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Abstract

Background: The human kinome contains many important drug targets. It is well-known that inhibitors of protein
kinases bind with very different selectivity profiles. This is also the case for inhibitors of many other protein families.
The increased availability of protein 3D structures has provided much information on the structural variation within a
given protein family. However, the relationship between structural variations and binding specificity is complex and
incompletely understood. We have developed a structural bioinformatics approach which provides an analysis of key
determinants of binding selectivity as a tool to enhance the rational design of drugs with a specific selectivity profile.

Results: We propose a greedy algorithm that computes a subset of residue positions in a multiple sequence
alignment such that structural and chemical variation in those positions helps explain known binding affinities. By
providing this information, the main purpose of the algorithm is to provide experimentalists with possible insights
into how the selectivity profile of certain inhibitors is achieved, which is useful for lead optimization. In addition, the
algorithm can also be used to predict binding affinities for structures whose affinity for a given inhibitor is unknown.
The algorithm’s performance is demonstrated using an extensive dataset for the human kinome.

Conclusion: We show that the binding affinity of 38 different kinase inhibitors can be explained with consistently
high precision and accuracy using the variation of at most six residue positions in the kinome binding site. We show
for several inhibitors that we are able to identify residues that are known to be functionally important.

Keywords: Protein kinases, Specificity determining positions, Binding affinity

Background
Predicting affinity profiles remains a challenging task for
computational and medicinal chemists. This is particu-
larly true of the kinase family of enzymes because of
their large number and structural similarity. Despite their
structural similarity, the kinases exhibit large phylogenetic
diversity. As a result, binding site sequence dissimilarity
alone cannot explain the differences in binding affinity
[1]. Selectivity patterns obtained by experimental screen-
ing in enzyme assays are often difficult to rationalize in
structural terms. Additional tools are needed to improve
our capabilities to design inhibitors that selectively bind to
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only a small subset of the kinases. The rapidly increasing
number of kinase structures has made it possible to study
how structural differences affect binding affinity. For
instance, different inhibitors have been designed to tar-
get the inactive, DFG-out conformation and active, DFG-in
conformation [2–5]. In general, determining exactly how
functional changes relate to structural ones remains an
important open challenge [6, 7]. This is caused in part by
the fact that not all structural changes cause a functional
change. Additionally, the available structures are non-
uniformly distributed over the known kinase sequences:
for many kinases there is no structural information, while
other kinases are overrepresented, which can lead to over-
fitting.
In previous work [1], we introduced the Combinato-

rial Clustering Of Residue Position Subsets (CCORPS)
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method and demonstrated that it could be used to predict
binding affinity of kinases. CCORPS considers structural
and chemical variation among all triplets of binding site
residues and identifies patterns that are predictive for
some externally provided labeling. The labeling can cor-
respond to, e.g., binding affinity, Enzyme Commission
classification, or Gene Ontology terms, and only needs
to be defined for some of the structures. CCORPS cor-
rects for the non-uniform distribution of structures. From
the patterns CCORPS identifies, multiple predictions are
combined into a single consensus prediction by training
a Support Vector Machine. A limitation of this work is
that it is difficult to identify the most important Speci-
ficity Determining Positions (SDPs). In this paper, we are
not trying to construct a better predictor, but, rather,
a better explanation for some labeling. The explanation
is better in the sense that it provides a simple explana-
tion of a labeling in terms of the dominant SDPs. Rather
than using all patterns discovered by CCORPS, it uses a
small number of patterns that involve only a small num-
ber of residues yet is able to accurately recover binding
affinity.
The main contribution of this paper is an algorithm that

computes the Specificity Determining Positions that best
explain binding affinity in terms of structural and chem-
ical variation. More generally, the algorithm can identify
a sparse pattern of structural and chemical variation that
corresponds to an externally provided labeling of struc-
tures. This work extends our prior work on CCORPS, but
shifts the focus from optimal predictions to concise, bio-
logically meaningful, explanations of functional variation.
There has been much work on the identification and

characterization of functional sites. Most of the tech-
niques are broadly applicable tomany protein families, but
we will focus in particular on their application to kinases,
when possible.
Much of the work on computing SDPs is based on evo-

lutionary conservation in multiple sequence alignments
(see, e.g., [8–10]). There has also been work on relating
mutations to an externally provided functional classifica-
tion in a phylogeny-independent way [11, 12]. This work
is similar in spirit to what CCORPS does, but based on
sequence alone.
While sequence alignment techniques can reveal func-

tionally important residues in kinases [13], structural
information can provide additional insights. This is espe-
cially true for large, phylogenetically diverse families such
as the kinases. The FEATURE framework [14, 15] repre-
sents a radically different way of identifying functional
sites. Instead of alignment, FEATURE builds up a statisti-
cal model of the spatial distribution of physicochemical
features around a site.
Another approach to modeling functional sites has been

the comparison of binding site cavities [3, 16]. In [17]

a functional classification of kinase binding sites is pro-
posed based on a combination of geometric hashing and
clustering. This approach is similar in spirit to our prior
work [1], but our work considers variations in a small sets
of binding site residues, which makes it possible to sep-
arate non-functional structural changes from functional
ones.
In [18] a method called FLORA is proposed for analysis

of structural conservation across whole domains (rather
than binding sites). FLORA was shown to be able to iden-
tify functional subfamilies (defined by Enzyme Commis-
sion classifications) within large protein superfamilies. It
relies on the construction of structural feature vectors,
which shares some similarities with our approach. How-
ever, FLORA is completely unsupervised and it is not clear
how it could be extended to explain patterns of kinase
binding affinity.
In [19] many of the ideas above are combined into

one framework. Given sequences from a PFAM align-
ment [20] and some reference structures, homology
models are constructed for all sequences. Next, cav-
ities are extracted, aligned, and clustered. Unlike our
work, the approach in [19] is completely unsupervised
and does not aim to provide an explanation for an
externally provided classification (such as kinase binding
affinity).

Methods
CCORPS overview
Our algorithm builds on the existing CCORPS framework
[1]. CCORPS is a semi-supervised technique that takes as
input a set of partially labeled structures and produces
as output the predicted labels for the unlabeled struc-
tures. Of course, this is only possible if the labels can be
related to variations in the structures. In previous work
[1] we have shown this to be the case for labelings based
on binding affinity and functional categorization (Enzyme
Commission classification).

CCORPS [1] consists of several steps. First, a one-to-one
correspondence needs to be established between relevant
residues (e.g., binding site residues) among all structures.
This correspondence can be computed using a multi-
ple sequence alignment or using sequence independent
methods [21–24]. Second, we consider the structural and
physicochemical variation among all structures and all
triplets of residues. The triplets are not necessarily con-
secutive in the protein sequence and can be anywhere
in the binding site. Each triplet of residues constitutes
a substructure: a spatial arrangement of residues. For
each triplet, we compute a distance matrix of all pair-
wise distances between substructures. The distance mea-
sure used is a combination of structural distance and
chemical dissimilarity introduced in [22]. In particular,
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the distance between any two substructures s1 and s2 is
defined as:

d(s1, s2) = dside chain centroid(s1, s2) + dsize(s1, s2)
+ daliphaticity(s1, s2) + daromaticity(s1, s2)
+ dhydrophobicity(s1, s2) + dhbond acceptor(s1, s2)
+ dhbond donor(s1, s2).

The dside chain centroid(s1, s2) term is the least root-mean-
square deviation of the pairwise-aligned side chain cen-
troids of the substructures. The remaining terms account
for differences in the amino acid properties between the
substructures s1 and s2 as quantified by the pharma-
cophore feature dissimilarity matrix as defined in [22].
Each row in the distance matrix can be thought of as

a “feature vector” that describes how a structure differs
from all others with respect to a particular substructure.
The n×n distance matrix for n structures is highly redun-
dant and we have shown that the same information can be
preserved in a 2-dimensional embedding computed using
Principal Component Analysis [25]. Each 2D point is then
a reduced feature vector. The set of n 2-dimensional points
is clustered using Gaussian Mixture Models in order to
identify patterns of structural variation. Not all structural
variation is relevant; we focus on patterns of structural
variation that align with the classification provided by the
labeling.
The final stage of CCORPS is the prediction of labels for

the unlabeled structures. Suppose a cluster for one of the
residue triplets contains structures with only one type of
label as well as some unlabeled structures. This would sug-
gest that the predicted label for the unlabeled structures
should be the same as for the other cluster members. We
call such a cluster aHighly Predictive Cluster (HPC). These
HPC are a critical component of the algorithm presented
in the next section. There are many clusterings and each
clustering can contain several HPCs (or none at all). For
example, in the human kinome the binding site consists of
27 residues, leading to

(27
3
) = 2, 925 clusterings. Typically,

an unlabeled structure belongs to several HPCs and we
thus obtain multiple predictions. These predictions might
not agree with each other. In our prior work we trained a
Support VectorMachine [26] to obtain the best consensus
prediction from the multiple predictions.

Structure-guided selection of specificity determining
positions
While CCORPS has been demonstrated to make accurate
predictions, it has been difficult to interpret the structural
basis for these predictions. This has motivated us to look
at alternative ways to interpret the clusterings produced
by CCORPS. Rather than trying to build a better predictor,
we have developed an algorithm that constructs a concise
structural explanation of a labeling. It determines a set

of Specificity Determining Positions (SDPs). An algorithm
that would predict that almost every residue position is
important would not be very helpful. We therefore wish to
enforce a sparsity constraint: for a set of labeled structures
S we want to find the smallest possible number of HPCs
that cover the largest possible subset of S and involve at
most λ residues.
The problem of finding SDPs can be formulated as a vari-

ant of the set cover problem. The set cover problem is
defined as follows: given a set S and subsets Si ⊆ S, i =
1, . . . , n, what is the smallest number of subsets such that
their union covers S? This is a well-known NP-Complete
problem, but the greedy algorithm that iteratively selects
the subset that expands coverage the most can efficiently
find a solution with an approximation factor of ln |S|.
As mentioned above, in our case, S is the set of labeled

structures. We keep track of the residues involved in the
selected HPCs and mark them as SDPs. Solving this as a set
cover problem would likely still select most residues. The
intuition for this can be understood as follows. The num-
ber of clusterings each residue is involved in is quadratic
in the number of residues in the alignment. Each of those
clusterings could contain a HPC that covers at least one
structure that is not covered yet by other HPCs. Even in
completely random data some patterns will appear, which
could in turn be classified as HPCs.
Wemeasure sparsity of the cover in terms of the number

of residues and not the number of HPCs, since this facil-
itates an easier interpretation of the results shown later
on. As noted before, there can be several HPCs per clus-
tering. This means that once we have selected an HPC, we
might as well include all other HPCs from that same clus-
tering (we have already “paid” for using the corresponding
residues). As an algorithmic refinement, we may also wish
to limit the degree at which we are fitting the data to avoid
overfitting and get a simpler description of the most sig-
nificant residues positions whose variation can be used to
explain the labeling.
The algorithm for computing SDPs is shown in

Algorithm 1. It is similar to the greedy set cover algorithm.
The input to the algorithm consists of a list of labeled
structures, a list of all 3-residue subsets of the binding site,
and a list of sets of structures that belong to HPCs. After
initializing the set of SDPs and the set of selected subset
indices in S, the main loop performs the following steps.
First, the indices of all subsets are computed that will not
grow the set of SDPs beyond a size limit λ (line 5). Second,
the subset index is computed that will increase the cover
of the known labels with HPC structures the most (line 9).
Next, the algorithm checks whether the increase is “large
enough,” i.e., greater than or equal to δ (line 11). If so, the
set of SDPs and the sets of not-yet-covered structures are
updated (line 13–14). If not, the algorithm terminates and
returns the set of SDPs.
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Algorithm 1 Compute specificity determining positions
getSDPs(L, S,H , λ, δ)
Input: L: set of all labeled structures
Input: S: list of all 3-residue subsets of binding site
Input: H : list of sets of labeled structures s.t. Hi contains
the structures that belong to HPCs in the clustering for
subset Si
Input: λ, δ: parameters that control sparsity and
overfitting, respectively.
Output: P: a set of SDPs that best explains the labeling

1: P ← ∅ // Set of SDPs
2: C ← ∅ // Set of subset indices in S chosen so far
3: loop
4: // λ controls sparsity of SDPs
5: I ← {i | i �∈ C ∧ |Si ∪ P| ≤ λ}
6: if I = ∅ then
7: break // Nomore subsets satisfy sparsity

constraints
8: // Greedy selection of next subset
9: j ← argmaxi∈I |L ∩ Hi|

10: C ← C ∪ {j}
11: if |L ∩ Hj| < δ then
12: break // Not enough improvement possible
13: P ← P ∪ Sj
14: L ← L \ Hj
15: return P

The final output of Algorithm 1 provides a concise
explanation of which structural and chemical variations
correlate highly with a given labeling. In the context of
the kinases, it can identify triplets of residues whose com-
bined structural and chemical variation give rise to pat-
terns that allow one to separate binding from non-binding
kinases. As we will see in the next section, often only a
very small set of residues is sufficient to obtain HPCs that
cover most of the structures with known binding affinity.

Results
In [27] a quantitative analysis is presented of 317 differ-
ent kinases and 38 kinase inhibitors. For every combi-
nation of a kinase and an inhibitor, the binding affinity
was experimentally determined. This dataset also formed
the basis for the evaluation of CCORPS [1]. The kinase
inhibitors vary widely in their selectivity. Inhibitors like
Staurosporine bind to almost every kinase, while oth-
ers like Lapatnib bind to a very specific subtree in the
human kinase dendrogram. The structure dataset was
obtained by selecting all structures from the Pkinase and
Pkinase_Tyr PFAM alignments [20]. The binding site, as
defined in [1], consists of 27 residues. After filtering out
structures that had gaps in the binding site alignment,
1,958 structures remained. The binding affinity values

were divided into two categories (i.e., labels): “binds” and
“does not bind.” This gives rise to two different types
of HPCs: clusters predictive for binding (which we call
true-HPCs below) and clusters predictive for not binding
(which we call false-HPCs below). All other structures
corresponding to kinases that were not part of the Kara-
man et al. study [27] do not have a label. CCORPS was
run on this dataset, consisting of all 1,958 structures along
with the binding affinity data. This resulted in

(27
3
) =

2, 925 clusterings, one for every triplet of residues. The
median number of true-HPCs per inhibitor was 591,
while the median number of false-HPCs per inhibitor
was 13,632.
In the next subsection we look in detail at results of

our algorithm with one parameter setting to get a sense
of what kind of output is produced. In the subsequent
subsection we will describe different ways tomeasure cov-
erage of the SDPs as well as their predictive potential.
We then evaluate these measures on all inhibitors with
different parameter settings.

Specificity-determining positions
While in our prior work [1] the emphasis was on predict-
ing the affinity of kinases, here we are focused on creating
a concise explanation of the affinity. Thus, here we are
not performing cross validation experiments.We have run
Algorithm 1 on the kinome dataset with λ = 6 residues
and δ = 16 (statistics for different values of λ and δ are
reported in the next subsection). With λ = 6, the algo-
rithm can select at most two non-overlapping triplets. We
computed the SDPs for all inhibitors (see Fig. 1). With
some additional bookkeeping we can keep track of which
residue was involved in which selected subsets. The bar
chart for each inhibitor can be interpreted as follows.
Along the x-axis is the residue position in the multiple
sequence alignment of the 27 binding site residues. The
relative height of each bar indicates how often a residue
position was part of a selected 3-residue subset. Blocks
with the same color correspond to residues belonging to
the same residue subset. This can provide important con-
textual information. It shows not only which residues are
important to help explain binding affinity, but also the
context in which its variation should be seen. It could, e.g.,
indicate that one residue’s variation relative to some other
residue(s) is important. The contextual residues them-
selves may not always vary much and are perhaps not of as
much functional importance in the traditional sense. As
λ is increased, more bars would be added to each profile
as long as they improve coverage by at least δ structures.
Similarly, as δ is decreased, more bars would be added
to each profile as long as no more than λ residues are
involved.
Figure 2 shows some examples of the clusterings that

have been selected by Algorithm 1. These clusterings
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Fig. 1 The SDP profiles computed for every inhibitor in the kinome dataset. The x-axis represents the residue position in the 27-residue multiple
sequence alignment of the binding site. Each row shows the SDPs for one inhibitor whose name is shown on the y-axis. For each inhibitor, blocks
with the same color correspond to one of the 3-residue subsets. If there are multiple colors in a given position, then the same residue was part of
several selected subsets. This means that the same residue in different structural contexts can help explain the binding affinity of different kinases
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Fig. 2 Examples of the kind of clusterings selected by our algorithm. The axes correspond to the 2D, PCA-reduced feature vector representation of
the pairwise distances between structures as described in the Methods section. Each point represents one structure. Red: known to bind, black:
known to not bind, gray: binding affinity unknown. Discs: structures belonging to HPCs, circles: all other structures
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contain a large number of structures belonging to HPCs.
The distance between points represents how different the
corresponding structures are, structurally and chemically.
The examples show that we can identify very strong spa-
tial cohesion among the structures that bind when looking
at the right residues (i.e., the SDPs). Not all clusterings
selected by Algorithm 1 show such a strong relationship
between structure and function. Especially for inhibitors
that bind more broadly to kinases this relationship is
harder to untangle.
There is significant variation among the SDP profiles.

For a very selective inhibitor like SB-431542 the variation
of only three positions is sufficient to explain the binding
affinity (see also the next subsection), while for ABT-869
many combinations of 3 residues out of the 6 selected
residues seem to be helpful in explaining the binding
affinity.
Figure 3 shows a visualization of the SDPs for the

inhibitor Imatinib. Figure 3a shows the structural varia-
tion (or lack thereof) in the selected residue positions for
all structures that bind Imatinib. In contrast, if the same
positions in all structures that do not bind Imatinib are
superimposed, the structural variation is very high as is
shown in Fig. 3b.

Coverage and predictive power of SDPs
Based on the set of SDPs we can (a) try to “recover”
the labels of labeled structures that were not part of the
selected HPCs and (b) predict labels for the unlabeled
structures. There are at least four simple strategies to do
this:

1. We could assume that the union of all true-HPCs
contains all the structures that bind and that all
others do not bind.

2. We could assume that the union of all false-HPCs
contains all the structures that do not bind and all
others do bind.

3. We could omit the false-HPCs altogether from the
input H to Algorithm 1 and select residue subsets
based on large true-HPCs only. The labels are then
recovered as in (1).

4. We could omit the true-HPCs altogether from the
input H to Algorithm 1 and select residue subsets
based on large false-HPCs only. The labels are then
recovered as in (2).

Note that the SDPs computed with Algorithm 1 are the
same in the first two strategies, but will generally look dif-
ferent when using strategies 3 and 4. We have evaluated
each of these strategies on all 38 ligands. For each we can
evaluate the coverage: the percentage of known labels that
are included in the HPCs. We can also count the num-
ber of unlabeled structures included in HPCs, which can

(b)

(a)

Fig. 3 Structural visualization of SDPs. P38 (PDB ID 3HEC) is shown in
ribbon representation along with the superimposed (a) SDPs for all
the structures that bind imatinib and (b) the same residue positions
for all structures that do not bind to imatinib

be interpreted as the number of new binding affinities we
can predict. For the first two strategies we get predictions
for both binding and not-binding, while for the latter two
we only get predictions for one type of affinity. Finally,
we can calculate the usual statistical performance mea-
sures (sensitivity, specificity, precision, and accuracy) to
measure how well the selected HPCs can predict binding
affinity for all labeled structures. The results were com-
puted with λ = 6 and δ = 16 and are summarized in
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Table 1. Note that specificity is equal to 1 in strategies 1
and 3 by construction. Similarly, sensitivity is equal to 1
in strategies 2 and 4 by construction. In general, assuming
that the union of all true-HPCs contains all the struc-
tures that bind (as is done in strategies 1 and 3) results in
poor sensitivity. Strategy 2 seems to strike a good balance
between sensitivity and specificity as well as between pre-
cision and accuracy. Strategy 4 performs even better than
strategy 2, but provides poorer coverage.
The results in Table 2 show more detailed results for

each ligand with strategy 2. While there is some varia-
tion among the inhibitors, the coverage is almost always
very high. In cases where it is not, such as AST-487, JNJ-
7706621 and Sunitinib, it is usually a inhibitor that binds
to many different parts of the kinome tree (see kinome
interaction maps in [27]). Finally, we analyzed the sensi-
tivity to the parameter δ and λ. As is shown in Tables 3
and 4, performance varies significantly with both λ and
δ (as is expected). However, even with very large values
of δ, the algorithm is still able to cover the vast majority
of known binding affinities. Even more surprisingly, even
when restricting SDPs to only λ = 3 residues (correspond-
ing to a single clustering), over 60 % of the structures with
known binding affinity are covered.

Discussion
Frequency analysis of SDP positions
The 27 residues that make up the binding site (see Fig. 4)
are not equally represented in the SDP profiles. For exam-
ple, position 2 does not occur in any of the SDP profiles,
whereas position 12 occurs in 31 out of the 38 (see Fig. 5).
The residues occurring most frequently in SDP profiles are
often residues that have been observed to be important for
inhibitor selectivity.

SDP position 8, which occurs in 22 of the SDP profiles,
corresponds to the well-known “gatekeeper” residue [28].
The size of this residue controls access to the hydrophobic
binding pocket accessed by Type II inhibitors.
Most kinase inhibitors are ATP-competitive and mimic

to a greater or lesser extent the hydrogen bonding inter-
actions that the adenine aromatic moiety of ATP makes
with the hinge region of the protein. The hinge region

Table 1 Coverage of labeled structures, number of predicted
affinities for unlabeled structures, as well as sensitivity, specificity,
precision, and accuracy for HPC-based prediction of binding
affinity

Strategy Cov. #pred. Sens. Spec. Prec. Acc.

1 83 % 215 0.486 1.000 0.921 0.904

2 83 % 520 1.000 0.887 0.783 0.929

3 15 % 1,084 0.617 1.000 0.921 0.932

4 71 % 364 1.000 0.900 0.806 0.937

Each row summarizes the average over all 38 ligands for the corresponding strategy

Table 2 Coverage of labeled structures, number of predicted
affinities for unlabeled structures, as well as specificity, precision,
and accuracy for HPC-based prediction of binding affinity as
recovered from SDPs computed using our algorithm (with λ = 6
and δ = 16). Sensitivity is equal to 1 in all cases

Inhibitor Cov. #pred. Spec. Prec. Acc.

ABT-869 86 % 557 0.922 0.633 0.931

AMG-706 83 % 558 0.928 0.707 0.938

AST-487 65 % 426 0.661 0.806 0.859

AZD-1152HQPA 85 % 568 0.914 0.668 0.927

BIRB-796 67 % 391 0.766 0.653 0.838

BMS-387032/SNS-032 96 % 670 0.984 0.959 0.988

CHIR-258/TKI-258 81 % 420 0.947 0.861 0.960

CHIR-265/RAF265 87 % 473 0.960 0.801 0.966

CI-1033 77 % 475 0.882 0.710 0.909

CP-690550 96 % 629 0.989 0.736 0.989

CP-724714 99 % 684 0.999 0.982 0.999

Dasatinib 83 % 500 0.897 0.837 0.933

EKB-569 70 % 474 0.876 0.688 0.902

Erlotinib 80 % 532 0.902 0.693 0.920

Flavopiridol 80 % 515 0.844 0.754 0.895

GW-2580 99 % 677 1.000 1.000 1.000

GW-786034 79 % 485 0.920 0.737 0.934

Gefitinib 81 % 470 0.906 0.561 0.916

Imatinib 86 % 587 0.936 0.590 0.941

JNJ-7706621 59 % 356 0.580 0.704 0.790

LY-333531 83 % 413 0.912 0.652 0.924

Lapatinib 99 % 684 0.999 0.982 0.999

MLN-518 94 % 659 0.989 0.808 0.989

MLN-8054 87 % 493 0.948 0.766 0.956

PI-103 99 % 654 0.999 0.988 0.999

PKC-412 54 % 217 0.621 0.687 0.793

PTK-787 97 % 664 0.999 0.974 0.999

Roscovitine/CYC202 98 % 650 1.000 1.000 1.000

SB-202190 84 % 500 0.929 0.815 0.946

SB-203580 69 % 349 0.792 0.641 0.849

SB-431542 100 % 670 1.000 1.000 1.000

SU-14813 71 % 343 0.761 0.667 0.838

Sorafenib 70 % 509 0.919 0.801 0.939

Staurosporine 91 % 646 0.681 0.956 0.959

Sunitinib 61 % 343 0.652 0.654 0.790

VX-680/MK-0457 78 % 410 0.844 0.767 0.897

VX-745 85 % 583 0.912 0.680 0.926

ZD-6474 87 % 511 0.939 0.823 0.952

average 83% 520 0.887 0.783 0.929

The last row lists the average performance over all inhibitors
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Table 3 Sensitivity to the value of λ with δ = 16

λ Cov. #pred. Spec. Prec. Acc.

3 62 % 312 0.669 0.493 0.778

4 73 % 419 0.781 0.661 0.864

5 79 % 482 0.844 0.729 0.907

6 83 % 520 0.887 0.783 0.929

7 86 % 537 0.909 0.810 0.943

8 88 % 554 0.921 0.838 0.951

9 89 % 565 0.930 0.858 0.958

Each row represents an average over all 38 inhibitors

corresponds to positions 9–11 and each of these positions
occurs frequently in the SDP profiles, particularly at posi-
tions 9 and 10. Note that the interactions of inhibitors
with the hinge are through hydrogen bonds to the pro-
tein backbone and are thus, in this sense, not sequence
specific. Also, position 10 is rarely involved in hydrogen
bonding because the canonical orientation of the back-
bone orients the NH and CO backbone groups away from
the binding site. A recent analysis has shown that the
potency of kinase inhibitors is not correlated with the
number of hinge hydrogen bonds, but that there is a trend,
albeit not pronounced, for compounds that make more
hydrogen bonds to be less selective [29]. Large confor-
mational changes that alter the canonical binding pattern
have been observed when the conformationally less con-
strained glycine residue occurs in hinge positions. The
SDP analysis indicates that subtler alterations in geome-
try and sequence in this region play an important role in
modulating selectivity. It is not inevitable that frequently
observed interactions automatically translate into mod-
ulators of binding profile. Position 20 of the SDP profile
corresponds to a conserved glutamic acid residue in the
middle of the C-helix that forms a salt bridge with a con-
served lysine and is often involved in hydrogen bonds to
amides or ureas of Type II kinase inhibitors. However, this
position occurs in only one SDP (SB-431542).

Table 4 Sensitivity to the value of δ with λ = 6

δ Cov. #pred. Spec. Prec. Acc.

1 85 % 587 0.904 0.820 0.941

2 85 % 580 0.903 0.817 0.940

4 85 % 565 0.900 0.812 0.938

8 84 % 547 0.895 0.800 0.935

16 83 % 520 0.887 0.783 0.929

32 81 % 490 0.871 0.723 0.916

64 78 % 456 0.848 0.658 0.898

128 74 % 413 0.817 0.612 0.876

Each row represents an average over all 38 inhibitors

The most frequently selected position in SDP profiles is
number 12, occurring in 31 out of the 38 profiles. This
residue occurs in the “selectivity surface”, a relatively sol-
vent exposed region with significant structural variation.
For many inhibitors, this position contributes information
from multiple 3-residue subsets, enabling the geomet-
ric and sequence variability of this region of the protein
relative to the rest of the structure to be captured.
Positions 16 and 17 correspond to the Asp and Phe

residues of the DFG motif. This motif occurs in “DFG-
in” or “DFG-out” conformations, with DFG-in being the
active conformation of the enzyme and DFG-out a catalyt-
ically inactive form that is stabilized by Type-II inhibitors
such as imatinib. Despite this geometrical variability, these
positions occur rarely in SDP profiles. Only a small per-
centage of kinases have been observed in the DFG-out
state crystallographically. Interestingly, the ability of a
kinase to adopt this inactive conformation has been pos-
tulated to be controlled by two other residues, the gate-
keeper and the residue immediately N-terminal to the DFG
sequence [30]. This later residue is at position 15 and
occurs in the SDPs with moderate frequency.
The number of 3-position subsets that contribute to

the SDP profile is related to inhibitor selectivity. The
histograms in Fig. 6 show the number of contributing 3-
position subsets (x-axis) plotted against the various selec-
tivity metrics calculated by Karaman et al. [27] (y-axis).
The selectivity values are the average of the compound
values with SDP profiles derived from that number of 3-
position subsets. Note that the selectivity value can be
zero. For all metrics other than the Kd ratio measure,
the most selective inhibitors have SDP profiles derived
from one to three 3-position subsets. The pattern is
similar whether the kinases are considered as a whole
(S(3μM), S(100nM)) or the tyrosine kinases (STK(3μM),
STK(100nM)) or serine/threonine kinases (SSTK(3μM),
SSTK(100nM)) are considered separately. A very simi-
lar result is obtained by calculating S(10μM) from the
Karaman et al. data [27], in order to match the activity
cutoff threshold used in the CCORPS analysis (data not
shown). The Kd ratio measure differs from the others by
focusing on off-targets with affinity within 10-fold of the
primary target. Such compounds are considered active by
the 10μM IC50 cutoff value used to generate the SDPs and
thus the lack of correlation with the Kd ratio measure is
expected. A similar trend is observed in specificity of the
SDP profiles. In Table 5 we see that SDP profiles derived
from a small number of 3-position subsets tend to a higher
specificity.

Comments on specific compounds
CP-690550 (Tofacitinib)
Tofacitinib is a clinically used selective Janus Kinase
inhibitor. An SDP Word Logo is shown in Fig. 7a.
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Fig. 4 The kinase binding site. Selected residues of P38α are shown in complex with imatinib (PDB ID 3HEC)

There are PDB structures for 5 kinases, for each of which
tofacitinib is a potent inhibitor (JAK1, JAK3, JAK3, TYK2
and PKN1).
In the X-ray structure 3lxk (JAK3) elements 9, 10 and 19

are close to the inhibitor, but elements 24–26 are distant.
Figure 1 shows that this arises from two 3-position subsets
(9, 10, 26 and 19, 24, 25) [This being the case, I’m not sure
why there is variability at positions 24 and 25].

The tofacitinib complexes with JAK1, JAK2, JAK3 and
TYK2 are very similar to each other. The structure 4oti
is the PKN1-tofacitinib complex, for which tofacitinib is
a medium potency inhibitor. Superposition of the lig-
and between 3lxk and 4oti shows an essentially identical
conformation. This aligns the residues of the N-lobe quite
well, but the C-lobe is displaced. The 3-position subsets
that span the N- and C-lobes could capture this range

Fig. 5 Frequency of each residue position occurring in SDPs across all inhibitors. The x-axis represents the residue position in the 27-residue multiple
sequence alignment of the binding site
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Fig. 6 Different measures of selectivity as a function of the number of 3-position subsets that contribute to the SDP profile

of possibilities in HPCs and thus enable the binding to
PKN1 to be accounted for. Positions 24–26 occur quite
frequently as SDPs, even for inhibitors that are not in
contact with these residues.
The p38α structure (e.g., 3hec) is not inhibited by tofac-

itinib. The superposition (based on the 27 alpha-carbon
positions of the binding site residues used by CCORPS)
shows a broadly similar disposition of the N- and C-lobes.
In this case there are sequence differences at five of the six
SDP positions. The CDK8 structure (3rdf ) has more sub-
tle differences that are hard to distinguish from the active
examples based on visual inspection.
Weigert et al. [31] generated resistance mutants to JAK2.

Of the three mutants identified, one E864K (JAK2 num-
bering) is not within our 27 residue active site definition.
However, Y931C (Position 10 in the logo) conferred resis-
tance to all of the JAK inhibitors studied, including tofac-
itinib, in agreement with the SDP result. G935R (Position
12 in the logo) conferred resistance to all inhibitors except
tofacitinib, also in agreement with the SDP.

Lapatinib
Lapatinib is a selective inhibitor of ErbB2 and EGFR. An
SDP Word Logo is shown in Fig. 7b.
The general pattern is fairly typical, with the gatekeeper,

hinge and selectivity surface represented. Kancha et al.
[32] reports several mutations observed in ERBb2 in vari-
ous solid tumors. Most of these are distant from the bind-
ing site, but one T862A corresponds to position 15 in the
Logo and is associated with modest lapatinib resistance.
An analogous mutation is also found in EGFR.
Trowe et al. [33] report that T798 is the most fre-

quently mutated ErbB2 residue in an in vitro screen using

Table 5 Average specificity over all inhibitors as a function of the
number of 3-position subsets that determine the SDPs

# 3-pos. subsets 1 2 3 4 5 6 7

Specificity 1.00 0.99 0.97 0.83 0.86 0.86 0.83

Frequency 1 6 4 10 7 6 4

The last row shows the number of inhibitors whose SDPs are determined by a given
number of 3-position subsets

a randomly mutagenized ErbB2 expression library and
shows the greatest lapatinib resistance. This corresponds
to position 8 in the logo (gatekeeper). A less frequently
observed mutation L726 is not found in the logo (position
1). Other mutated residues are not in the binding site set.
The gatekeeper residue is also mutated in EGFR, but

other EGFR resistance-inducing mutations do not map to
the corresponding logo positions.

Imatinib (Gleevec)
Imatinib is an Abl/Kit/VEGFR inhibitor. An SDP Word
Logo is shown in Fig. 7c.
The profile is similar to that of lapatinib to the extent

that gatekeeper, hinge and selectivity surface residues are

Fig. 7 Sequence logos (created by WebLogo [38]) for the SDPs of
structures known to bind to different inhibitors as well as a logo for all
structures
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represented. Mutation at positions 8 or 10 is a common
cause of imatinib resistance. Note that the presence of
the gatekeeper in the profile of a Type II inhibitor is not
unexpected, but that not all Type-II logos have this. As
noted above, Type II inhibitors such as imatinib bind to
a DFG-out enzyme conformation, but these residues are
not in the profile and thus do not provide the strongest
selectivity signal.
Position 19, which is in the hydrophobic pocket, is also

of interest. Mutation at this position in BCR/ABL has been
reported to confer moderate Imatinib resistance [34]. This
position was also the most frequently mutated residue
found in imatinib-resistant KIT mutants from analysis of
tumor samples obtained from patients enrolled in a Phase
II clinical study of imatinib [35]. The gatekeeper residue
was also frequently mutated in this population. Sunitinib
(Sutent™) is approved for the treatment of advanced GIST
after failure of imatinib due to resistance or intolerance.
It is effective against the imatinib-resistant V654A (posi-
tion 19) mutant, a position which does not occur in the
sunitinib SDPs.
If false-HPCs are omitted (i.e., strategy 3 in the

subsection Coverage and Predictive Power of SDPs), the
SDPs also include position 24. This position is frequently
mutated in resistant tumors, with positions 10 and 24
together accounting for 14 % of BCR/ABL mutations. The
SDPs of the more selective KIT/VEGFR inhibitor PTK-787
also includes position 24.
The occurrence of other positions in the imatinib logo

is harder to rationalize. In the structures, the side chain
at position 4 points away from the inhibitor and is not in
direct contact with it. This may point to an indirect role in
modulating the conformation of the protein in this region.
Position 4 is actually selected quite frequently (9 times).
As part of the hydrophobic core of the N-lobe, it may act
as a marker for the relative disposition of the two domains
of the enzyme. Differential flexibility of the kinases is often
discussed in the literature as playing a role in selectivity,
see for example [36].

Conclusion
Wehave described a general method for identifying Speci-
ficity Determining Positions in families of related proteins.
The method was shown to be very effective in identifying
SDPs within the human kinome that help explain the bind-
ing affinity of 38 different inhibitors. Consistent with prior
studies, we were able to identify the gatekeeper residue
and the hinge region as generally very important for the
binding specificity of kinases. It has also highlighted the
selectivity surface as a region that is key in determin-
ing selectivity profiles. An in-depth analysis of the SDPs
for three specific kinase inhibitors provides further evi-
dence that we can identify other residues that are known

to be important in each case, including positions that are
mutated in drug-resistant tumors. Of particularly interest
are these that are not in direct contact with the inhibitor
(some examples of which were discussed above) but which
may be involved indirectly through, for example, influ-
encing the conformation or flexibility of the protein. This
would be a significant benefit, as such residues are difficult
to identify by other means. Not only could this poten-
tially provide a new insight into the structural biology of
kinases, but such knowledge may be helpful in the design
of inhibitors with novel, or improved, selectivity profiles.
In this regard, it would be interesting to explore expand-
ing the approach to include additional, non-binding site
residues, that have been implicated in resistance through
modulation of conformational plasticity and investigated
by molecular dynamics.
In prior work [37] we have demonstrated that the addi-

tion of homology models leads to an improvement in
the prediction of binding affinity. Homology models can
fill in gaps in structural coverage, thereby potentially
eliminating “accidental” HPCs and create new ones. In
future work we plan to investigate whether homology
models can provide similar benefits in the identifications
of SDPs.
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