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Abstract— Many manipulation tasks combine high-level dis-
crete planning over actions with low-level motion planning over
continuous robot motions. Task and motion planning (TMP)
provides a powerful general framework to combine discrete and
geometric reasoning, and solvers have been previously proposed
for single-robot problems. Multi-robot TMP expands the range
of TMP problems that can be solved but poses significant
challenges when considering scalability and solution quality.
We present a general TMP framework designed for multiple
robotic manipulators. This is based on two contributions. First,
we propose an optimal task planner designed to support simul-
taneous discrete actions. Second, we introduce an intermediate
scheduler layer between task planner and motion planner to
evaluate alternate robot assignments to these actions. This
aggressively explores the search space and typically reduces the
number of expensive task planning calls. Several benchmarks
with a rich set of actions for two manipulators are evaluated.
We show promising results in scalability and solution quality of
our TMP framework with the scheduler for up to six objects.
A demonstration indicates scalability to up to five robots.

I. INTRODUCTION

Typical robot manipulation tasks combine discrete and
continuous reasoning. Such problems can be described by
a high-level specification that captures the discrete rela-
tionships between states and actions. These actions involve
continuous motions by the robot that cannot be easily repre-
sented in a discrete planner. General TMP solvers [1], [2],
[3] provide a way to search across discrete choices of actions
and continuous robot motions. Unfortunately, these methods
have typically been limited to the single-robot case. The
availability of multiple manipulators opens up more complex
scenarios. Some problems can only be solved with multiple
robots (e.g., lifting a heavy object) and others can be solved
more efficiently by robots working in parallel. Multi-robot
TAMP poses challenges to scalability, in particular when
considering optimal task plans.

Consider the real-robot demonstration in Fig. 1; a typical
problem for TMP frameworks such as [1], [2], [3]. A
domain specification language such as the Planning Domain
Definition Language (PDDL) [4] can be used to specify
such tasks. Existing techniques repeatedly call a task planner,
evaluate motions for actions in the task plan, and return
feedback about infeasible actions to get new task plans. A
large number of such task planning calls can slow down the
computation significantly. To fully utilize multiple robots we
need to consider robots executing actions in parallel during
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Fig. 1: A motivating demonstration. Top left shows the start
with two objects, and a duster. The objective is to a) clean
the green area of the table, and b) stack the black block.
Bottom: The cleaning action requires the white object to be
moved away in an intermediate step.

the same step such that the optimal task plan has the fewest
number of steps. In multi-robot TMP, the computational cost
of task planning is typically much larger than the time taken
to find a feasible motion plan (Fig 4), because the worst case
branching factor of the discrete search space is the cardinality
of the Cartesian product of all actions for all robots.

In multi-robot TMP when more than one robot can
perform the same action in a step, the task planner might
not have information to distinguish between certain robot-
action assignments. For example, consider a task plan where
the left arm moves block A and the right arm moves block B.
If both blocks are reachable by both arms, we trivially know
that left moving B and right moving A will still accomplish
the same task. Exploring alternative, equivalent robot-action
assignments through repeated task planner calls is inefficient.
Given a candidate task plan and task definition, the valid
permutations of robot-action assignments can be deduced. It
is therefore desirable to attempt motion planning for all these
candidate assignments before returning to task planning.

We propose a general, multi-robot TMP framework with
two major contributions to the state-of-the-art: a) Task Plan-
ner for Simultaneous Actions: We design an efficient task
planner based on Z3 [5], that supports simultaneous actions
to address task planning for multiple robots more efficiently.
b) Multi-Robot Scheduler: We propose an intermediate
scheduler layer between task planning and motion planning
to evaluate valid permutations of robot-action assignments
in a task step. This essentially allows us to group equivalent
robot-action assignments together to minimize calls to the
task planner and to prioritize search for what is heuristically
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the most promising assignment. Failure to find any valid
permutation triggers a sequential execution fallback. The
proposed framework can find an initial, feasible solution
quickly and eventually can report a task plan that is optimal
in terms of the number of steps.

Our experiments indicate promising performance of our
method in problems that current state-of-the-art TMP solvers
cannot solve. The results (Sec. V-C) show that our approach
can scale better than directly applying a task planner from
single-robot TMP [1] to the multi-robot case. The proposed
scheduler also improves our performance in benchmark
problems with two UR5 robots and up to six objects. In a
demonstration we also show scalability to up to five robots.
A real demonstration (Fig. 1) is performed on two UR5 arms.

II. RELATED WORK

Different approaches have been proposed to integrate task
planning and motion planning for a single robot. In [1],
task planning is handled by a general-purpose satisfiability
modulo theories (SMT) solver [5]. The SMT solver generates
a discrete task plan, and the actions are refined by a motion
planner sequentially. If the motion planner fails to instantiate
an action, information about the failure is passed back to the
SMT solver in the form of a motion constraint. The motion
constraint is incrementally added to the solver, which forces
the solver to find a new plan. [6] focuses on detecting the
“culprit” behind each failure and using that as a constraint.
Other approaches such as [2], [3], [7] use heuristic search
based on [8], [9] in a similar manner. There exist some
optimization-based TMP approaches [10], [11], but they do
not have completeness guarantees, while approaches like [1]
show probabilistic completeness. There are other lines of
work in this area, that almost exclusively focus on single-
robots. Of those that consider multiple robots [12], [13], [14],
the focus is on mobile robots rather than on manipulation.

Previous works have studied multi-robot planning of ma-
nipulators. While coordinated multi-robot motion planning
suffers from the curse of dimensionality, some sampling-
based approaches have been developed to reduce computa-
tional complexity while still tackling the general coordinated
problem [15], [16]. Multi-robot task planning was viewed as
having two components [17], task decomposition (TD) and
task allocation (TA). Approaches such as [18] only consider
TA, assuming the decomposition is given, while we do
address both aspects implicitly. In object rearrangement [19],
the TMP problem with manipulators is simplified by assum-
ing only pick-and-place actions, which can only reason about
object locations. Multi-arm rearrangement planning [20],
[21] have leveraged inherent structure in the search space
in this simplified setting. Rearrangement, though efficient in
some common problem domains, is not powerful enough to
address general problem specifications and richer actions.
Consider Fig. 1 where the white object has identical start
and goal poses but must be moved temporarily to satisfy the
constraints imposed by a CLEAN action. For rearrangement
planning, efficient solutions have been proposed for table-
top settings [20], [21], [19], [22], as well as works that

focus on industrial scenarios [23], [24]. These works rely on
assumptions that limit their applicability to general domains
and do not cover the breadth of the problem we consider.

Single robot TMP frameworks are inherently limited in
their capability. For instance, a single static robot cannot
deal with problems that involve objects beyond its reach, but
multiple robots might coordinate to address such problems.
Single-robot frameworks can be typically extended to multi-
robot scenarios by assuming the robots form a composite
robot. However, this exacerbates the curse of dimensionality.
In [25], the authors examine 2-arm problems, but do not
extend to more robots. They rely on solving relaxed variants
with heuristic search, whereas ours focuses on task-optimal
solutions using an SMT solver, scheduling, and incremental
solving. We also show applicability to up to five robots.

In [1] an approach to single-robot TMP was introduced,
and [26] reduced time spent attempting infeasible motion
plans. However, the task planning in these approaches does
not scale to multiple robots. We present a general framework
with a new task-planning approach and use a scheduling
layer to improve multi-robot scalability.

III. PROBLEM STATEMENT

We are interested in a multi-robot task-motion planning
(MR-TMP), with a set of n robots R = {r1, r2, ..., rn}.
Motion Planning: In multi-robot motion planning, we con-
sider n robots moving in a shared workspace. Each robot ri
is represented by a state in a di-dimensional configuration
space Cri ⊂ Rdi . The composite configuration space C =
Cr1 × Cr2 · · · × Crn ⊂ R

∑
i di is the Cartesian product

of the individual spaces. We denote the free composite
configuration space as Cfree ⊆ C. We say a valid motion
described by a trajectory π : [0, t] → Cfree is a time
parametrized curve in Cfree. We call it a solution to a motion
planning problem between a start q0 and a goal state q1 if
π(0) = q0, π(t) = q1. πi is the i’th robot’s motion.
Task Planning: Task planning (TP) is defined over a
DomainTP consisting of a finite set of states, a finite
set of actions that allow transition between states, a finite
set of constraints, an initial state and a finite set of goal
states (TP goals). Typically, problems are described in some
specification language such as PDDL. Many off-the-shelf
solvers can be used to find a solution (assuming one exists)
[9], [8], [27]. This solution is called a task plan, which is
a sequence of discrete actions: A = (a0, a1, ..., ah). Here h
denotes the horizon of the task plan for a single robot.
MR-TMP: In the current work, we are interested in the
MR-TMP problems that are synchronous, where the robots
start and end the execution of actions synchronously. Any
robot that finishes an action should wait until every robot
has completed the execution of its current action. We define
the MR-TMP task plan as a sequence of ` steps, i.e., each
robot’s horizon hi is expanded to match ` by including NO-
OP actions1. Each step is a tuple comprised of the set of n

1A robot assigned a NO-OP action at a step does not have to do anything
that step but could move to avoid other robots.
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Fig. 2: This demonstrates a problem where the TP cannot
differentiate between the robots for actions in the shared
workspace; thus the robot variables ri, rj , rk are partially
grounded. All the permutations for fully grounding the robots
are equivalent to the TP, and can be evaluated instead by the
scheduler. Note the actions can also be executed sequentially.

actions being performed by each arm at that step along with
the corresponding motions, i.e., the j’th step is an n-tuple

sj = 〈(ajr1 , π
j
r1), (ajr2 , π

j
r2), · · · , (ajrn , π

j
rn)〉

where each a is an action (possibly NO-OP), and the con-
current multi-robot motion for the j’th step is

πj = (πj
r1 , π

j
r2 , · · · , π

j
rn)

Definition 1: Given a TP domain DomainTP and a mo-
tion planning domain DomainMP, synchronous MR-TMP
is the problem of finding a feasible `-step task-motion plan:

T = (s1, s2, · · · , s`),

such that after executing T, TP goal is reached.
A feasible synchronous task and motion planning solution

T must satisfy the following conditions:
a) The projected set of sequences of actions for each robot
within T satisfies DomainTP, i.e.,

(a1ri , a
2
ri , · · · a

`
ri) SATISFIES DomainTP ∀ri

and successfully transitions the initial to the goal TP state.
The DomainTP satisfaction depends on all actions that
started or ended at or before each step.
b) Each successive pair of motions is continuous for each
robot: The end configuration of πj

ri is the start configu-
ration of πj+1

ri , ∀j < `. This means that each successive
pair of composite configurations describes a coordinated
motion for the jth step from (πj

rj (0), πj
rj (0), ..., πj

rj (0)) to
(πj+1

r1 (0), πj+1
r2 (0), ..., πj+1

rn (0)).
c) The composite motion at the jth step πj that corresponds
to the step sj needs to satisfy DomainMP, i.e., it cannot
have collisions with obstacles or other robots.

We focus on minimizing the number of steps in the task
plan, `, which is called makespan.

IV. METHOD
We present a framework for MR-TMP, which consists

of three layers: a task planner, a scheduler, and a motion
planner. Each layer operates at a different level of abstrac-
tion. The task planner reasons over the discrete task domain
modeled in PDDL, describing actions, preconditions, and
effects. The output is a symbolic task plan consisting of
partially grounded robots and actions (which we will call a
partially grounded task plan). Note that grounding a symbolic
expression means to assign values to the variables in it. In
order to execute the partially grounded task plan on the robot,
each robot and action has to be grounded and then each
action has to be refined to robotic motions through motion
planning step by step. Such motions might be infeasible due
to geometric collisions, despite the task step being valid
in the task domain. This information will be discovered
in the motion planning step, and passed back to the task
planner as motion constraints. The replanning inside the task
planner can be done in an incremental fashion, which avoids
replanning from scratch with each new constraint, so as to
reduce the task planning time. In this way, the strategy will
eventually discover the geometrically feasible groundings of
the actions involved in the task plan. Task planning can
be naively extended to multi-robot problems by treating the
robots as a composite robot. However, this naive approach
does not scale well. In our work we design an efficient task
planning module that allows simultaneous actions for the
multi-robot problems, using an SMT solver [5].

We also add a middle scheduler layer that is aware of the
geometric feasibility of motion plans. It evaluates different
robot-to-action assignments at each step. The goal of the
scheduler is twofold. Firstly, it can reduce the number of task
planner calls by evaluating equivalent groundings, which the
naive approach would only search by re-querying the task
planner. Secondly, it can bias search by ordering equivalent
plans based on geometric insight.

A. Task Planning: Simultaneous SMT Planning

The input to the TP is DomainTP, encoded using PDDL.
The task planner determines which actions should be taken
when based on robot reachability and availability. We modify
an SMT-variant of a typical SAT planner similar to [1] by
relaxing the mutual-exclusion axioms. In a SAT planning
formulation, mutual-exclusion axioms are used to ensure that
only one action is taken at each time step. We instead allow
one action per robot at each timestep. We need to ensure
the chosen simultaneous actions have no conflicts, which
we encode as extra cross-robot mutual-exclusion constraints
inspired by the work in [27]. For example, when we encode
the transition from the time step j to j+1, actions ajri and ajrk
can execute simultaneously only if the preconditions of ajri
are not violated by the effects of ajrk , and vice versa. Extra
book-keeping is required to track which motion failures are
caused by which robots and to block actions by pushing the
corresponding constraints onto the SMT solver’s stack.

Note that TP cannot distinguish among robots with the
same capabilities, and the abstraction only includes pred-
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icates defining which regions each robot can reach. Thus
the output of the task planner is agnostic to the geometry
within a region. Therefore, it may not always be possible to
fully ground the robot variable of a task action. If the actual
poses involved in some actions of a task step can be reached
by multiple robots, the task planner does not distinguish
between them; instead, a partially grounded task plan is
returned, where the robot variable symbolically represents
any robot that can reach this location.

B. Scheduler

The scheduler, which is aware of the geometry, is respon-
sible for fully grounding the robot variables in the partially
grounded task plan (see example scenario in Fig. 2).

If n robots have the same capabilities, i.e., the problem
resides in the commonly reachable workspace, each step can
have at most n! possible valid robot assignments to the n
actions. The scheduler evaluates these permutations.

The scheduler leverages geometric information (e.g.,
robot, object, and grasp poses) to a) accelerate constraint dis-
covery, and b) heuristically prioritize promising permutations
that can help reduce motion planning failures. As in [26],
the heuristic does not affect probabilistic completeness. If
the motion planning keeps failing, the scheduler can exhaust
all permutations for a step. After complete failure at a step,
we combine all the motion constraints and add them back to
the task planner. This means we only need to call the task
planner once to evaluate n! fully-grounded plans in the worst
case. This typically reduces the number of task planner calls.

C. Motion Planner

A probabilistically complete sampling-based motion plan-
ner is used as the underlying centralized motion planning
primitive. Specifically we use RRT-Connect [28]. Each action
is also associated with a goal sampler that informs the motion
planner of configurations to reach. In typical manipulation
domains this involves solving inverse kinematics problems
for grasping, placement, or handoff poses.

D. Algorithm

The proposed framework is shown in Alg. 1. The task
planner performs incremental task planning, which allows
simultaneous actions (Alg. 1 line 5). A candidate task plan
is sent to the scheduler, which assigns each action to a
real robot by finding a permutation of robots for each
appropriate step (Alg. 1 line 11). The scheduler predicts the
best permutation based on heuristics. In our implementation,
the permutations are sorted by a heuristic measure of the
maximum Euclidean distance between the base pose of the
robots and its corresponding action end-effector pose. Note
that other types of heuristics apply (e.g., estimates of motion
duration). The actions in the permuted step are refined by
the motion planner (Alg. 1 line 13). Coordinated motion
planning is performed if a step involves simultaneous actions.
If the motion planning fails, the information is reported to the
scheduler, which tries the next best permutation of that step
(Alg. 1 line 11), until all permutations are exhausted. Then

we invoke a fallback behavior that sequences the simultane-
ous actions (Alg. 1 line 19). This sequential execution helps
to find the first feasible task-motion plan faster. Whenever
motion planning fails, we encode the failure as a new motion
constraint (Alg. 1 line 15). If all permutations are exhausted
and the fallback also fails, we end the motion refinement
and feed all of the motion constraints to the task planner at
once in the next iteration of the high level loop TP (Alg. 1
line 5). If all the steps have a valid motion plan, the task
and motion plan T is reconstructed fully. The search keeps
running till the task planner runs out of options (Alg 1 line
6), which triggers a reset of constraints and increases the
motion planning time budget. If a plan T was completely
refined without sequential fallbacks (Alg. 1 line 23), this is
the best makespan coordinated task plan, and the search ends.

This algorithm demonstrates anytime behavior - it can
quickly obtain an initial feasible task and motion plan that
might include sequential executions, but keeps searching till
an optimal makespan coordinated solution is discovered.

Algorithm 1: MR-TMP
Input: DomainTP, DomainMP,TP-Goal
Output: Output task and motion plan, T

1 INITIALIZE(DomainTP)
2 T← ∅; φ← ∅; // Motion Constraints (MC)

3 τ ← τinit; // Set initial MP time budget

4 while T = ∅ do
// Task planning

5 A← Z3SIM(DomainTP, φ,TP-Goal)
6 if A = ∅ then
7 φ← ∅; τ ← τ + ∆τ ; continue;

8 foreach s ∈ A do
9 π ← ∅ // Initialize empty motion plan

10 while π = ∅ do
// The best permutation of the step

11 s← NEXTBESTPERMUTATION(s)
12 if s 6= ∅ then

// Motion planning

13 π ← MP(s,DomainMP, τ)
14 if π = ∅ then
15 φ← ADDNEWMC(π, s)

16 else
17 break // No permutations left

18 if π = ∅ then
// Sequential fallback

19 π ← SEQ(s,DomainMP, τ);

20 if π 6= ∅ then
21 T← APPEND(T, {s, π})
22 else T← ∅; break ;

23 if T 6= ∅ and NOSEQFALLBACK then break;
// Otherwise continue finding optimal plan

24 return T
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Fig. 3: Left 4: Example benchmarks. Solid-line cubes are initial locations, and dashed-line ones show the task goals. Right:
The simulation setup in DART [29], showing that the robots must coordinate in shared workspace.

V. RESULTS

We focus on highlighting the benefits of using our ap-
proach in experimental evaluations by successfully and op-
timally (over makespan) solving larger problems faster.

A. Methods

We present a comparison of our proposed MR-TMP
framework with three baseline TMP approaches.
Single-robot TP: A single-robot TMP framework [1] using
the same domain as our method.
Fully-Composite TP: A MR-TMP framework built upon
a state-of-the-art single-robot TMP framework [1] assuming
the robots form a composite robot. For n robots, the PDDL
encoding is a cross product of n copies of the a single-robot
encoding. This brute-force enumeration of combinations of
multi-robot actions drastically increases the size of the input
to the taks planner, which severely limits the applicability
of optimal TP solvers like Z3. When Z3 does not scale for
fully composite optimal planning, a typical greedy solver is
used, which usually only finds suboptimal plans.
(Baseline) Optimal Simultaneous TP Without Scheduler
(WS): This baseline follows Algo. 1 without the scheduler.
This reflects the TP changes, but it has to reinvoke task
planner once per motion failure.
(Proposed) Optimal Simultaneous TP With Scheduler
finding Initial (PI)/Final (PF) solution: This follows Algo 1
and uses the simultaneous variant of Z3 and a scheduler.

B. Benchmark Problems

Setup: We evaluate the scalability and the performance of
the methods in a tabletop block-world domain with cuboidal
objects admitting top-down grasps. The considered actions
are PICK, PLACE, STACK, UNSTACK, HANDOFF.

For all the evaluated methods, we discretize the workspace
into regions of unique reachability. The only geometric
information that we encode in PDDL for the task planner
is which region is reachable to which robots. This is more
efficient than discretizing the space as in [1]2. Whenever such
a region has to be used, a valid location is sampled online.
In our problems, we have two robots, and three reachability
regions. We test our methods for randomly sampled problems
involving 3 − 6 objects. All benchmarks are run 50 times,
and we ensure 25 of these involve starts and goals in the
commonly reachable region. All experiments were performed
on a 4.0GHz Intel i7 processor with a memory limit of
4GB, and a timeout of 600s. It should be noted that the
same framework is powerful enough to tackle the variety of
benchmark problems posed here.

2Note that such discretization do not require prior knowledge of the
workspace, and can be automated.

Benchmarks: We created four tabletop scenarios to test the
baselines for two robots. Each of the robots can only reach
part of the workspace, and collaboration might be neces-
sitated by problems spanning different reachability regions
The benchmarks are introduced in Fig. 3.
Flat to flat (FF): Note that the starts and goals can overlap,
so this is not assured to be a monotone problem3.
Flat to tower (FT): Again, the starts and goals can overlap,
and the objective is to build two towers.
Move towers (MT): The order of the blocks in two towers
is randomly sampled, making the problem non-monotone.
Obstructed Pick (OP): This is specially designed in such
a way that the target object is obstructed by (two or three)
taller adjacent objects. It violates assumptions typically made
in rearrangement and motivates the importance of restrictive
geometric constraints arising from real scenes.

C. Analysis of Results

Solution Quality: For the discussion below on TP and
MR-TMP results, the solution quality is represented by the
number of steps (or makespan) in the task plan.
TP Results: We first compare our proposed simultaneous
variant of Z3 to the fully-composite encoding. Composite
planning using Z3 planner runs out of memory for more
than three objects with two robots. We instead use a typical
feasible Fast Downward (FD) [9] solver for the composite
encoding on these problems. For FD’s heuristic parameter we
used lazy greedy because it performed better than alternatives
(LAMA and Autotune) on our example problems. Table I
shows the task planning comparison on FF, FT, MT with 4
or 6 objects. Even though we use a composite FD, in most
cases it is slower to find the initial task plan compared to our
method. In addition, our method returns an optimal task plan,
while FD is mostly sub-optimal, especially for MT, where
its solutions are more than twice the optimal makespan.

TABLE I: Task planning benchmark
(Ours) Z3-Simultaneous FD composite

Problem Makespan Time(s) Makespan Time(s)
FF4 5 1.10 7 8.18
FF6 7 24.06 11.5 103.44
FT4 4 0.47 7.5 4.20
FT6 6 3.86 7 23.55
MT4 7 1.17 17 3.13
MT6 10 70.11 27 21.5

MR-TMP Results: Fig. 4 shows the timing results among
the MR-TMP comparison methods. There are two entries
for our proposed method: the initial solution, which might
include some sequential executions, and also our final output.
Note that the proposed method can get both the first feasible

3A monotone problem is one where the object requires only one grasp,
whereas non-monotonicity can require multiple interactions per object.
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Fig. 4: Planning time and success rate comparison on the benchmarks. Each subplot shows the benchmarking result for
one scenario (e.g. FF3 is the FF problem with 3 objects). Each bar represents the total planning time of one method (note
the different scale of each subplot). The scheduling time is negligible compared to task planning and motion planning. The
number of task planner calls is shown inside each bar. The success rate is the line chart with y-axis on the right side.

plan and the final optimal plan with higher success rate
than the method without a scheduler. The initial solution is
faster on average, and only reports slightly worse makespan
from some instances of sequentially scheduled steps (Fig.
4). We can keep running our method to obtain optimal
makespan solutions. The solution quality for multiple robots
is significantly better than the single robot solutions as
many actions can be performed in parallel. It should be
noted that a single robot cannot solve any problems lying
outside its reachability. The optimal makespan solution is
achieved by both our framework’s final output, as well as
the variant without a scheduler. Not using scheduling causes
an increased computation time in most of the benchmarks. In
FT6, WS failed in one problem, while PF found the optimal
plan in 9.5 mins, leading to a slightly worse average. Fig. 4
also indicates that task planning can be much more expensive
than motion planning in typical tabletop environments [26],
[30], which motivates our method design.

Note on number of task planner calls: The scheduler
explores equivalent robot assignments to multi-robot actions.
In randomized problems (FF, FT, MT) this strategy saves task
planning calls to find the optimal feasible task plan. In FT5,
PF is marginally worse than WS due to the stochasticity
of planning. In OP the goal can be achieved with a simple
pick and place, but geometric constraints from the taller
blocks require all equivalent plans in smaller horizons to
be explored. Eventually the task planner gets a feasible task
plan among horizons 4 and 5 respectively in OP3 and OP4.
The order in which these task plans are eliminated in PI,
PF and WS cannot be controlled. Sometimes WS attempts
single action steps involving the target object early on in
the search. These can immediately invalidate a large set of
equivalent actions, as opposed to synchronized steps which
include a constraining action. PF has slower runtimes in OP
benchmarks, but nonetheless finds the optimal task plans.

The average makespan of each methods on the benchmarks
is shown in Fig. 5, which also shows results from single robot
solutions (for the problems where they succeeded).
Scalability Test: Fig. 6 shows a scalability test on a FF
problem instance. We tested for 2 to 5 robots, with tasks
requiring each robot to move two objects. Our method scales

Fig. 5: The average makespan of the output schedule. The
results are grouped by problem class. The problem type and
number of objects are indicated below each group of bars.

Fig. 6: Top: A simulated scene in DART [29]. Bottom: The
total planning time. We have n robots and 2n objects in each
scene, creating one instance of an FF problem.

up to 5 robots. For 6-robots we timed out, taking 35mins.
Real-World Demonstration - CLEAN: A motivating
demonstration is designed using a CLEAN action, and is
shown in Fig 1 (also included in our video). The problem
is an interesting display of the power of our framework.
Note that the white object has the same location in both
the start and goal states, but is required to be moved due to
the constraints of the CLEAN action. Our ability to express
such arbitrary constraints is a key benefit of our generality.
The solution was executed on two UR5 robots. The task plan
consisted of 7 steps, and took 1.8s to compute.
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VI. CONCLUSION

In this work we have studied the general MR-TMP prob-
lem and proposed an efficient framework that can address
problems involving multiple manipulators. We successfully
identified ways to overcome bottlenecks of performance and
scalability that arise from general MR-TMP. We introduced
a simultaneous task planner that scales more efficiently
than composite planning. We presented a novel intermediate
scheduling layer that offers an anytime behavior with fast
initial solutions, and eventual optimal task plans. We focus
on robot-action assignments for the scheduler, but it should
bring efficiency to reasoning over any equivalence class
of task plans, for example object-action assignments. We
demonstrated the benefits of our approach in benchmarks
on two arms, a scalability test for up to five arms, and in a
real-world example.

There are rich avenues for future work to incorporate
reasoning about complex actions and grasping, and explor-
ing quality guarantees of the complete TMP solution.The
search in MR-TMP can also benefit from experience and use
learning to improve heuristics. The current work provides an
important step towards applying multi-robot TMP solvers to
real-world applications.
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[7] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling, “Pddlstream:
Integrating symbolic planners and blackbox samplers via optimistic
adaptive planning,” in Proceedings of the Thirtieth International
Conference on Automated Planning and Scheduling, Nancy, France,
October 26-30, 2020, J. C. Beck, O. Buffet, J. Hoffmann, E. Karpas,
and S. Sohrabi, Eds. AAAI Press, 2020, pp. 440–448. [Online].
Available: https://aaai.org/ojs/index.php/ICAPS/article/view/6739

[8] J. Hoffmann and B. Nebel, “The FF planning system: Fast plan
generation through heuristic search,” Journal of Artificial Intelligence
Research, pp. 253–302, 2001.

[9] M. Helmert, “The fast downward planning system.” Journal Artificial
Intelligence Resesearch, vol. 26, pp. 191–246, 2006.

[10] M. Toussaint, “Logic-geometric programming: An optimization-based
approach to combined task and motion planning,” in Twenty-Fourth
International Joint Conference on Artificial Intelligence, 2015.

[11] D. Driess, J.-S. Ha, and M. Toussaint, “Deep visual reasoning:
Learning to predict action sequences for task and motion planning
from an initial scene image,” 07 2020.

[12] M. Stilman and J. J. Kuffner, “Navigation among movable obstacles:
Real-time reasoning in complex environments,” Int. Journal of Hu-
manoid Robotics (IJHR), vol. 2, no. 04, pp. 479–503, 2005.

[13] F. Gravot, S. Cambon, and R. Alami, “aSyMov: a planner that deals
with intricate symbolic and geometric problems,” in Int. Symp. on
Robotics Research (ISRR). Springer, 2005, pp. 100–110.

[14] J. Motes, R. Sandström, H. Lee, S. Thomas, and N. M. Amato, “Multi-
robot task and motion planning with subtask dependencies,” IEEE
Robotics and Automation Letters, vol. 5, no. 2, pp. 3338–3345, 2020.

[15] K. Solovey, O. Salzman, and D. Halperin, “Finding a needle in an ex-
ponential haystack: Discrete rrt for exploration of implicit roadmaps in
multi-robot motion planning,” in Algorithmic Foundations of Robotics
XI. Springer, 2015, pp. 591–607.

[16] R. Shome, K. Solovey, A. Dobson, D. Halperin, and K. E. Bekris,
“drrt*: Scalable and informed asymptotically-optimal multi-robot
motion planning,” CoRR, vol. abs/1903.00994, 2019. [Online].
Available: http://arxiv.org/abs/1903.00994
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