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Abstract—Sampling-based motion planning algorithms from
the field of robotics have been very successful in exploring the
conformational space of proteins. However, studying the flexibility
of large proteins with hundreds or thousands of Degrees of
Freedom (DoFs) remains a big challenge. Large proteins are also
highly-constrained systems, which makes them more challenging
for standard robotic approaches.

So-called “expansive” motion planning algorithms were specif-
ically developed to address highly-dimensional and highly-
constrained problems. Many such planners employ a low-
dimensional projection to estimate exploration coverage and
direct their search based on this information. We believe that
such a projection plays an essential role in the success of these
planners.

This paper shows how the low-dimensional projection used
by expansive planners can be tailored with respect to a given
molecular system to enhance the process of conformational
sampling. We introduce a methodology to generate an expert
projection using any available information about a given protein.
We evaluate this methodology on several conformational search
problems involving proteins with hundreds of DoFs. Our experi-
ments demonstrate that incorporating expert knowledge into the
projection can significantly benefit the exploration process.

I. INTRODUCTION

Proteins are involved in almost every process within living
organisms. A protein’s function is known to be defined by
its structural conformation and the way it changes. Often
a protein’s activity is modulated/characterized by its ability
to switch among several stable conformations. Understanding
how a protein shifts between these states is essential for
treating or preventing diseases related to the protein’s dys-
function [1]. However, the shift happens so rapidly that it is
extremely hard to monitor it experimentally. For this reason,
a common approach to gain knowledge of how proteins move
is to model this process computationally. There exist several
classes of algorithms for simulating protein motion. They vary
from highly physically precise and computationally expensive
simulation techniques, such as Molecular Dynamics (MD) [2],
to methods producing fast but rather approximate analysis of
protein motions, such as Normal Mode Analysis (NMA) [3]
and Elastic Network Models (ENM) [4].

Our work on modeling protein flexibility involves sampling-
based motion planning algorithms that have been adapted from
the field of robotics. These methods fill the gap between
the two classes of approaches mentioned above: they repre-
sent a trade-off between physical accuracy and computational

cost. As a result, these methods have been very efficient at
producing representative large-scale protein motions [5], [6].
Sampling-based algorithms explore the conformational space
of a protein by randomly sampling it (usually using a special
heuristic) and constructing a graph where each node represents
a feasible low-energy protein conformation (or state), and each
edge represents a possible low-energy local transition between
two states. The computed graph describes the topology of a
protein’s energy landscape and the connectivity of its low-
energy areas. This graph can be used to find possible large-
scale transitions between two given protein conformations.

All current computational methods for modeling protein
flexibility, including sampling-based techniques, suffer from
the curse of dimensionality: their complexity grows expo-
nentially with the number of dimensions. Moreover, large
proteins are also highly-constrained systems, which increases
simulations complexity even further. Identifying representative
motions for even middle-sized proteins (with hundreds of
residues) remains an active field of research. In contrast to
other methods, sampling-based techniques offer various ways
to mitigate the above-mentioned problems.

The work presented in this paper involves a specific kind
of motion planners that use low-dimensional projections to
overcome the curse of dimensionality [7], [8]. These planners
constitute a large part of the group of so-called “expansive”
planners, that grow their conformational graph by iteratively
applying an expansion procedure. The planners on which
we focus use linear projections to assess how they cover
the conformational space of a protein with the samples they
produce. Based on this information, these planners direct
their search towards unexplored regions of the conformational
space.

Even though large proteins have thousands of Degrees of
Freedom (DoFs), the extensive analysis of protein conforma-
tions generated by various methods (such as MD [9], X-Ray
Crystallography [10], or Normal Mode Analysis [11]) has
shown that the majority of their residues move in a correlated
fashion. As a result, protein motions can usually be charac-
terized by just a few collective DoFs [12], [13]. Therefore,
projections that are aligned with the low-dimensional manifold
of protein motion can represent a good approximation of the
high-dimensional conformational space of a protein.

The contribution of this paper is an assessment of the role
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of a projection on the process of conformational exploration.
We introduce a new methodology to construct effective low-
dimensional projections using simple biological knowledge
available for a given protein. We demonstrate that such “ex-
pert” projections can improve the process of conformational
search for expansive planners. We have applied such projec-
tions to two different kinds of conformational search problems:
(1) finding a feasible low-energy transition between two given
protein states, and (2) exploring the conformational space
starting from a given protein state. The expert projections show
improvements in algorithm runtime, in the case of the first
problem, and in space coverage, in the case of the second
problem.

The rest of the paper is organized as follows: the next
section presents some related work as well as the context of
our work. The framework we use for protein modeling is de-
scribed in Section 3; the section includes further explanations
on the role of projections in protein conformational sampling.
In Section 4, we report the results of our experiments; they
involve three middle-sized protein systems (having at least one
hundred residues): Cyanovirin-N, Calmodulin, and Ribose-
binding protein. Finally, Section 5 concludes the paper and
presents some of our future work.

II. RELATED WORK

A. Sampling-based Path Planning Methods

Sampling-based methods have been very effective for the
fast computation of representative motions of molecular sys-
tems [5], [6]. A broad range of approaches exploit sampling-
based techniques to address various biological problems, such
as exploring energy landscapes [14], modeling protein folding
pathways [15], analyzing protein loops [16], or modeling
large-scale transitions in a protein structure [17].

The sampling-based methods explore the conformation
space (i.e., the space of all possible combinations of values that
the system’s DoFs can take) of a system and build a graph con-
necting the feasible conformations. At each step, a sampling-
based algorithm samples a conformation. Then it performs a
validity check for the chosen sample. In protein modeling, this
means eliminating high-energy protein conformations. If the
sampled state satisfies all the constraints of the problem, it is
added to the graph as a new node, otherwise it is discarded.
Finally, the valid states are connected into a graph structure by
adding edges between the nearest configurations. Edges also
often undergo a validity test: only the edges that satisfy the
system’s constraints are added to the graph. The constructed
graph represents the topology of conformation space; the
nodes represent the low-energy clash-free conformations of
the protein, and the edges represent feasible local transitions
between the corresponding conformations.

B. Using Projections to Guide Conformational Sampling

Despite the capability of sampling-based methods to gener-
ate large-scale protein motions much faster than physics-based
simulations, they still suffer from the curse of dimensionality.
Middle-sized and large proteins require hundreds or thousands

of variables to encode a conformation. Moreover, because
large proteins often represent highly-constrained systems, they
can only move in a very limited fashion. These issues represent
a significant challenge for sampling-based approaches as their
complexity grows exponentially with the dimensionality of the
system as well as with the decrease in volume of the space of
low-energy conformations.

In this work we use a group of expansive planners that were
developed to specifically tackle high-dimensional and highly-
constrained problems [7], [8]. Expansive planners iteratively
grow a tree of feasible protein conformations by choosing
a state which is already in the tree (and therefore has low
energy), and slightly perturbing some DoFs of that state to
generate a new, child conformation. These planners employ a
low-dimensional projection to store statistics of the exploration
progress. To identify a promising parent state for expansion,
these planners use the coverage estimate provided by the
projection.

Different approaches have been exploited in the context
of sampling-based methods in general and “expansive” algo-
rithms in particular to overcome the curse of dimensionality.
One of the common techniques is to identify flexible and
rigid parts of a protein on-the-fly and bias exploration towards
the flexible regions. The framework employed in the current
work has the functionality of identifying the flexible protein
regions automatically based on a protein’s secondary structure.
An alternative approach for rigidity analysis based on the
pebble game computations [18] is presented in the works of
Amato’s group (see, for example, [19]), and Streinu’s group
[20]. The rigidity analysis technique has been mainly used to
bias the local search (choosing the local protein motion) [19],
[21]. In the current work we focus on enhancing the global
search (choosing the conformation from the tree for further
expansion) by estimating the effect of a low-dimensional
projection on the overall exploration process.

Many recent approaches use the expansive planners to
explore protein conformational landscapes [22]–[24]. They
suggest a variety of algorithms for computing low-dimensional
projections: including simplistic 1D projections based on
lRMSD towards a goal structure (or some milestone) [24];
slightly more advanced 3D projections computed from average
interatomic distances to the given points of the structure
[25], [22]; and the quite intricate 1D projections generated
from the contact matrix with usage of hashing algorithms
[23]. Often, mentioned projections are also combined with
1D projection layer based on the energy of the structure
[23]. All of these methods have some biological intuition to
support them. However, only one of them, [23], provides some
analysis of how the suggested structural profiles enhance the
conformational search.

In many cases, low-dimensional projections for sampling-
based planners are chosen randomly. Prior work [26] studies
the influence of such projections in the context of robotic
systems with at most a few dozen of DoFs. That work
demonstrates that some projections enhance sampling-based
planners more than others, even for systems with moderate
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dimensionality. Because the conformational space grows ex-
ponentially with the number of dimensions, the importance of
proper guidance increases significantly for high-dimensional
systems. This gives us a reason to believe that for high-
dimensional systems the difference between “successful” and
“unsuccessful” projections is even more drastic. In [26] the
authors find that the projection showing the best performance
usually belongs to the group of randomly generated projec-
tions. However, the described conclusions cannot be applied
to protein modeling without additional investigation. Proteins
represent significantly larger systems than the ones considered
in the above-mentioned paper. When the dimensionality of
a system increases, chances of constructing a “good” low-
dimensional projection randomly diminish greatly. Further-
more, the user-defined projections in the analyzed paper are
built under the assumption that a projection is independent
from the environment of the system. In the case of proteins,
the environment is encoded by their energy landscape: it
defines which parts of the protein are mostly rigid and which
parts could change their shape and participate in large-scale
conformational transitions. This information provides essential
insight for enhancing conformational search. If an expert
projection is tailored for the efficient exploration of a particular
protein’s energy landscape, the same projection will not benefit
the investigation of another protein.

In our work, we evaluate the performance of expert-defined
projections that incorporate any available information about a
protein’s flexibility. We demonstrate that our expert projections
accelerate and enhance the exploration of the conformational
space compared to the traditionally-used, randomly-generated
projections. However, the question of how to generate a
“good” projection automatically still remains open and is a
subject for future work (see Section V).

III. METHODS

A. Structured Intuitive Move Selector

Our work is based on a framework for exploring the con-
formational space of proteins using a sampling-based motion
planning approach called Structured Intuitive Move Selector
(SIMS) [27]. The main purpose of SIMS is to explore the
space of low-energy conformations of a protein. For this, SIMS
employs an advanced expansive sampling-based planner, and
defines its main propagation procedures in terms of known
protein moves (biophysically plausible perturbations of a pro-
tein’s structure).

Protein model: SIMS encodes a protein’s conformation by
the vector of its backbone dihedral angles. The angles between
the bonds and their lengths are considered to be constant
because they change insignificantly in comparison to the
variation of the torsional angles. Side chains are optimized on-
the-fly by the state-of-the-art Rosetta library [28], [29]. Such
model has been shown to be a good enough approximation
of a protein [30] and it drastically reduces the number of
considered DoFs. Taking into account the planarity of the
peptide bond we restrict ω to be 180◦. Thus, for each residue

of the studied protein we keep only its (φ, ψ) values. This
model induces 2N DoFs for a protein with N residues.

Fragments: Not all residues are equally important for a
large-scale transition of a protein. Often only very few flexible
parts of a protein are actively involved in its motion. SIMS is
designed to allow for the prioritization of the most “active”
parts of a protein: the algorithm gives more computational time
to the exploration of these flexible regions. For that purpose,
SIMS represents a protein as a set of flexible fragments, which
can be defined by an expert or automatically (from a protein’s
secondary structure). Each fragment consists of one or several
subsets of a protein’s residues. Depending on which parts
of the molecule are known to be the most “active” in the
studied motion, the fragments are assigned probabilities to be
chosen during the sampling procedure (for details on assigning
probabilities of fragment selection see [27]).

SIMS algorithm: SIMS samples the state space and grows a
tree of low-energy conformations, where each edge represents
a possible transition from the parent state to the child state. To
increase the chances of sampling a low-energy conformation,
SIMS grows its tree by randomly choosing a conformation
which already belongs to the tree and trying to expand from
it by slightly perturbing some of its DoFs.

The search algorithm takes start and goal states, the max-
imum allowed energy, the minimal distance (resolution step)
as an input. There are several main steps of this algorithm
(pseudo-code is presented in Algorithm 1): 1. use a planner
to identify a possible parent state to expand from (line 4); 2.
slightly perturb the chosen state in a specific way (propagation
step; line 5); 3. compute the energy of the newly produced
conformation (line 6); 4. if the energy is below a user-defined
threshold, the conformation is accepted and the tree is updated
accordingly, otherwise the state is discarded (lines 6-9).

Algorithm 1 Search (startState, goalState, minDist, Emax)
1: addToTree(startState)
2: lastState ← startState
3: while distance(lastState, goalState) > minDist do
4: parentState← SampleParent()
5: currentState← Propagate(parentState)
6: if Energy(currentState) < Emax then
7: addToTree(currentState)
8: lastState ← currentState
9: end if

10: end while
11: return Tree

At each propagation step (pseudo-code is presented in
Algorithm 2), SIMS samples some fragment with a user-
defined probability and slightly perturbs the residues of that
fragment. To perturb conformations in a biologically feasible
way, the framework involves the most common protein moves,
such as loop motion, rigid body motion (fix one end of
a loop and move the other end), energy minimization, and
random perturbation. All mentioned moves (except energy
minimization) are applied at the fragment level (i.e., the
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move affects only the residues of the chosen fragment). To
implement these moves, as well as for fast and accurate energy
computations, SIMS uses the Rosetta library.

Algorithm 2 Propagate (state)
1: fragment← SampleFragment()
2: move←SampleMove()
3: newState← APPLY(state, fragment,move)
4: return newState

B. Projections as Sampling Guides

In the first step, Algorithm 1 randomly samples a promising
parent state for the expansion of the tree towards unexplored
areas of the conformational space. This step is essential for
the overall success of the algorithm. To enhance the overall
exploration of a protein’s conformational space we need some
lever to softly bias the search procedure out of the well-
sampled areas. A low-dimensional projection becomes such
a lever for expansive planners. Employing a low-dimensional
projection to keep track of the exploration progress allows the
planner to successfully model high-dimensional and highly-
constrained systems.

The procedure of projecting a conformation is performed
by multiplying its initial vector by a projection matrix. The
conformations of a protein with N residues have 2N variables:
(φi, ψi) for each residue i. Before applying the projection, we
first transform the conformation vector into a vector of sines
and cosines: (φi, ψi) → (sin(φi), cos(φi), sin(ψi), cos(ψi)).
This step transfers angular data to Euclidean space and allows
reasoning about projected conformation points in terms of
Euclidean distances. Finally, the produced 4N -dimensional
vector is projected into a k-dimensional subspace by multi-
plying it by the projection matrix of size k × 4N .

The projection space is discretized into a grid of equal-sized
cells. This way, a projected point falls into some cell of the
k -dimensional grid. The planner keeps track of the number
of conformations projected on each cell of this grid. The
algorithm prioritizes cells based on the density of coverage
in different parts of the projection grid. At each iteration, the
planner chooses the highest-priority cell and randomly picks
a state from this cell.

C. Construction of “good” and “bad” projections

The intuition behind the technique of approximating a
high-dimensional space with a low-dimensional projection
is inspired by the Johnson-Lindenstrauss theorem [31]. This
theorem states that distances between points in the initial n-
dimensional space can be estimated with (1 + ε) distortion
by the distances between the corresponding points embedded
into a log(n/ε2)-dimensional subspace. However, in the case
of protein modeling, the dimensionality of the employed
projection is usually much less than log(n). In general, the
computational cost of maintaining a projection as well as the
required memory resources grow exponentially with the num-
ber of dimensions. Therefore, in most cases the projection has

no more than 10 dimensions; most often just 2 or 3. In many
cases, such dimensionality reduction represents a reasonable
approximation of the initial molecular system. In the particular
case of protein modeling (as opposed to modeling a robotic
articulated chain), there is an additional factor justifying the
usage of a low-dimensional projection: even though proteins
represent extremely high-dimensional systems, only very few
of their “effective” DoFs are involved in large-scale motions
[12], [13]. Therefore, the projection constructed from the few
vectors corresponding to these flexible parts of the protein
could represent a good approximation of the initial high-
dimensional conformational space.

In this paper we propose a methodology to choose the rows
of a projection matrix based on simple biological intuitions
about the studied protein. In the next section we demonstrate
that a projection designed this way represents a good approx-
imation of the initial high-dimensional system.

To construct an expert projection, we first identify the main
flexible regions of the considered protein. Second, we try to
predict how correlated these regions are. If some parts of
a protein move mostly in a correlated way, we will encode
them together into one of the projection’s dimensions (instead
of putting them into different dimensions of the projection
matrix). Getting such biological insights about the studied
protein involves the use of information available in the liter-
ature, analysis of available datasets of conformations, as well
as visual inspection of the protein’s secondary structure. After
identifying which regions should be present in the projection
matrix and how they should be coupled, we are ready to build
the matrix. In each row we assign non-zero values only to
the variables encoding regions that should be coupled. The
rows are then normalized. This construction process ensures
the orthonormality of the produced matrix (which is important
to preserve relative distances in the projection space).

By construction, an expert projection differs from a random
projection in the way that it employs only some predefined
groups of residues; a random projection uses all residues but
with different weights. Thus, to ensure the comprehensive
analysis of the generated expert projections, we also build
“misguided” projections. A misguided projection has the same
nature as an expert one: in each row it encodes only some
groups of residues. In contrast to an expert projection, the
residues of a misguided projection are chosen in some pro-
tein’s parts that are anticipated to be mostly rigid. With such
construction, the subspace of a misguided projection should
be mostly orthogonal to the subspace of the protein motion.
Because of that, a misguided projection cannot approximate
the conformation space well and is not expected to enhance
the exploration process.

IV. EXPERIMENTS

The main goal of our experiments is to investigate whether
we can improve the process of conformational sampling by
defining a “good” low-dimensional projection. We design
expert projections that take into account biological insights
about a given protein. More specifically, we use the main
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(a) Cyanovirin-N (CVN) (b) Calmodulin (CaM) (c) Ribose-Binding Protein (RBP)

Fig. 1. The three proteins involved in our experiments. Blue and orange areas indicate the residues involved in the expert and misguided projections,
respectively.

Fig. 2. Success rates associated to the three projection types: percentage of
runs (among 40) that successfully found a feasible transition between start and
goal states using a particular type of projection (expert, random or misguided)
for CVN, CaM, and RBP within a 24 hour time limit.

“active” residues of the protein. We compare the average
performance of the planner and the quality of its exploration
when it uses an expert projection, as opposed to a random
projection or a misguided projection.

For our experiments, we chose three well-studied protein
systems with two known stable states: Cyanovirin-N, Calmod-
ulin, and Ribose-binding protein. For each protein, we carried
out a series of conformational searches to find possible low-
energy transitions between these stable states (see Section
IV-B). This experiment allowed us to evaluate the influence of
the various projections on the success rate of the planner and
on its average runtime. To assess their influence on the search-
space coverage achieved by the planner, we also performed
a series of conformational searches involving a single stable
state (see Section IV-C). All experiments were performed
using the SIMS framework [27] which internally uses the
KPIECE planner [8].

A. Studied Proteins

Cyanovirin-N: Cyanovirin-N (CVN) [32] is a bacterial
protein with 101 residues, which corresponds to 202 DoFs in

our framework. It demonstrates an antiviral activity towards
several viruses including the human immunodeficiency virus
(HIV). CVN is known to exist in two stable states, which
can be found together in solution. To switch between these
states, CVN goes through a domain swapping process, which
involves a large-scale motion (the RMSD distance between
the start state, PDB 2EZM, and the goal state, PDB 1L5E, is
17Å) via the correlated activity of three separate loop regions:
residues 24-28, residues 50-55, and residues 75-80.

Based on this knowledge, we generated a 3-dimensional
expert projection matrix. Each row of this matrix encodes one
of the mentioned loop regions by setting only the elements
corresponding to this loop’s residues to non-zero values (rep-
resented by the blue regions in Fig. 1a). The misguided projec-
tion also has 3 dimensions: the first two dimensions encode
residues 40-45 and residues 83-88, respectively (represented
by the orange regions in Fig. 1a), and the last dimension
encompasses all the other residues. Residues 40-45 and 83-
88 correspond to the middle parts of beta-strands, which are
likely to be inactive during the transition because of hydrogen
bonds.

Calmodulin: Calcium-loaded Calmodulin (CaM) [33] is
a middle-sized protein consisting of 144 residues (encoded
by 288 DoFs in our framework). CaM is a calcium-binding
protein involved in interactions between calcium ions and
various target proteins. CaM exists in an open state (PDB
1CLL), and a closed state (PDB 1PRW) that are far apart
from each other: the distance is about 16Å. The transition is
known to happen mainly through unfolding of the middle part
of the central helix.

Based on this information, we constructed a 2-dimensional
expert projection matrix. The first dimension contains the
active residues of the central hinge (residues 67-80) [33]. The
second dimension encodes regions of remaining active loops
and some alpha helices involved in the transition (residues 5-
20, 35-41, 52-57, 87-93, 107-116, 126-129). The misguided
projection is generated from the residues of the alpha helices
that are not involved in the main motion: both, the first and the
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Fig. 3. Probability of finding a solution path as a function of time for each of the three projection types, for CVN, CaM, and RBP. Dark blue color is
associated with an expert projection; red color - with a random projection; and yellow color - with a misguided projection.

second, rows contain residues 30-35, 47-52 (but with different
signs in half of the values to ensure orthonormality of the
matrix).

Ribose-binding protein: Our last system, Ribose-binding
protein (RBP) [34], [35], is larger than CVN and CaM: it
has 271 residues, which induces 542 DoFs in our model
representation. RBP consists of two domains connected by
three loop regions which form a hinge. The open conformation
(PDB 2DRI) and the closed conformation (PDB 1URP) of this
protein are only 4Å apart, but the transition between them
requires a correlated motion of the three loop regions in the
main hinge.

For this system we created a 2-dimensional expert projection
encoding the three loop regions of the hinge connecting the
two domains. The first row contains two loop regions (residues
91-104 and 226-237). The second row corresponds to the third
loop region (residues 253-269). Such choice of a placement of
the flexible parts in the projection is made because the third
loop region belongs to the very tail of the protein, and thus
has more freedom for motions, whereas the first two loops are
more constrained to move in a correlated way. The misguided
projection is constructed from the residues of several alpha
helices as follows: the first row contains residues 19-26 and
241-248; the second row contains residues 140-147 and 168-
175.

B. Performance Improvement

For each protein and each type of projection we performed
40 runs of a conformational search aimed at finding a feasible
transition between a given pair of start and goal conformations.
Each experiment was held on a single thread of quad core 2.4
GHz Intel Xeon (Nahalem) CPUs with a 24 hour time limit.

For each protein, we compared the success rates of the plan-
ners involving the expert, random, or misguided projections,
respectively (see Fig. 2). We define the success rate of a projec-
tion as the percentage of runs (among 40) that successfully find

a feasible transition using that projection within a 24 hour time
limit. For CVN, the planner with the expert projection was 2.8
times more likely to find a solution than the planner with a
random projection, and 1.4 times more likely than the planner
with the misguided projection. Similar results were obtained
for CaM: the expert projection was successful 2.3 times more
often than the random projection and 1.8 times more often than
the misguided projection. For RBP, the expert projection was
1.5 times more successful than the random one, and 1.7 times
than the misguided one. Therefore, despite the differences
between the three conformational search problems, the expert
projections demonstrate a consistent improvement over the
random and misguided projections, in terms of success rate.

Fig. 3 shows the probabilities of finding a solution path
as a function of time for each of the three projection types.
The success probabilities corresponding to the final time step,
86400 seconds (24 hours), in Fig. 3 are the values of the
overall success rates presented in Fig. 2. Fig. 3 illustrates
that, even though, the expert projection does not demonstrate
a significant improvement for RBP, it still performs as well
or better than the random projection. Moreover, for the other
studied proteins, the expert projection consistently has a higher
probability to find a solution in a given time. As computational
time is a very limited resource, especially for modeling large
proteins, the usage of the expert projection can significantly
benefit the simulations.

C. Exploration Coverage Improvement

Another way to quantify the influence of the projection on
the process of conformational search is to quantitatively assess
the amount of explored projection space. We are interested in
increasing the volume of the explored projection space, be-
cause this translates into enlarging the volume of the explored
conformational space.

The projection space can be represented as a grid divided
into cells. The number of non-empty cells in the grid serves
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(a) CVN (b) CaM (c) RBP

Fig. 4. Average number of projection cells explored during the conformational search with each type of projection within 24 hours for CVN, CaM, and RBP.

as a measure of the coverage of this space. It is important to
note that a small number of explored projection cells does not
necessarily indicate a bad exploration of the conformational
space. On the other hand, a large number of non-empty cells
is an indicator of good conformational space coverage.

To compare the projection space coverage produced by the
planners using different types of projection, we performed a
second experiment involving another kind of conformational
search. The purpose of this search is an extensive exploration
of the conformational space of a protein starting from a given
state (in other words, no goal state is involved). This way,
we are not exploring only the protein flexibility inherent to a
single transition, but the overall flexibility of the protein. In
this experiment, we performed 40 runs of this conformational
search for each protein and each type of projection. Each
experiment was held on a single thread of quad core 2.4
GHz Intel Xeon (Nahalem) CPUs with a 24 hour time limit.
All runs for CaM and RBP generated a similar number of
conformations (on average 2500 for CaM; 1500 for RBP). For
CVN, runs with the expert and random projections generated
twice as many conformations as runs with the misguided
projection (on average, about 6500–7000 for the expert and
random projections, and 3200 for the misguided one).

Fig. 4 illustrates the average number of projection cells
explored during the conformational search with each type of
projection. For CVN, the searches with the expert projection
discovered more than twice as many projection cells as the
searches with the random or misguided projections. For CaM
and RBP, runs with the expert projections explored a volume
of projection space similar to what runs with the random
projections did, but much greater than what runs with the
misguided projections did: the expert projection generated 12
times more cells than the misguided projection did for CaM
protein, and 6 times more cells for RBP.

Even though the expert projections described in Section
IV-A does not incorporate all flexible parts of the studied
proteins (they employ only the flexible parts that are antic-
ipated to be involved in the transition between the start and
goal states), the exploration coverage they produce is at least
as good as the one produced by a random projection, and

sometimes better, see Fig. 4. The poor exploration coverage
produced by the misguided projections was expected. The
misguided projections were designed specifically to focus
mostly on rigid parts of a given protein. As a result, the
generated low-energy conformations of the studied protein are
likely to be distributed along the directions that are mostly
orthogonal to its projection space. In this set of experiments, a
random projection demonstrates relatively good performance,
especially for flexible proteins. In the case of flexible proteins,
there is a higher chance to randomly generate a projection
that induces good exploration of the projection space because
almost any combination of residues could be involved in some
motion.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have investigated the problem of improving
the exploration of the conformational space of a protein. The
framework we use for protein conformational sampling is
based on robotics-inspired expansive path planning algorithms.
These algorithms use a low-dimensional projection to guide
their search in the high-dimensional conformational space.
Even though the definition of this projection is essential to
ensure good performance of the planning algorithms, little
work had been devoted to this problem.

Our contribution consists of proposing a methodology to
define “good” projections that accelerate the conformational
search and improve the exploration coverage. Using the bio-
logical knowledge available for a given protein, it is possible
to define a so-called “expert” projection that can efficiently
guide the search through the high-dimensional conformational
space of this protein. We have evaluated the use of such expert
projections for three middle-sized proteins. We have shown
that our expert projections perform consistently better than
randomly-defined or poorly-defined (so-called “misguided”)
projections. Our results show that using the expert projec-
tion increases the success rate of the planning algorithm at
finding a transition pathway between two conformations, and
improves computational runtime. Furthermore, using an expert
projection allows the planning algorithm to produce a better
coverage of the conformational space.
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As part of our future work, we want to compare these ”ex-
pert” projections with projections generated automatically by
various methods, such as NMA, Principal Component Analysis
(PCA), or graph-theory-based rigidity analysis. We are also
planning to analyze the influence of the dimensionality of the
projections. Our future research will concentrate on generating
good projections automatically. A possible idea could be to use
the decomposition of a protein into fragments corresponding to
its flexible regions. A version of such decomposition is already
incorporated into the SIMS framework (see Section III-A),
and can be performed automatically (based on the secondary
structure of a protein) or by an expert. The fragments represent
the parts of a protein which are the most flexible and most
likely to be involved in a transition. As such, they naturally
define the regions that should be included in a “good” guiding
projection.

Improving protein conformational sampling by defining a
successful projection can open new horizons for studies of
proteins by enabling modeling of larger proteins, such as
viruses with several thousands of residues.
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