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Abstract

The activity of most drugs is regulated by the binding of one molecule (the lig-
and) to a pocket of another, usually larger, molecule, which is commonly a protein.
This report describes a new approach to creating low-energy structures of flexible
proteins to which ligands can be docked. The flexibility of molecules is encoded
with thousands of parameters making the search for valid complexes a formidable
problem. Our method takes into account the flexibility of the protein as this can
be encoded by its major modes of motion. The output of the program consists of
low-energy protein conformations that can then be docked with a ligand using a
traditional docking program. We employ a robotics-based approach for explor-
ing the conformational space of the protein. Our long term goal is to develop
an efficient, accurate, and automated algorithm that will be used to screen large
databases of molecules for novel therapeutics.
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1 Introduction

The ability to predict the bound conformations and interaction energy between
small organic molecules and biomacromolecules such as proteins and DNA is of
extreme physiological and pharmacological importance. For example, the activity
of most drugs is regulated by the binding of one molecule (the ligand) to the pocket
of another, usually larger, molecule, which is commonly a protein. Figure 1 shows
HIV-1 protease, a molecule which is heavily involved in the replication of the HIV

virus. If this molecule is blocked by a ligand, as shown in the figure, the virus
can not create mature copies of itself. As another example consider chemotherapy
drugs which are designed to selectively bind to specific proteins involved in cell
duplication, and stop the proliferation of tumor cells by inhibiting their function.
Estrogen proteins trigger the proliferation of breast cells upon binding to a ligand
(estrogen). Most of the existing breast cancer drugs consist of small molecules
binding to the estrogen protein and blocking its signaling function.

There has been a considerable effort from both academia and industry to de-
velop computational methods that can be used to determine the affinity with which
a ligand will bind a target protein. These methods are typically referred to as
docking methods and their output is the three dimensional structure of a protein-

Figure 1: HIV-1 protease, a molecule involved in the replication of the HIV virus.
Each atom is represented by a sphere with the appropriate Van der Waals radius.
The ligand is shown in red.
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ligand complex as would be determined experimentally using X-ray crystallog-
raphy (Rhodes, 1993) or Nuclear Magnetic Resonance (NMR) (Wüthrich, 1986)
methods. Effective docking methods could be used to scan databases of potential
ligands and can shorten the drug design cycle (currently 10 years) and reduce its
cost (currently 800 million dollars) by generating better leads faster.

One of the first paradigms for the docking problem was the so-called lock-and-
key model (Fischer, 1894). Within this paradigms the docking problem reduces to
a shape complementarity problem: for a given shape of the active site of a protein
we want to find a ligand that can take on a matching shape. Eventually, it was
observed that in some cases protein flexibility cannot be ignored. Koshland (1958)
proposed the induced-fit model. In this model the protein and the ligand adapt to
each other during the binding process. A more modern view on protein flexibility
is that the binding process selects a stable conformation from an ensemble of
metastable states (Bursavich and Rich, 2002; Ma et al., 1999, 2002, 2001). Some
examples of systems that exhibit significant flexibility include streptavidin (Weber
et al., 1989), HIV-1 protease (Wlodawer et al., 1989), DHFR (Bystroff and Kraut,
1991), aldose reductase (Urzhumtsev et al., 1997), and maltose binding protein
(Duan and Quiocho, 2002).

Several approaches have been proposed for modeling the flexibility of a pro-
tein for the analysis of biomolecular interactions. They can be roughly divided
into five different categories: (a) the use of soft proteins which relax energetic
penalties due to steric clashes, e.g., (Jiang and Kim, 1991), (Schnecke et al., 1998),
(Apostolakis et al., 1998), (b) the selection of a few critical degrees of freedom in
the protein binding site, e.g., (Leach, 1994), (Leach and Lemon, 1998), (c) the use
of multiple protein conformations either individually or by combining them using
an averaging scheme, e.g., (Pang and Kozikowski, 1994), (Knegtel et al., 1997),
(Sudbeck et al., 1998), (d) the use of modified molecular dynamics methods, e.g.,
(Di Nola et al., 1994; Mangoni et al., 1999), (Nakajima et al., 1997a,b), and (e) the
use of collective degrees of freedom as a new basis of representation for protein
flexibility, e.g., (Levy and Karplus, 1979), (Levitt et al., 1985), (García, 1992),
(Teodoro et al., 2003). The latter approach is gaining increasing popularity.

Collective degrees of freedom can be determined using different methods. The
simplest method of them is the calculation of normal modes for the protein (Levy
and Karplus, 1979; Go et al., 1983; Levitt et al., 1985). Normal modes are sim-
ple harmonic oscillations about a local energy minimum which depends on the
structure of the protein and the energy function. Normal modes assume a purely
harmonic energy function and by considering that the protein is at an energy min-
imum, its flexibility can be represented by using the low frequency normal modes
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as degrees of freedom for the system. Zacharias and Sklenar (1999) applied a
method similar to normal mode analysis to derive a series of harmonic modes
that were used to account for protein flexibility in the binding of a small ligand
to DNA. In practice this reduced the number of degrees of freedom of the DNA

molecule from 822 (3 × 276 atoms − 6) to approximately 5 to 40. Keserû and
Kolossváry (2001) also used a normal mode based model (Kolossváry and Guida,
1999; Kolossváry and Keserû, 2001) to study inhibitor binding to HIV integrase.

An alternative and more widely used method of calculating collective degrees
of freedom for macromolecules is the use of dimensional reduction methods. Such
methods do not assume a purely harmonic energy function and have thus wider ap-
plicability. Among them, a popular choice is principal component analysis (PCA)
(Jolliffe, 1986). This method was first applied by García (1992) in order to identify
high-amplitude modes of fluctuations in macromolecular dynamics simulations. It
has also been used to identify and study protein conformational substates (Romo
et al., 1995; Caves et al., 1998; Kitao and Go, 1999), as a possible method to ex-
tend the time-scale of molecular dynamics simulations (Amadei and Berendsen,
1993; Amadei et al., 1996; Abseher and Nilges, 2000) and as a method to perform
conformational sampling (Abseher and Nilges, 2000; de Groot et al., 1996b,a).
The most significant principal components have a direct physical interpretation.
They correspond to a concerted motion of the protein where all the atoms move in
specific spatial directions and with fixed ratios in overall displacement. Recently,
we have presented a protocol (Teodoro et al., 2003) to derive a reduced basis rep-
resentation of protein flexibility which can be used to reduce the complexity of
modeling protein/ligand interactions. By considering only the most significant
principal components as the valuable degrees of freedom of the system, it is pos-
sible to reduce an initial search space of thousands of degrees of freedom to less
than fifty. This is achievable because the fifty most significant principal compo-
nents usually account for 80–90% of the overall conformational variance of the
system. For several systems even the use of the first ten modes offers significant
advantages (Teodoro, 2003).

The development of effective docking methods is inhibited by two major con-
siderations. One is the existence of scoring functions that can identify complexes
that minimize free energy, a measure of the affinity with which two molecules in-
teract. A second consideration is the huge combinatorial complexity of the dock-
ing problem. Both the protein and the ligand are flexible and when they interact
they change their shape to produce a minimum free energy ‘perfect’ fit. The flex-
ibility of a protein is encoded with a few hundred to a few thousand parameters.
So docking involves searches in combined conformational spaces of very high
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dimension. This paper addresses the combinatorial aspect of the docking prob-
lem. We define a reduced basis for the representation of the protein using the
main modes of motion of the protein (García, 1992). We use a robotics-inspired
search method based on Expansive Space Trees (Hsu et al., 1999) to explore the
conformational space of the protein. In this report we ignore the conformational
search for the ligand. It is assumed that the best-ranked conformations produced
by our search are passed to a traditional docking program which will try to dock
the ligand to each of the conformations. This can be done relatively quickly; the
hard problem is to quickly find distinct low-energy conformations of the protein.
This problem is the focus of this report.

The outline for the rest of this report is as follows. In the next section we
describe how to obtain a compact representation of a protein’s flexibility using the
main modes of motion. Section 3 describes a docking algorithm for the efficient
exploring the conformational space described by the main modes of motion. In
section 4 we give several different algorithm-independent performance evaluation
criteria that are used in section 5 to describe the performance of our algorithm on
some test cases. In section 6 we discuss the contributions of this report and outline
directions for future research.

2 Preliminaries

2.1 Generation of Molecular Trajectories

Given an initial conformation of a protein and a temperature, a molecular dynam-
ics program like NAMD (Kalé et al., 1999) or Amber (Cornell et al., 1995) can
simulate the motion of the protein using Newton’s second law, or the equation
of motion, F = ma, where F is the force exerted on the particle, m is its mass
and a is its acceleration. From a knowledge of the force on each atom (as this is
specific by the potential energy of the molecule), it is possible to determine the
acceleration of each atom in the system. Integration of the equations of motion
then yields a trajectory that describes the positions, velocities and accelerations
of the particles as they vary with time. Unfortunately the integration step is lim-
ited by the highest-frequency motion that must be simulated since fast vibrations
imply rapidly changing velocities and accelerations and is typically in the order
of a femtosecond. As a result, molecular dynamics simulations are time consum-
ing and computationally expensive. From a simulated trajectory we would like to
compute the most accurate model possible of the molecule’s flexibility.
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2.2 Major Mode Analysis
The main modes of motion of a protein can be determined from a molecular dy-
namics simulation. Suppose we have a trajectory containing m conformations for
a molecule with n atoms. Let A be a (3n) × m matrix containing the atom dis-
placements for each atom in each conformation. The displacements are measured
with respect to the average conformation. The main modes of motion (or princi-
pal components) can then be computed using the Singular Value Decomposition
(SVD). The SVD of matrix A is defined as

A = U6V T , (1)

where U and V are orthonormal matrices and 6 is a nonnegative diagonal matrix
whose diagonal elements are the singular values of A in decreasing order. The
columns of matrices U and V are called the left and right singular vectors, respec-
tively. The left singular vectors corresponding to the largest singular values reflect
the major modes of motion.

Care should be taken to align each conformation with a reference conforma-
tion to remove any variation due to translations and rotations: we are only inter-
ested in how the shape of the protein changes. The matrix A therefore contains
the displacements after each conformation has been aligned with the starting con-
formation. Two conformations can be aligned using SVD (Golub and Loan, 1996,
sec. 12.4.1). First, the conformations are translated so that their geometric cen-
ters are at the origin. Next, we find a rotation that minimizes the RMSD between
two conformations. The RMSD is a distance measure, defined as the square root
of the average squared distance between corresponding atoms. Let C1 and C2 be
two n × 3 matrices containing the Cartesian coordinates of two conformations.
Then the orthogonal matrix R that minimizes the Frobenius norm ‖C1 − C2 R‖F
is given by R = U V T , where U and V are matrices containing the left and right
singular vectors of CT

2 C1, respectively. If R has determinant −1, then it corre-
sponds to an improper rotation. The minimizing proper rotation R′ is then given
by R′

= U ′V T , where U ′ is equal to U except that the signs of the entries in the
last column are flipped.

3 Expansive Search
In this section we will present a new algorithm for exploring the conformational
space of a flexible protein using major modes. A docking program that searches
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the conformational space of a flexible protein should have the following two prop-
erties:

• It should be biased towards low-energy conformations.

• It should efficiently explore ‘unknown’ parts of the search space.

There is some tension between these two requirements. If the algorithm is too
biased toward low-energy conformations, it will get stuck in a local energy mini-
mum. On the other hand, if exploration is emphasized too much, we may end up
with many physically unrealistic conformations. The two requirements need to be
carefully balanced.

We have developed an algorithm that has the two properties mentioned above.
It is based on an algorithm that solves the motion planning problem, a problem in
robotics. The goal in motion planning is to find a path between two configurations
of a robot such that no configuration along the path is in collision with any obsta-
cles. This problem is known to be PSPACE-hard, but randomized algorithms have
been shown to be very practical to solve complicated motion planning problems in
practice (Kavraki et al., 1996; Hsu et al., 1999; LaValle and Kuffner, 2001; Akinc
et al., 2003). Our algorithm is based on one such algorithm (Hsu et al., 1999). The
original algorithm builds up a tree of collision-free configurations. New leafs are
added to the tree by sampling near existing nodes that are likely to be near unex-
plored parts of the space. After several iterations the tree represents a roadmap of
the environment: a simplified 1-dimensional structure that has the same structure
as the underlying high-dimensional configuration space.

To use a motion planning algorithm we need a representation of the degrees of
freedom of the protein. We can consider a protein a very complex robotic system,
where each dihedral angle is considered a degree of freedom. If we view dock-
ing as a motion planning problem, a motion planning algorithm would try to find
collision-free path from a starting conformation to other stable conformations.
A path specifies the values of the dihedral angles along the path. A conforma-
tion is considered in collision if its energy exceeds a threshold. Motion planning
has been applied before to protein folding (see e.g., (Apaydin et al., 2004; Am-
ato et al., 2003)). For docking most proteins of interest this approach would not
work, because the number of degrees of freedom is simply too large (typically
much larger 100). So instead, we use the major modes as approximate degrees of
freedom.

Major modes are a linear approximation of the most important motions of a
protein. However, the real motions are combinations of dihedral rotations (plus
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some bond angle and bond length stretching). Therefore, a displacement along
the major modes is only valid in a small neighborhood. To move beyond this
neighborhood we need to perform some corrections to maintain a physical con-
formation. These corrections are applied each time the conformation moves more
than a distance δ along the major modes. If the perturbation in the expansion step
is of size x , then corrections are applied dx/δe times. The corrections are applied
in two stages. During the first stage the bond angle and bond length energy is min-
imized. These energy terms take time linear in the number of atoms to compute,
so minimization can be done very efficiently. We do not perform a full minimiza-
tion, but merely take a limited number steps along the gradient of the bond energy
function. This is done in part because of efficiency reasons, but there is also the
risk that with full minimization the conformation may move back to its original
position. The first stage should fix up most of the distortion. During the second
stage we minimize the total energy. Since this takes quadratic time, we only take
a small number of steps along the gradient of the energy function.

Now that the representation of the degrees of freedom is defined we can present
the algorithm. Our algorithm is easily defined inductively. It iteratively creates a
set of conformations. The base case is one known conformation taken from, e.g.,
the Protein Data Bank. The inductive case is as follows. Suppose we have a set of
n − 1 conformations. To generate the nth conformation, we randomly select one
of the previous n − 1 conformations and generate a Gaussian perturbation of that
conformation. The perturbation is computed in major mode space. This is called
an expansion step. The key to the algorithm is how to select a conformation. This
selection is based on a weighting function. Conformations with low weight are
considered “good”, whereas ones with high weight are considered “bad”. Assume
the conformations are sorted by increasing weight. We select conformation i for
expansion according to a geometric distribution: the probability that we pick i for
expansion is given by

P(i) = p(1 − p)i−1, i = 1, . . . (2)

The reason we use this distribution rather than just selecting the conformation
with the lowest weight is that usually the top ranking conformations are all equally
good. Figure 2 shows a simple visual representation of how the algorithm explores
the conformational space. It creates an outward growing tree in the space spanned
by two major modes, biased towards low-energy areas.

The weighting function should assign low weights to low-energy conforma-
tions and to conformations in the unexplored parts of the search space. Let the
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Figure 2: An expansive search for low-energy conformations. Conformations
are sampled along the first two major modes. Low-energy areas in this two-
dimensional space are indicated by the gray shaded areas. The starting point of
the search is indicated by the arrow.

weight wi of conformation i be defined as:

wi =
(
1.1 − exp(−γ (Ei − Emin))

)
· ci/(1 + di ), (3)

where

γ = a constant controlling the sensitivity to energy, (4)
Ei = the energy of conformation i , (5)

Emin = min
i=1,...,n

Ei , (6)

ci = number of times conformation i has been selected, and (7)
di = sum of distances to k nearest neighbors. (8)

Let us break down the weighting function in different parts and analyze how they
contribute to the desired behavior. The energy term

(
1.1 − exp(−γ (Ei − Emin))

)
8



ranges from 0.1 when Ei = Emin to 1.1 when Ei approaches infinity. In our
implementation we use the CHARMM energy model (MacKerell et al., 1998), but
the algorithm is not specific to this model. The energy function is very non-linear.
Low-energy conformations are often very close to high-energy conformations. By
using an exponential scaling function of the energy we emphasize differences in
low-energy conformations and de-emphasize differences in high-energy confor-
mations. Although we are searching the conformational space and not simulating
molecular dynamics, one can think of the γ parameter as being equal to 1/(kB T ),
i.e., the inverse of the Boltzmann constant times the temperature. This energy
rescaling function was shown to be very effective in (Mancera et al., 2004). This
technique is known as stochastic tunneling (Merlitz and Wenzel, 2002).

The number of times a conformation has been selected is used in the weighting
function to prevent the algorithm from exhaustively exploring the space around
low-energy conformations. The nearest neighbor distance serves a similar pur-
pose, but it also forces the algorithm to select conformations with a large nearest
neighbor distance and, thus, a low weight. Conformations with a large nearest
neighbor distance are in sparsely sampled part of the search space, so the weight-
ing function forces expansion in these areas.

After a conformation has been selected, we generate a new conformation by
perturbing the selected conformation. We then compute the weight for the new
conformation and insert it in the sorted list of conformations. Since the weight
depends on the nearest neighbor distance, we also need to update the weights of
the nearest neighbors of the new node. If the value of Emin changes, the value
of all weights change. This should not happen too often, but this update can
also be done lazily without deviating too much from the ‘right’ sorted order. By
‘lazily’ we mean in this case that only the weights of new nodes and their nearest
neighbors are updated.

3.1 Random Bounce Walk
In this section and the next section we describe two changes that will improve the
performance and the scalability of the algorithm, respectively. Typically, a confor-
mation is energetically very constrained in moving to nearby conformations. Most
of the search space corresponds to high-energy conformations. To move around
in such a constrained space it may be helpful to generate new conformations with
a short random walk rather than simply with a random perturbation. This may
improve coverage of the search space, but obviously generating a neighbor with a
random walk is more expensive. The random walk is generated as follows. First

9



high energy

low energy

high energy

q

qnew

Figure 3: Illustration of the random bounce walk.

a random direction (in major mode space) is chosen. The conformation is moved
along this direction in small increments until the energy exceeds a threshold. If
a threshold is exceeded, the algorithm backtracks to the last good position and
picks a new direction. This process is repeated until either the distance between
the endpoint of the path and the starting conformation exceeds some threshold
or a maximum number of steps is exceeded. The random walk is illustrated in
figure 3. The walk starts at conformation q, bounces three times, and stops at
qnew once the distance along the walk has reached a maximum threshold. The
small dashes along the path indicate the intermediate conformations. The open
circles denote high-energy conformations from which the algorithm backtracks to
the conformations marked with a solid circle.

3.2 Multi-Level Search

To perform very large searches, the expansive search algorithm needs to be ex-
tended to run in parallel on a cluster of machines. To minimize the communica-
tion between subprocesses, we partition the search space and run the algorithm
separately on different parts of the space. Unfortunately, we do not know a priori
how to partition the search space into promising regions for a search. However,
once we have run a search, we have some information about where to search next.
This leads to the following multi-level search algorithm. The algorithm keeps
track of a collection of seeds: promising starting points for a search. Initially, the
only seed is a known crystal structure. After one search we select a fixed number
of conformations whose energy is below some threshold and who are all at least
some distance apart from each other and from the seeds, and add them to the set
of seeds. We then start a search from each of the new seeds. To prevent the expan-
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sive search from covering the exact same part of the space over and over again, we
need to make a small modification. At the start of each search, the set of all seeds
is read in to initialize the set of generated conformations. The nearest neighbor
distance component of the weighting function will guide the search toward unex-
plored parts of the space. Nevertheless, it is inevitable that some part of the search
space covered in previous levels will be covered again at the current level.

4 Performance Evaluation
To judge how well our algorithm is doing, we need to define a number of ways
to measure the performance. Due to the complexity of the problem and the num-
ber of parameters involved, the result of a particular instantiation of the algorithm
cannot be characterized by one number. The algorithm takes as input a start con-
formation and produces as output a set of conformations with their CHARMM en-
ergy. In our experiments we have used the following two performance measures,
each of which highlights a different aspect of the search results:

• number of different low-energy conformations, and

• distance to known crystal structures.

Below we will describe these performance measures in more detail.

4.1 Number of Different Low-Energy Conformations
One of the main goals of our docking program is to find low-energy conforma-
tions, so it is only natural to consider the number of low-energy conformations
it generates. Many conformations that the search produces will be so close to-
gether that for all practical purposes they are the same. We would like to cluster
all low-energy conformations that are close together. For this we have developed a
very simple algorithm. It takes as input the conformations produces by the search,
sorted by energy. The conformations with energy larger than some energy thresh-
old are rejected immediately. The algorithm incrementally constructs a kd-tree
of all remaining conformations that are at least some minimum distance apart.
The conformation with the lowest energy is always added to the kd-tree. For sub-
sequent conformations we determine the distance to the nearest neighbor in the
kd-tree. If this distance greater than the threshold distance, we add it to the kd-
tree. From a geometric point of view this is not the optimal solution to finding
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conformations that are furthest apart from each other. But for our purposes the
fact that our algorithm is ‘greedy’ is actually a desirable property. It biases the
outcome towards low-energy conformations.

Another approach to find different low-energy conformations is to use a ‘tra-
ditional’ clustering approach and take the centroids to be the representative con-
formation of a cluster. In theory this could work, because we expect to see a
higher density of conformations in low-energy areas of the search space. In our
experience, however, this difference in density was not enough in practice to over-
come the fact that clusters tend to blend together. Conformations are generated
as deviates from previously generated conformations. We suspect that our confor-
mations form a high-dimensional star-shaped set. For our experiments we used
k-means and x-means clustering Pelleg and Moore (2000). K -means clustering is
an iterative procedure that determines a clustering with k clusters. X -means is a
variant of k-means that automatically determines the statistically optimal value for
k. Running x-means clustering on our search results produced hundreds of clus-
ters, which leads us to believe that the conformations do not form well-separated
clusters.

4.2 Distance to Known Crystal Structures
The second performance measure we used is the distance to crystal structures. For
many large, flexible proteins there are several different crystal structures in the
Protein Data Bank (PDB). In each crystal structure the protein is bound to a differ-
ent ligand. Ignoring the ligand data, we are interested in measuring the distance
between each crystal structure to its nearest neighbor in the set of conformations
produced by the search. If for many crystal structures there is a nearby confor-
mation in the search results, then the algorithm produces biologically plausible
structures and is a useful tool in predicting docking targets. For this performance
measure we ignore energy. We are assuming that the search results will be ranked
according some other energy/scoring function. The top structures are then docked
with ligands using a docking program that assumes a rigid protein. There is one
practical issue with using crystal structures from the PDB. The crystal structures
sometimes differ in a few residues. We replace those residues with the corre-
sponding residue in the molecule used for the search. We follow this substitution
by a simple local energy minimization to resolve steric clashes resulting from the
substitution. Finally, we find the optimal alignment with the start conformation of
the search using SVD as explained in section 2.2.

12



−3 −2 −1 0 1 2
−3

−2

−1

0

1

2

3

1a30

1a8g

1a8k1a94

1a9m

1aaq

1ajv

1ajx

1axa

1b6j1b6k
1b6l

1b6m
1b6n

1b6o
1b6p

1bdl
1bdq1bdr1bv7

1bv9

1bve

1bvg

1bwa

1bwb

1c6x

1c6y

1c6z

1cpi

1d4k
1d4l

1d4s

1d4y

1dmp
1dw6

1ebk

1fej
1ff0

1fff

1ffi1fg6

1fg8

1fgc

1fqx

1g2k1g35

1g6l
1gnm
1gnn

1gno

1hbv

1hos

1hpo

1hps
1hpv

1hsg

1hte

1htf

1htg

1hvh

1hvi
1hvj

1hvk
1hvl

1hvs

1hwr

1hxb

1hxw

1jld

1k6c

1k6p
1k6t 1k6v1mer

1mes

1met

1meu

1mtr

1odw

1odx

1ody

1ohr

1pro
1qbr

1qbs

1qbt

1qbu 1sbg

1tcx

1vij

1vik

1ytg

1yth

2aid

2bpv2bpw

2bpx 2bpy2bpz

2upj

3aid

4phv

5hvp

5upj

6upj

7hvp

7upj

8hvp

9hvp

1aid

4hvp

Principal axis 1

P
rin

ci
pa

l a
xi

s 
2

(a) All-atom projection

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2

−1

−0.5

0

0.5

1

1a30

1a8g

1a8k 1a94

1a9m

1aaq

1ajv
1ajx

1axa

1b6j
1b6k

1b6l1b6m
1b6n1b6o

1b6p

1bdl
1bdq

1bdr 1bv7
1bv9

1bve

1bvg

1bwa

1bwb

1c6x

1c6y

1c6z

1cpi

1d4k1d4l

1d4s

1d4y

1dmp
1dw6

1ebk

1fej
1ff0

1fff

1ffi

1fg6

1fg8

1fgc

1fqx

1g2k
1g35

1g6l

1gnm1gnn

1gno

1hbv

1hos

1hpo

1hps
1hpv

1hsg

1hte

1htf

1htg

1hvh

1hvi1hvj

1hvk
1hvl

1hvs

1hwr

1hxb

1hxw

1jld

1k6c1k6p1k6t1k6v
1mer

1mes

1met

1meu

1mtr

1odw

1odx

1ody

1ohr

1pro

1qbr

1qbs
1qbt

1qbu
1sbg

1tcx

1vij

1vik

1ytg 1yth

2aid

2bpv2bpw

2bpx

2bpy2bpz

2upj

3aid

4phv

5hvp

5upj

6upj

7hvp

7upj

8hvp

9hvp

1aid

4hvp

Principal axis 1

P
rin

ci
pa

l a
xi

s 
2

(b) Backbone projection

Figure 4: Projection of 111 crystal structures on the first two principal vectors of
four different sets of atoms.
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(c) Binding site projection
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(d) Extended binding site projection

Figure 4: (Continued) Projection of 111 crystal structures on the first two principal
vectors of four different sets of atoms.
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Measuring distance between the crystal structures and the search results is only
useful if we know how large the distance is in major mode space, since this is the
space we will actually be exploring. The local energy minimization will help us
explore a small part of the space that is not in the span of the major modes, but
this is generally only a small displacement. Let us first consider the relative dis-
tances between crystal structures of HIV-1 protease. Figure 4 shows the projection
of 111 crystal structures onto the first two principal vectors after residue substi-
tution, local energy minimization and alignment with 4hvp, the crystal structure
we used as a docking target. The principal components can be determined for all
atoms, the backbone atoms (594 atoms), the binding site atoms (266 atoms), or
the extended binding site atoms (948 atoms), resulting in slightly different projec-
tions. In figure 4 we have shown all four projections and highlighted 4hvp and
1aid. This last structure was chosen as the start conformation for our expansive
search. In the 1aid structure the flaps of HIV-1 protease are wide open, whereas
in 4hvp they are almost closed. In figure 5 show how well these crystal structures
can be approximated with major modes, starting from 1aid. The major modes
in the search were computed from a 2ns NAMD simulation started at 4hvp. Note
that the curves for the backbone RMSD and (extended) binding site RMSD are not
necessarily monotonically decreasing. Also note that the docking algorithm could
produce conformations that are closer to the crystal structures than one would ex-
pect based on figure 5. This is possible because the energy is locally minimized
when a conformation is moving along major modes. This minimization can cause
a displacement that is not in the span of the major modes.

5 Implementation

5.1 Computation of Major Modes

We have implemented a parallel version of PCA that can compute the major modes
of large trajectories very efficiently. For example, computing 20 major modes of
10,000 conformations of HIV-1 protease, a molecule with 3120 atoms and 198
residues, takes about 118 seconds on 6 dual-processor nodes of our cluster of
1600MHz Athlon CPUs. Our implementation is based on the P_ARPACK library
(Maschhoff and Sorensen, 1996), a parallel version of ARPACK (Lehoucq et al.,
1998). It allows for efficient computation of the first couple of singular vectors
without explicitly computing the covariance matrix.
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Figure 5: Average distance between crystal structures and their projection onto
major modes, measured over different sets of atoms.

5.2 Search Results
We tested our conformational search on two systems that are known to be very
flexible. The first one is HIV-1 protease. It has 3120 atoms, and there are about 110
crystal structures available. The second one is FK506 binding protein, a system
with 1663 atoms, and 70 available crystal structures. In our searches we used
the first five main modes of motion, computed from NAMD simulations. Certain
parameters such as number of nearest neighbors to use and local minimization
parameters were optimized once, and kept fixed throughout the different tests. For
other parameters we performed a parameter sweep over many combinations. The
search algorithm turned out to be relatively insensitive to a lot of these parameters.
Below we report on some of the interesting patterns we observed. Results are
averaged over five runs.

One of the performance evaluation criteria we described was the number of
low-energy conformations. In our tests we defined this as the number of confor-
mations who are all at least 1Å RMSD apart and whose energy was roughly equal
to the average crystal structure energy or lower. Figure 6 shows the results for
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Figure 6: Number of low-energy conformations with different neighbor selection
strategies, measured after 20 hours.

the two different systems and for different neighbor selection schemes. These
results clearly show that the random walk neighbor selection scheme helps signif-
icantly in producing more low-energy conformations. Not only does the random
walk neighbor selection produce more low-energy conformations (figure 6a), it is
also more efficient in finding them (figure 6b). In the case of HIV-1 protease, the
regular perturbation produced about 10,000 conformations and the random walk
search between 2,500 and 3,000. For FK506 binding protein, the regular perturba-
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average crystal
min (cal/mol) structs. (cal/mol)

regular -3968
4hvp 10 steps -3436 -2000

20 steps -3413
regular -1885

1fkr17 10 steps -1725 -1000
20 steps -1813

Table 1: Comparison between minimum energies produced by the search algo-
rithm and the energies of crystal structures.

tion produced about 10,000 conformations and the random walk search between
5,000 and 6,000. The differences between HIV-1 protease and FK506 binding
protein are mostly due to the difference in size of the molecules.

In terms of approximation of known crystal structures, our algorithm did not
fare as well. The nearest neighbor in the search results for each crystal structure
was only marginally closer to the corresponding crystal structure than the orig-
inal starting point. The average distance between the starting conformation and
the crystal structures was 1.76Å RMSD for HIV-1 protease with 4hvp as starting
point. For FK506 binding protein the average distance to the starting conforma-
tion 1fkr17 was 2.70Å RMSD. The typical experimental resolution is 1.50Å, so
this explains in part the difficulty in getting much closer to the crystal structures.
Another mitigating factor is that RMSD is measured over the whole molecule, in-
cluding parts that may not matter for a protein’s function. Nevertheless, in future
work we investigate further how our search results can be compared with experi-
mental data.

In terms of finding low-energy conformations the algorithm performed very
well. Table 1 shows that the searches produced conformations with energies sig-
nificantly lower than the average crystal structure energy. In other words, the
algorithm is very effective at finding conformations with very low energy. It also
shows that the limitations of the CHARMM energy model we used: despite the fact
that we can find many low-energy conformations, the search results are not that
much closer to the crystal structures than the starting point for the search.
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6 Discussion
This report describes a new approach to generating low-energy conformations of
a flexible protein for the purpose of docking flexible ligands. Previous docking
approaches only allow for limited flexibility of the protein, whereas our approach
can model large conformational changes. For many molecules this flexibility is
essential to their function. The flexibility of the protein is represented by the main
modes of motion, which are computed from a molecular dynamics trajectory. The
main modes form a reduced basis. We explore conformations in this reduced
basis using an algorithm that is based on a robotics motion planning algorithm.
The algorithm simultaneously tries to explore unknown parts of the search space
and around low-energy conformations.

Our simulations showed that we are able to produce many different low-energy
conformations for HIV-1 protease and FK506 binding protein. On the downside,
the conformations produced by a search are only marginally closer to other known
crystal structures than the starting conformation for a search. This means that
the algorithm performs well within the model, but the model has its limitations.
Improving the model is the main focus of future research.

In the near future we plan to extend the model in the following ways. First,
we plan to perform searches with a large number of major modes. To prevent the
algorithm from exploring parts of the search space that are unlikely to contain low-
energy conformations, the search will be biased towards the first couple of major
modes. This can be accomplished by using the singular values obtained during
the major mode computation as weights. We also expect to further improve the
results by using symmetry preserving major modes (Shah and Sorensen, 2005;
Moll et al., 2005) for systems that exhibit symmetry such as HIV-1 protease. In
(Moll et al., 2005) we showed that symmetry preserving major modes are better in
explaining the variability in crystal structures. Exploiting the symmetry reduces
the number of degrees of freedom. A second, more important extension is to
use free energy rather than energy to guide the search. Exact computation of the
free energy is impractical, but a reasonable estimate might be sufficient to arrive
at physically more realistic results. A third route that we plan the explore in
conjunction with the previous two ideas is to split the search up in two stages.
In the first stage we treat the problem purely geometrically. The output of this
stage consists of conformations without steric clashes. In the second stage, the
“best” conformations are ranked with a (free) energy function. Since in the current
version of the algorithm energy calculations dominate the run-time, the multi-
stage approach promises to deliver a huge speed-up.
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