cost of the path, the gradient direction of
each waypoint is independently calculated, with its neighbors
fixed, and is followed a short distance ε . The process is iterated
N times, as is shown in the pseudocode below:

The order the waypoints are visited is randomly permuted
to prevent bias in how the path deforms.

Algorithm 2 Path Gradient Descent
1: for i = 0 to N do
2: randomly permute order of waypoints
3: for j = 0 to # waypoints do
4: calculate cost gradient
5: follow the direction of the gradient a distance ε
6: end for
7: end for

D. Dynamic Obstacle Avoidance

The path gradient descent technique can be extended to
work in a changing environment simply by updating and
adjusting the cost function. It can be used as a feedback control
loop to account for errors in propagation or to avoid dynam-
ically changing obstacles. As the cost function is updated,
the path will immediately deform to avoid obstacles and then
reconverge to the local minimum–the path will remain within
the same homotopy class. But a collision free path can be
extracted at anytime, so this can be used for real-time obstacle
avoidance.

V. EXPERIMENTS

Guided ESTs were tested using a variety of parameters,
including those which represent ESTs, applied to (a) the
space shuttle docking, to (b) maneuvering a blimp in a
factory setting, and in (c) a simple 2D environment. For
each experiment, variations of the weight function (6) were
tested on 50 independent trials. Parameter ranges were as
follows #neighbors {α : 0−6}; out-degree {β : 0−3}; order

{γ : 0−3}; A* cost {δ : 0−4}. Restrictions were enforced to
bound the total control cost of the path–the sum of all controls
applied–or in the case of the 2D environment the total path
length. If this restriction was violated, the configuration was
rejected as if in collision.

In general, values of β and γ in equation (6) are most
effective at 2 or 3. α is more effective near 1 for more
cost-constrained and less obstacle-constrained systems, and
more effective near 4 or 5 for less cost-constrained and more
obstacle-constrained systems. Inversely, δ was more effective
near 4 for more cost-constrained and less obstacle-constrained
systems, and more effective near 1 for less cost-constrained
and more obstacle-constrained systems.

An RRT [16] implementation was tested on the same
experiments using the same primitives and data structures
when appropriate. It performed well on the 2D environment,
but we were unsuccessful in finding solution paths with the
RRT on the cost-constrained examples. The problem seemed to
be in choosing a bound on the state space to sample from and
in trying to move towards random samples of the state space.
Although individual parameters may be reasonable, parameter
combinations are not always reasonable, and it is hard to
define the set of reasonable combinations of parameters in the
state space as opposed to setting ranges for each parameter
individually.

All tests were run on AMD 1GHz processors.

A. Space Shuttle Docking

In this series of experiments, the space shuttle begins 1000
by 1000 by 1000 feet away and rotated 180 degrees from its
docking position on the space station. Fifteen moving asteroids
are generated randomly such that they do not collide with the
space station but will be within 250 feet of it at the time the
shuttle is scheduled to approach. The simulation plans a path
for the space shuttle according to the kinodynamic equations
of motion shown in (1). Controls were chosen uniformly at
random from a reasonable range. However 15% of the controls
were chosen to go directly towards the goal, as in [16], by
symbolically inverting the matrix in (1) and setting the final
configuration to the goal. This is also how the A∗ cost is
calculated.

Several combinations successfully planned a path 100% of
the time. The most efficient combination of parameters set
α = 1, β = 2, γ = 3, and δ = 3 in equation (6) and found a
path in an average of .254 seconds. However, a few parameters
set α = 0, thus not using the sampling density information,
even though the metrics trees were still maintained, and
queried. These operations represent a significant amount of
the algorithm’s runtime. When assigning α = 0, β = 3, γ = 2,
and δ = 2 in equation (6) 100% of the runs found paths in an
average time of 1.23 seconds.

Of the parameter sets that solved 100% or 98% of the
systems, the assignment of α = 1, β = 1, γ = 1, and δ = 4
in equation (6) had the lowest average path cost, and solved
in an average of 1.20 seconds. Of the parameter assignments
with the lowest costs, it was indicative for α = {0,1} and
δ = {3,4}.

Comparatively, the parameter assignment representing EST,
α = 1, β = 0, γ = 0, and δ = 0 in equation (6), only returned
a path 2% of the time and of those paths returned, the average
cost of successful paths was about two times that of the
average cost for above parameters and required an average
search time of 3.46 seconds. Note in Figure 4 how the EST
searches much more space (the image is zoomed out), but most
of the this extra coverage is in the wrong direction.

Fig. 4. Guided ESTs for space shuttle docking, with varying parameters

B. Maneuvering a Blimp in Factory Setting

A factory-type setting is simulated as a hallway mazed
with pipes that a 4-foot blimp needs to maneuver 80 feet
through and rotate 180 degrees. The movement of the blimp
is governed by the kinodynamic equations described in (2),
(3), and (4). For propagation, controls u1 and u3 are chosen
uniformly at randomly from a reasonable range, then u2 is
chosen uniformly at randomly from some smaller range as
a difference from u1. If it is chosen independently of u1,
the blimp will too often end up with too much angular rate.
Estimating the A∗ cost is harder for this nonlinear problem.
The amount of control required to independently appropriately
direct the displacement velocities if orientated correctly and
to orient yaw velocities correctly are used. Again, bounding
restrictions were put on angular rate, velocities, and total path
cost, and violating configurations were rejected from the tree.
The blimp’s requirement for minimal control cost is not as
much of an issue as with the space shuttle, but these bounds
tend to keep the blimp from getting in hard to control spins
and from reaching unreasonable velocities. In the end, this
leads to straighter, more desirable paths.

The most efficient sets of parameters found paths 66% of
the time. The assignment α = 6, β = 3, γ = 1, and δ = 4 in
equation (6) found paths 66% of the time in an average of
3.29 seconds. Values for α of 5 or 6 and for δ of 3 or 4 was
indicative of the sets of parameters which had high percentage
of successful runs. In contrast to the shuttle example, no set of
parameters with α = 0 found a path on more than 28% of the
trials. These times are much higher than those of the space
shuttle experiment mainly because the propagation function
needs to use numerical integration to extend a path.

Of the parameter sets which found paths more than 60% of
the time, the set α = 5, β = 2, γ = 0, and δ = 4 in equation (6)
had the lowest average cost of the paths found. A δ value of 4
was common among the sets of parameters with low average
path costs.

In comparison, the set of parameters representing the stan-
dard EST scheme only solved for paths 18% of the time. The
paths were found in an average of 5.53 seconds and with an
average cost of 3 times that of the best one described above.

Figure 5 shows from above a tree which found a path for
the blimp in a randomly generated factory environment.

Fig. 5. Guided EST for blimp in factory environment. Darker edges for yaw
at goal, lighter edges for yaw at start

C. 2D Environment

Experiments varying the same parameters were run in the
2D environment in Figure 6. Euclidean distance was used as
cost for the purpose of calculating the A* cost. The most
time efficient sets of parameters solved for a path in about
.5 seconds and assigned α = {5,6} and δ = {0.1}. Although
the trees with δ ≥ 1 fruitlessly, almost certainly explored the
large region on the right first, when that region was explored,
they were able to find the passage on the bottom left and then
reached the goal about as quickly as trees with δ = 0. An
example tree with δ = 1 can be seen in Figure 6.

This algorithm with δ ≥ 3 and α ≤ 4 in Equation (6) will
search primarily in the region on the right and will rarely make
it through the passage at the bottom. This example does not
benefit from the guidance of the A* cost as does a higher
dimensional problem with kinodynamic constraints.

Fig. 6. 2D Environment: empty and explored : darker edges created first

D. Path Gradient Descent

Path gradient descent was tested on 50 paths generated by
the docking space shuttle avoiding 15 moving obstacles using
the parameters {α = 1,β = 2,γ = 3,δ = 3} in Equation (6).
With 10, 20, and 100 iterations, the cost dropped to 52%,
44%, and 37% of the original cost found by the guided EST
algorithm, respectively. Most of the improvement is realized
in the first few iterations. The path gradient descent took an
average of .006, .011, and .056 seconds for each number of
iterations, respectively.

VI. DISCUSSION AND FUTURE WORK
Guided ESTs are an improvement to the repertoire of

motion planning tools and are particularly effective for a hard
class of kinodynamic problems with a path cost function. The
path gradient descent algorithm provides a tool for further
refining cost driven paths.

Guided ESTs without the use of nearest neighbors prox-
imity queries can be particularly useful for high dimensional
problems [14] as well as problems where it is expensive or
not clear how to define a neighborhood.

Although the most effective sets of parameters in equation
(6) vary from one system to another, fixing the values of β and
γ at 2 would not change the expansion results significantly. α
and δ need to be adjusted to the specific system based on
certain criteria. Higher values of α seem to be more effective
when there are narrower passages described by physical ob-
stacles, and higher values of δ seem to be more effective with

more constraints on the motion. Potentially, an adaptive system
could be devised to occasionally readjust the weightings based
on new parameter values which are determined by measuring
the number of collisions with obstacles to tune α and the
number of constraint violations to tune δ .

Existing path planning techniques are shown to have diffi-
culty with the class of motion- and cost-constrained systems
presented. By using a directed sampling technique, guided
ESTs perform much better in these constrained systems. This
indicates that guided ESTs provide an important tool for
motion planning and that different sampling techniques need
to be considered.

VII. ACKNOWLEDGMENTS
JP would like to thank Andrew Ladd and the rest of the Physical and Biological
Computing Group of Rice University for much constructive feedback. Work on the paper
by Jeff Phillips has been partially supported by Draper Laboratories and by NSF 9702288.
Work on this paper by Lydia Kavraki has been supported in part by NSF 0308237 and
a Sloan Fellowship to Lydia Kavraki.

REFERENCES

[1] D. Balkcom and M. Mason. Time optimal trajectory for bounded
velocity differential drive robots. IEEE International Conference on
Robotics and Automation, 2000.

[2] Y. Bestaoui, S. Hima, and C. Sentouh. Motion planning of a fully
actuated unmanned aerial vehicle. AIAA Guidance, Navigation, and
Control, 2003.

[3] R. Bohlin and L. E. Kavraki. A randomized algorithm for robot
path planning based on lazy evaluation. Handbook on Randomized
Computing, pages 221–249, 2001.

[4] O. Brock and O. Khatib. Elastic strips: Real-time path modification for
mobile manipulation. Robotics Research, pages 5–13, 1998. Springer-
Verlag.

[5] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient access method
for similarity in metric spaces. the VLDB Journal, 1997.

[6] W. H. Clohessy and R. S. Wiltshire. Terminal guidance system for
satellite rendezvous. J. of the Aerospace Sciences, 27:653–658, 1960.

[7] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf.
Comptational Geometry: Algorithms and Applications. Springer, 1997.

[8] D. Hsu, R. Kindel, J.-C. Latombe, and S. Rock. Randomized kinody-
namic motion planning with moving obstacles. International Workshop
on Algorithmic Foudations of Robotics, pages 233–255, 2000.

[9] D. Hsu, J.-C. Latombe, and R. Motwani. Path planning in expansive
configuration spaces. International Journal of Computational Geometry
and Applications, 9(4-5):495–512, 1999.

[10] M. C. Jackson. A six degree of freedom, plume-fuel optimal trajectory
planner for spacecraft proximity operations using an a* node search.
Master’s thesis, MIT, 1994.

[11] H. Z. James and J. Ostrowski. Visual servoing with dynamics: Control
of an unmanned blimp. IEEE International Conference of Robotics and
Autotmation, 1999.

[12] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars. Proba-
bilistic roadmaps for path planning in high dimensional configuration
spaces. IEEE International Transactions on Robotics and Automation,
12(4):566–580, June 1996.

[13] C. Kluever. Feedback control for spacecraft rednzvous and docking.
Journal of Guidance, Control, and Dynamics, 22(4):609–611, 1999.

[14] A. M. Ladd and L. E. Kavraki. Using motion planning for knot
untangling. International Workshop on Algorithmic Foudations of
Robotics, 2002.

[15] F. Lamiraux and D. Bonnafous. Reactive trajectory deformation for non-
holonomic systems: Applications to mobile robots. IEEE International
Conference on Robotics and Automation, pages 3099–3104, 2002.

[16] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning.
International Journal of Robotics Research, 20(5):378–400, May 2001.

[17] S. Quinlan and O. Khatib. Elastic bands: Connecting path planning and
control. IEEE International Conference on Robotics and Automation,
2:802–807, 1993.

[18] James Shoemaker. ”Orbital Express Space Operations Architecture”.
URL: http://www.darpa.mil/tto/programs/astro.html [cited 19 January
2004].

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	header: Proceedings of the 2004 IEEE International Conference on Robotics & Automation New Orleans, LA • April 2004
	footer: 0-7803-8232-3/04/$17.00 ©2004 IEEE
	01: 3968
	02: 3969
	03: 3970
	04: 3971
	05: 3972
	06: 3973

