
1

Teaching Motion Planning Concepts to
Undergraduate Students

Mark Moll, Member, IEEE, Ioan A. Şucan, Student Member, IEEE,
Janice Bordeaux, and Lydia E. Kavraki, Senior Member, IEEE

Abstract—Motion planning is a central problem in robotics.
Although it is an engaging topic for undergraduate students, it
is difficult to teach, and as a result, the material is often only
covered at an abstract level. Deep learning could be achieved
by having students implement and test different algorithms.
However, there is usually no time within a single class to
have students completely implement several motion planning
algorithms as they require the development of many lower-level
data structures. We present an ongoing project to develop a
teaching module for robotic motion planning centered around
an integrated software environment. The module can be taught
early in the undergraduate curriculum, after students have taken
an introductory programming class.

I. INTRODUCTION

Robots play an increasingly important role in our daily lives.
For many familiar applications such as urban search-and-rescue,
planetary exploration, and household chores it is critical that
robots efficiently find paths (i.e., motion plans) from starting
locations to desired goals. Although motion planning at an
abstract level is a fairly intuitive concept, it is a topic that is
difficult to teach. The difficulty arises because deep understand-
ing of motion planning concepts requires hands-on experience
with different algorithms. However, the low-level programming
details in the implementation of these algorithms can often
obscure high-level concepts, which are necessary for a solid
understanding of the subject. This paper describes an ongoing
project that aims to provide the software tools and curricular
material that will help fill some of the gaps in undergraduate
robotics education. Many colleges offer introductory robotics
classes early in the curriculum, often to attract students to
Science, Technology, Engineering, and Mathematics (STEM)
disciplines. However, any subsequent robotics classes are often
only available at the senior undergraduate level or beginning
graduate level. They tend to include many topics in an effort
to teach the students as much as possible about an extremely
diverse area. Available robotics textbooks [1–3] cover many
topics and challenge the student as well as the instructor to
keep up.

The project described herein focuses exclusively on one core
concept in robotics: motion planning. Motion planning is a
mature field within robotics and often comprises a significant
part of advanced robotics classes. In two recent robotics

M. Moll, I. Şucan, and L. Kavraki are with the Department of Com-
puter Science at Rice University, Houston, TX 77005, USA. Email:
{isucan,mmoll,kavraki}@rice.edu. J. Bordeaux is with the George R. Brown
School of Engineering, Rice University, Houston, TX 77005, USA. Email:
jbordeau@rice.edu

textbooks, motion planning is almost the sole focus of one [3],
while taking up more than half of the other [1]. Within our
project, we have developed software and teaching materials
to make motion planning more accessible to diverse learners
earlier in the undergraduate curriculum. We focus exclusively
on sampling-based planners [1, Chapter 7]. At the same time,
we aim to make it easier for educators to teach the material.
We have identified instructors at other institutions who have
agreed to use the material in their class, and through a feedback
loop we will iteratively refine and extend the existing material.
The existing material is also freely available to anyone else
for use in their classes as they see fit.

Motion planning has been studied extensively in the past.
The basic problem of finding collision-free paths for polyhedral
robots operating in a polyhedral workspace is already PSPACE-
complete [4]. Moreover, complete planning algorithms are
difficult to implement and computationally intractable. Research
efforts have therefore shifted to algorithms that provide
weaker completeness guarantees. Sampling-based algorithms in
particular have emerged as a practical approach to many hard
motion planning problems. These algorithms are extremely
popular, as they have shown good experimental performance,
but can be hard to implement correctly [5]. This is why our
software is currently focused on those algorithms. Sampling-
based algorithms often provide probabilistic completeness: they
will find a solution with probability 1 if one exists, but cannot
decide if no solution exists. The fundamental idea of sampling-
based motion planning is to approximate the connectivity of
the search space with a graph structure. The search space
is sampled in a variety of ways, and selected samples end
up as the vertices of the approximating graph. Edges in the
approximating graph denote valid path segments. There is a
wide variety of sampling-based algorithms, but they almost
all share common components. Below we briefly describe the
most important ones:

State space Points in the state space (or configuration space)
fully describe the state of the system being planned for.
For a free-flying rigid body, for instance, the state space
consists of the space of all translations and rotations.

Control space Points in the control space represent inputs
that can be applied to change the state of the system.
This is only needed for systems with dynamics. For
purely geometric planning no controls are needed and state
interpolation is used instead to compute path segments.

Sampler Samplers are needed to generate different states
from the state space. For control-based planning, another

To appear in Proc. IEEE Workshop on Advanced Robotics and Its Social Impacts (ARSO), 2011

2

sampler is needed to generate different controls.
State validity checker A state validity checker is a function

that computes whether a sampled state is valid. For
example, it can determine whether the state is collision-
free and whether velocities and accelerations are within
bounds.

Local planner For geometric planning the local planner usu-
ally performs some kind of interpolation in the state space
between two different states. For planning with controls
the local planner is a function that computes a resulting
trajectory when a control is applied for some period of
time starting from some initial state.

The motion planning curriculum we have developed enhances
deep understanding of these concepts as well as several state
of the art motion planning algorithms. The curriculum is
supported by an integrated software environment described
in the following section.

II. MOTION PLANNING SOFTWARE DEVELOPMENT

A. The Open Motion Planning Library

The software we have developed is based on the Open
Motion Planning Library [6], which we released in December
2010. This C++ library was designed to have a clear mapping
between the concepts described above and C++ classes. We
have created Python bindings for the library, allowing students
to access almost all of OMPL’s functionality through Python
as well. Since many institutions use Python for introductory
programming classes, the Python bindings are intended to help
in making the code more accessible to novice programmers.
The OMPL library is also efficient, lightweight, easy to
integrate with external software, and easy to install. It contains
implementations of many sampling-based algorithms such as
PRM [7], RRT [8], KPIECE [9], SBL [10], EST [11], and
many more.

B. OMPL.app: A Graphical User Interface for OMPL

We have developed an additional software layer called
OMPL.app, based on OMPL. OMPL.app adds integration with
PQP [12], a collision checking library, and Assimp [13], a
library for reading CAD files, and defines a state validity
checker for 2D and 3D rigid body motions that checks whether
states are collision-free. Furthermore, OMPL.app includes many
example models for robots and environments, so that it is easy
for students to get started. Students are able to solve motion
problems without writing any code through a GUI that is also
included (shown in Fig. 1). A student can load meshes that
represent the environment and a robot, define start and goal
states, and simply click on the “Solve” button to obtain a
solution. If a solution is found, it is played back by animating
the robot along the found path. Optionally, a trace of the found
path can replace the animation (by unchecking the “Animate”
check-box). It is also possible to show a workspace projection
of the states that were explored by the planner, which can
be helpful in tuning planner parameters or with selecting the
appropriate planning algorithm for a particular problem. By
default, the program assumes that students want to plan for a
free-flying 3D rigid body (i.e., the state space is SE(3)), but

Fig. 1. The OMPL.app graphical interface. A solution path is shown for a
car-like robot driving out of a “bug trap” environment.

planning in SE(2) is possible as well. We have also pre-defined
a number of common robot types that require controls: a blimp,
a quadrotor, and a number of car models. For each robot type,
the appropriate planners can be selected in the “Planner” tab
(otherwise a default one will be automatically selected). Once
a planner is chosen, its parameters can be tuned, if desired.
Finally, the student can adjust the bounding box for the robot’s
position. By default this is the bounding box of the environment
mesh.

C. An Example Program

OMPL offers a simple API to maximize ease of use. Figure 2
shows the complete code necessary for planning the motion
of a rigid body between two states, in Python and C++. In
both cases, the only steps taken in the code are: instantiate
the space to plan in (SE(3), line 1), create a simple planning
context (using SimpleSetup, line 4), specify a function that
distinguishes valid states (line 6), specify the input start and
goal states (lines 8–13), and finally, compute the solution (line
14). The SimpleSetup class initializes instantiations of the core
motion planning classes with reasonable defaults, which can
be overridden if desired.

Essentially, the execution of the code can be reduced to
three simple steps: (1) specify the space in which planning
is to be performed, (2) specify what constitutes a valid state,
and (3) specify the input start and goal states. Such simple
specifications are desirable for many users who simply want
motion planning to work, without having to select problem
specific parameters, or different sampling strategies, different
planners, etc. The simplicity of the approach we provide
is especially useful for students as it allows them to learn
incrementally and still solve problems, without having to input a
large number of parameters from the beginning. This capability
is made possible by OMPL’s automatic computation of planning
parameters. In the example above, a planner is automatically
selected based on the specification of the goal and the space to
plan in. The selected planner is then automatically configured
by computing reasonable default settings that depend on the
planning context. If a user decides to choose their own planner,

3

1 space = SE3StateSpace ()
2 # set the bounds (code omi t ted)
3

4 ss = SimpleSetup (space)
5 # ” i s S t a t e V a l i d ” i s a user−supp l ied f u n c t i o n
6 ss . se tS ta teVa l i d i t yChecke r (i s S t a t e V a l i d)
7

8 s t a r t = State (space)
9 goal = State (space)

10 # set the s t a r t & goal s ta tes to some values
11 # (code omi t ted)
12

13 ss . setStar tAndGoalStates (s t a r t , goal)
14 solved = ss . so lve (1 . 0)
15 i f solved :
16 pr in t setup . ge tSo lu t ionPath ()

1 StateSpacePtr space (new SE3StateSpace ()) ;
2 / / se t the bounds (code omi t ted)
3

4 SimpleSetup ss (space) ;
5 / / ” i s S t a t e V a l i d ” i s a user−supp l ied f u n c t i o n
6 ss . se tS ta teVa l i d i t yChecke r (i s S t a t e V a l i d) ;
7

8 ScopedState<SE3StateSpace> s t a r t (space) ;
9 ScopedState<SE3StateSpace> goal (space) ;

10 / / se t the s t a r t & goal s ta tes to some values
11 / / (code omi t ted)
12

13 ss . setStar tAndGoalStates (s t a r t , goal) ;
14 bool solved = ss . so lve (1 . 0) ;
15 i f (solved)
16 setup . ge tSo lu t ionPath () . p r i n t (s td : : cout) ;

Fig. 2. Solving a motion planning problem with OMPL in Python (left) and in C++ (right).

or set their own parameters, OMPL allows the user to do so
completely—no parameters are hidden.

III. MOTION PLANNING CURRICULUM DEVELOPMENT

We have developed a series of assignments that complement
the material presented in class. The assignments are set up so
that each assignment builds on the previous one, but without
directly depending on it. Furthermore, for each assignment we
have developed several versions that vary in depth. One of
the aims of our project is to make the material accessible
to a broad audience of engineering students, early in the
curriculum. In terms of required programming skills, we believe
the assignments we have developed can be completed if students
have taken an introductory programming class in Python or C++.
Since all of the components common to all motion planning
algorithms are already implemented, students do not have to
spend time implementing any of the low-level data structures,
thereby allowing them to focus on the high-level algorithms.

A. Evaluating Motion Planning Algorithms

For students to develop an intuition about the complexity
of motion planning, it is useful for them to apply different

Fig. 3. The Benchmark makes it easy to automatically generate plots that
compare performance metrics such as success rate across different planning
algorithms.

algorithms in OMPL to a variety of example problems. We
have created a number of scenarios that can be used with
the OMPL.app GUI. Students are asked to run different
planners on different problems, experiment with different
motion planning algorithms, visualize the output, and reflect
on the reported solutions. In a second assignment this process
is more formalized through a simple programming assignment
where students benchmark motion planning algorithms and
different sampling strategies. To aid with this assignment, a
Benchmark class is provided. This class automatically collects
a large number of statistics, and a post-processing script can be
used to analyze the statistics and automatically produce plots
for measured data (see Fig. 3). The objective of the assignment
is for students to understand performance measures and the
effect of certain parameters on performance.

B. Implementing a New Planning Algorithm

After students are familiar with the organization of OMPL
and know how to run a planning algorithm, they are asked to
implement a variant of a planning algorithm that is already
included in OMPL (e.g., implement ADDRRT[14], given the
version of RRT in OMPL). This will encourage deep learning
of the material without requiring excessive programming. The
students also need to apply their newly added algorithm to
more challenging problems.

C. Open-ended Projects

For the final assignment, the students can choose from
a number of assignments designed around advanced topics
in motion planning. Although specific goals are given in
each assignment, students are encouraged to research the
problem and come up with creative solutions. We have created
assignments on topics such as:

Path clustering The type of algorithms implemented in
OMPL return a different path on each run. In this
assignment students are asked to cluster multiple solution
paths for the same motion problem into clusters of similar
paths. Such clusters often correspond to a homotopy class,
a concept from topology.

4

Path optimization There are a variety of techniques available
that take the output of a motion planning algorithm and
attempt to make make the path smoother, shorter, etc. This
assignment explores some of these techniques.

Dynamic manipulation In this assignment students learn how
to plan for a n-link planar manipulator whose dynamics are
provided in the form of a system of differential equations.
The students are asked to explore how the complexity
of the problem changes as velocity/control bounds are
changed, links are added, or if some links are under-
actuated.

Multi-robot planning The algorithms in OMPL can be used
to plan motions for a group of robots. However, this
becomes very challenging if the individual robots need to
carefully coordinate their actions to reach their respective
goal positions.

IV. ASSESSMENT

To evaluate the effectiveness of the technical and curricular
activities, we are conducting a formative and summative formal
outcomes assessment. We have identified a number of partners
at other educational institutions who plan to use the material
in their own classes. The learning outcomes will be monitored
periodically through a series of surveys conducted in a robotics
class at Rice and our partner institutions. We plan to work
closely with the partner institutions, so that feedback can be
used to quickly improve the curriculum materials and teaching
methods. The success of the project is determined by evaluating
the overall level of achievement attained by students.

V. DISSEMINATION

One of our objectives is to broaden the dialog between
students and faculty and beyond institutional boundaries to
create a worldwide community of OMPL users. The software
is distributed under a BSD license, allowing anyone to modify
the software as needed, and is also available through a
public repository, so that serious OMPL users can track the
development and contribute their own extensions. Additionally,
there is an active mailing list of OMPL users and developers.
We are also collaborating with Willow Garage on the integration
of OMPL into ROS, a popular robotics software system that
runs on many robots, and is also used in other robotics classes.
The technical skills that students acquire with OMPL can thus
be leveraged in such classes.

OMPL comes with a API reference manual, but we have
also created many demo programs and tutorials which (1) teach
students how to get started with OMPL, (2) illustrate common
workflows, and (3) demonstrate usage patterns for some of
the more advanced features. We are currently also preparing a
comprehensive tutorial, which will include sets of slides and
a handout with exercises. The tutorial will be held first at a
robotics conference (the IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2011) and is thus aimed
at a more advanced audience than the typical undergraduate
student. Nevertheless, the tutorial will be valuable in two ways.

First, many attendees will be educators themselves, and they
will be better prepared to teach the material after the tutorial.
Second, many parts of the tutorial will still be accessible to
undergraduate students, and—with little effort—can be used
to tie together some of the existing mini tutorials.

VI. CONCLUSION

We have described a teaching module that can be used in an
undergraduate robotics class to teach robot motion planning.
It enhances deep learning and is supported by an integrated
software environment. The assignments we have developed
scaffold learning, avoid heavy programming, and focus on
critical thinking with a hands-on approach. As the project
advances, the products of this project can strengthen other
courses in computer science and engineering, and assist in
retaining students in STEM disciplines.

ACKNOWLEDGEMENTS

This project is funded by NSF CCLI 0920721, NSF IIS
0713623, and by Willow Garage. The authors are indebted to
other members of the Kavraki Lab for their contributions to
OMPL and other motion planning software that preceded it
and provided some inspiration for the current design.

REFERENCES
[1] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E.

Kavraki, and S. Thrun. Principles of Robot Motion: Theory, Algorithms,
and Implementations. MIT Press, 2005.

[2] J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers,
Boston, MA, 1991.

[3] S. M. LaValle. Planning Algorithms. Cambridge University Press, 2006.
URL http://msl.cs.uiuc.edu/planning/.

[4] J. Canny. The Complexity of Robot Motion Planning. MIT Press,
Cambridge, MA, 1988.

[5] I. A. Şucan and L. E. Kavraki. On the implementation of
single-query sampling-based motion planners. In IEEE Intl.
Conf. on Robotics and Automation, pages 2005–2011, may 2010.
doi:10.1109/ROBOT.2010.5509172.

[6] I. A. Şucan, M. Moll, and L. E. Kavraki. The Open Motion Planning
Library, 2010. URL http://ompl.kavrakilab.org.

[7] L. E. Kavraki, P. Švestka, J.-C. Latombe, and M. H. Overmars. Proba-
bilistic roadmaps for path planning in high-dimensional configuration
spaces. IEEE Trans. on Robotics and Automation, 12(4):566–580, August
1996. doi:10.1109/70.508439.

[8] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic plan-
ning. Intl. J. of Robotics Research, 20(5):378–400, May 2001.
doi:10.1177/02783640122067453.

[9] I. A. Şucan and L. E. Kavraki. A sampling-based tree planner for
systems with complex dynamics. IEEE Trans. on Robotics, 2011.
doi:10.1109/TRO.2011.2160466.

[10] G. Sánchez and J.-C. Latombe. A single-query bi-directional probabilistic
roadmap planner with lazy collision checking. In The Tenth International
Symposium on Robotics Research, pages 403–417, 2001. doi:3-540-
36460-9 27.

[11] D. Hsu, J.-C. Latombe, and R. Motwani. Path planning in expansive con-
figuration spaces. Intl. J. of Computational Geometry and Applications,
9(4-5):495–512, 1999.

[12] E. Larsen, S. Gottschalk, M. C. Lin, and D. Manocha. Fast dis-
tance queries with rectangular swept sphere volumes. In IEEE
Intl. Conf. on Robotics and Automation, pages 3719–3726, 2000.
doi:10.1109/ROBOT.2000.845311.

[13] Assimp, open asset import library. http://assimp.sf.net, 2011 .
[14] L. Jaillet, A. Yershova, S. M. LaValle, and T. Siméon. Adaptive tuning of

the sampling domain for dynamic-domain RRTs. In IEEE International
Conference on Intelligent Robots and Systems, 2005.

