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Path Planning for Deformable Linear Objects
Mark Moll, Member, IEEE and Lydia E. Kavraki, Member, IEEE

Abstract— We present a new approach to path planning for
deformable linear (one-dimensional) objects such as flexible
wires. We introduce a method for efficiently computing stable
configurations of a wire subject to manipulation constraints.
These configurations correspond to minimal-energy curves. By
restricting the planner to minimal-energy curves, the execution
of a path becomes easier. Our curve representation is adaptive
in the sense that the number of parameters automatically varies
with the complexity of the underlying curve. We introduce a
planner that computes paths from one minimal-energy curve to
another such that all intermediate curves are also minimal-energy
curves. This planner can be used as a powerful local planner
in a sampling-based roadmap method. This makes it possible
to compute a roadmap of the entire “shape space,” which is
not possible with previous approaches. Using a simplified model
for obstacles, we can find minimal-energy curves of fixed length
that pass through specified tangents at given control points. Our
work has applications in cable routing, and motion planning for
surgical suturing and snake-like robots.

Index Terms— path planning, deformation, minimal-energy
curves, modeling, differential geometry, flexible manipulation,
motion planning, flexible object representation.

I. INTRODUCTION

THERE ARE MANY examples of manipulation tasks
where flexibility is important: routing cables in buildings

or cars, robot-assisted surgery, virtual reality applications, and
manipulating paper or sheet metal. To successfully perform
manipulating tasks in these contexts we need a model of
deformation/flexibility. Once we have a model we need a
computationally efficient way to simulate this model or solve
motion planning queries. As always, there is a trade-off
between modeling accuracy and the efficiency of a simulator
or planner, and for flexible objects this is an especially
important problem. There is an infinite number of shapes that
a flexible object can take on, so to plan motions efficiently
we have to approximate these shapes with a finite number of
parameters. We also need to model the physical properties of
the object given a certain shape parametrization. The model
and associated computational efficiency are influenced heavily
by the material properties of the object under consideration and
the manipulation task.

There has been great progress in simulating deformable
objects, but so far there has been only limited success in
developing planners for deformable linear (one-dimensional)
objects. We are working towards this end. This paper concen-
trates on representing and planning for curves of fixed length
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when given manipulation constraints. The constraints arise
from robot grippers holding the endpoints of a wire, thereby
fixing the positions and tangents at the endpoints. We assume
that the wire is free to rotate about the endpoint tangents. In
other words, the manipulators have built-in compliance along
the tangential direction. This can be thought of as holding a
wire with slippery fingers. Our approach is almost independent
of the model of the physical properties of the wire. The
physical model used in this paper can easily be extended.
We do not consider the motion planning for the grippers.
This is similar to the work on assembly planning where the
tools for assembly or removal of parts are not considered
[1, 2]. The planning problem addressed by this paper is: given
manipulation constraints for start and goal configurations,
(a) find stable configurations of the wire that satisfy those
constraints, and (b) find a path between these configurations
such that all configurations along the path are stable as well. A
stable configuration is defined as a configuration with minimal
strain for given endpoint constraints. These configurations
correspond to minimal-energy curves. The contributions of this
paper are an efficient algorithm for computing minimal-energy
curves and a powerful local planner that computes paths of
minimal-energy curves. A key part of these contributions is
a new, adaptive representation for deformable linear objects.
This work represents a significant step towards a general
purpose motion planner for deformable linear objects.

Deformable linear objects are usually represented using
finite element models (FEMs) [3]. Since the complexity of path
planning increases exponentially with the number of degrees
of freedom [4], this means that an extensive exploration of the
configuration space for deformable objects using FEMs is very
hard. Moreover, finding configurations that satisfy endpoint
constraints or energy constraints is complicated by many local
minima. Our approach has been to use subdivision to make the
path planning problem for deformable objects more tractable.
Subdivision is an area of geometric modeling concerned with
the compact representation of curves and surfaces [5]. In our
case subdivision allows us to adaptively refine approximate
solutions and reduce the tendency of getting stuck in local
minima. In our parametrization we can compactly represent
shapes of varying complexity. Our planner can find paths
between curve configurations with a different number of
parameters.

The main motivation for our research comes from motion
planning for deformable linear objects. One important appli-
cation area is cable modeling and handling in the automotive
industry. Another application is surgical suturing (see figure 1).
A suture is a flexible wire with negligible stretch that typically
needs to go from a straight configuration to a knot. Limited
visibility and limited tactile feedback can make this a chal-
lenging task for a surgeon. As part of a training simulator, a
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Fig. 1. A simulated surgical suture. Image courtesy of D. Pai

motion planner for sutures can be a very useful tool for training
surgeons. A theoretical motivation for this work is to create
a better understanding of the accessible configuration space
of a flexible object. For example, little is known about the
topology of the set of stable configurations of a given flexible
object. Although this paper does not formally characterize the
topology of deformable linear objects, it does provide tech-
niques for approximating the accessible configuration space
using Probabilistic Roadmap Methods (PRMs) [6]. As the
number of sampled configurations in the roadmap increases,
the roadmap becomes a more accurate representation of the
accessible configuration space.

The outline of the rest of the paper is as follows. The
next section briefly describes some related work. Section III
explains what minimal-energy curves are and why we are
interested in them. In section IV we introduce a subdivi-
sion scheme for computing minimal-energy curves subject to
endpoint constraints. As part of the subdivision scheme we
need to align curves with these endpoint constraints. This
exploits some of the symmetries that minimal-energy curves
have. This alignment procedure is explained in section V.
In section VI some performance improvements of the basic
algorithm are discussed. Here we will also discuss the stability
of the algorithm with respect to some algorithm parameters. In
section VII we present a path planning algorithm for minimal-
energy curves. Our minimal-energy curve construction can be
extended to multiple control points, which is described in
section VIII. Section IX describes our implementation and
gives some performance results. Finally, section X summarizes
the contributions of this paper and outlines directions for future
research.

II. RELATED WORK

The related work on deformable linear objects can be di-
vided into three overlapping categories: modeling, simulation,
and planning. In the geometric design community, stable
configurations of deformable linear objects are often called
minimal-energy curves. These curves appear in the broader
context of fair curve and surface design [7–11]. Here, ‘fair’
means minimizing some functional (or energy function). In
our case this functional is defined as the integral of curvature
squared plus torsion squared. We assume there is no stretching,
i.e., the length of the curve is fixed. There is very little work

on finding fair curves of fixed length subject to endpoint
constraints. Our work provides an algorithm for doing just that.
The definition of energy can be changed without affecting the
rest of the algorithm.

Fair curve design focuses almost exclusively on planar
curves. Usually the length of the curve is either unconstrained
or there is a stretching energy term in the energy func-
tional. Horn [12] derives an analytic expression for a planar
minimal-energy curve and uses arcs of a circle to approximate
minimal-energy curves. Kallay [13] extends this result to
planar minimal-energy curves of given length. Brunnett [11]
derives several properties of so-called free elastic curves:
planar minimal-energy curves of variable length without tan-
gent constraints. Jou and Han [10] consider planar minimal-
energy curves of given length with tangent constraints at the
endpoints. They also present a simple algorithm for computing
such curves. Simply put, the algorithm divides a curve in
segments of constant curvature and solves the constrained
energy minimization problem as function of the curvatures
of these segments. In this paper we extend this idea to 3D
and make the algorithm more scalable to a large number of
segments.

Wesselink and Veltkamp [8, 9] describe several curve energy
operators. The emphasis here is on interactive curve design.
To make this practical, approximations for bending, twisting,
and stretching energy are used. In contrast to other approaches,
this work is not limited to planar curves. Kallay [14] presents
a discrete approximation algorithm for finding 3D minimal-
energy curves of given length with endpoint constraints. Here,
the energy is just the integral of curvature squared, whereas
we include the integral of torsion squared. The algorithm
constructs a polyline consisting of equal length segments. It
iteratively rotates all the points between any pair of vertices
of the polyline so as to minimize the discrete approximation
of curvature.

Wakamatsu and Hirai [15] model the static deformation
of a linear object with four functions: three to describe the
change in orientation along the curve and one to describe the
extension along the curve. These functions are approximated
by a linear combination of a set of basis functions. Given
an energy function in terms of these coefficients, one can
then easily solve for the coefficients that result in a stable
configuration. Wakamatsu and Hirai also validated this model
experimentally. They found a good agreement between the
theoretical predictions and experimental results. Compared to
this work, our work offers a subdivision-based computational
scheme to compute stable configurations that appears to be
much faster. We also use this scheme to compute paths of
stable configurations. In [16] Wakamatsu et al. extend their
results to the 2D dynamic case. The model can be used to
control the deformation on a linear object. The control law
in [16] was experimentally verified.

To simulate a deformable object we need to compute any
physically plausible configuration; not just stable configura-
tions. The emphasis is on efficiency in computing the response
of an object to internal and external forces. Phillips et al. [17]
use a spline of linear springs. Adaptive subdivision is used to
handle stretching and contraction of the rope. Friction is not
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modeled. Brown et al. [18] model a suture as a polyline (which
during rendering is replaced with a smooth spline). Forces
act on the vertices of the polyline. Using a few simple rules
the positions and velocities of all vertices can be updated in
real-time. Friction is not explicitly modeled, but the collision
resolution scheme produces a friction-like effect. More so than
the previous two papers, Pai [19] focuses on the dynamics of
a suture. A suture is modeled as a so-called Cosserat rod:
a curve with coordinate frames along the curve denoting the
reference orientation. The differential equations describing the
dynamics in this representation can be solved very efficiently.
Remde and Henrich [20] give an overview of simulation of
deformable linear objects and present a basic algorithm to
perform “inverse simulation”, i.e., solve for the object’s shape
for given endpoint constraints.

Hopcroft et al. [21] propose a programming language to
program deformable object manipulation. They describe basic
operations such as grasping a segment along a curve, moving
it, and dropping it, but also more complex operations such
as crossing segments. A vision system is used to obtain the
configuration of the physical rope. Several knot programs were
experimentally verified. These knot programs were still written
“by hand.” Recently, Wakamatsu et al. [22] proposed a ma-
nipulation planner for knotting/unknotting that generates such
programs automatically. This planner has been implemented
on a 6 DOF manipulator with a camera.

Lamiraux and Kavraki [23] introduce one of the first open-
loop motion planners that deals with flexibility explicitly.
In their work a flexible object is modeled using a finite
element mesh. They find stable configurations subject to
manipulation constraints using a global energy minimization.
Bayazit et al. [24] propose a path planner that first produces
a path where a deformable object is allowed to penetrate
obstacles. It then proceeds to deform the object to resolve
any collisions. The emphasis here is more on realistic looking
motions rather than modeling the underlying physics. Gayle
et al. [25] introduce a physically realistic planner with a
new fast collision checking scheme for flexible objects. Their
planner uses a roadmap based method [6] that samples in the
workspace rather than in the configuration space. Paths are
generated for a point-robot in this roadmap. A deformable
object is then guided along these paths as long as physical
constraints can be satisfied. This approach works well if the
obstacle-free configuration space of the deformable object is
not too dissimilar from the obstacle-free part of the workspace.
For certain important applications such as catheters moving
through arteries this is the case. Saha and Latombe [26] are
currently developing a roadmap based planner for deformable
linear objects. They use a fast simulator as a subroutine to
compute configurations near previously sampled configura-
tions. Our work can be used to replace this subroutine with one
that compute paths consisting only of stable configurations.

One of the difficulties with planning for deformable objects
is contacts between a deformable object and the environment.
Acker and Henrich [27] classify the different possibilities into
different topological states and describe their stability. They
also enumerate all possible state transitions. This kind of
information can be used to guide a path planner.

Ladd and Kavraki [28] applied motion planning techniques
to mathematical knots. Here, physical realism is irrelevant, but
the configuration space tends to be more complex than in the
aforementioned papers. Using an artificial potential function to
guide the sampling, they were able to untangle very complex
knots.

Sometimes hyper-redundant robots (or snake robots) are
modeled as flexible curves [29, 30]. In this context minimal-
energy curves may provide good reference shapes for the
robot that minimize joint movement. The work by Zanganeh
and Angeles [29] is especially similar to the modeling of
elastic wires. Similar to the approach taken in this paper,
they pose the problem of finding the optimal shape as an
optimization problem over spline parameters. Optimality of
a shape is expressed in terms of curvature and torsion. A
radically different approach to path planning for redundant
manipulators was taken by Nakamura and Hanafusa [31].
They posed the problem as an optimal control problem.
They reduce the problem to a boundary value problem and
use Pontryagin’s maximum principle [32] to find an optimal
solution for different definitions of optimality.

In previous work [33], we presented an approximate repre-
sentation of minimal-energy curves using only 10 parameters.
We described different methods to solve for these parameters
for given endpoint constraints. Although this parametrization
produced good results overall, there were cases where a good
approximation of a minimal-energy curve could not be found.
Moreover, it is computationally very expensive to verify if an
approximation is close to a curve that has minimal energy
in the variational sense. We therefore started investigating
adaptive parametrizations that vary the number of parameters
based on the complexity of a minimal-energy curve. We
informally use the term ‘complexity of a curve’ to describe
some measure of the change in shape (i.e., curvature and
torsion) along the curve. This paper is a revised and expanded
version of [34].

III. MINIMAL-ENERGY CURVES

Minimal-energy curves correspond to stable configurations
of the wire they represent. If we assume quasistatic dynamics,
the paths produced by our planner are as close as possible to
what would happen if a robot executes the plan. With minimal-
energy curves we only have to consider dynamics to the extent
that the kinetic energy should be smaller than the energy
needed to leave a potential energy well. So even if a robot
cannot follow a computed trajectory exactly, the configurations
along the trajectory act as attractors for configurations in a
neighborhood.

Minimal-energy curves can be thought of as representing
wires with minimal strain. We assume that a straight line
segment without torsion represents the shape with zero strain.
The Darboux vector [35, p. 205], defined in terms of the Frenet
frame [36] as D = τT + κ B, describes the rotational strain
along the curve. Here T and B are the tangent and binormal,
respectively, and τ and κ denote the torsion and curvature
(see section IV(a) for an overview of the nomenclature used
in this paper). We assume there is no translational strain: the
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wire does not stretch. We define the energy of a curve to
be the integral of ‖D‖

2 along the curve. In other words, the
energy is the integral of the curvature squared plus the torsion
squared over the entire length of the curve. This simple model
captures the essential internal energy of a wire. Obviously,
the bending and twisting energy can be weighted differently
and other terms can be added as well. For a more complete
description of the dynamics of elastica see, e.g., [37]. We
will first consider only curves of constant length that satisfy
constraints on the positions and tangents at the two endpoints.
This corresponds to a wire being held by the endpoints.
Finding such curves is nontrivial. Splines tend to produce very
smooth low-energy curves that can match arbitrary endpoint
constraints, but the length of the splines is variable. A finite
element method, where we would represent the curve by a
large number of line segments would preserve the length, but
makes planning difficult because we need many DOFs [23].
Finding a smooth curve of fixed length that satisfies endpoint
constraints is difficult and finding minimal-energy curves using
a finite element method is even more challenging.

Very little is known about 3D minimal-energy curves of
given length. For planar minimal-energy curves with endpoint
constraints the following variational condition on curvature
and its second derivative has to be satisfied along a curve
(parametrized by arc length s): κ ′′(s) +

1
2κ3(s) = c · κ(s) for

some constant c [10]. (Without endpoint constraints c = 0.)
Unfortunately, there is no equivalent constraint for minimal-
energy curves in 3D.

The following two observations will be important in the rest
of this paper:

• The space of all minimal-energy curves exhibits many
symmetries: a minimal-energy curve is still a minimal-
energy curve if we apply a translation, a rotation, a
uniform scaling, or a reflection. We will take advantage of
this property by only solving for minimal-energy curves
in some canonical form from which all symmetric curves
can easily be derived.

• For a minimal-energy curve, every segment of that curve
is also a minimal-energy curve. This suggests that we can
locally improve an approximation of a minimal-energy
curve. We therefore conjecture that the complexity of
finding parameters for minimal-energy curves increases
linearly with the number of parameters required to rep-
resent that curve instead of exponentially.

IV. A SUBDIVISION SCHEME FOR
MINIMAL-ENERGY CURVES

Subdivision is an area of geometric modeling concerned
with compact representations of curves and surfaces [5]. The
representations consist of a coarse mesh or polyline and a set
of refinement rules. The refinement rules define how elements
of the mesh can be subdivided into smaller elements. The
surface represented by the mesh and refinement rules is the
limit surface obtained by iteratively applying the refinement
rules to the mesh. Typically, the rules can be thought of as a
weighted interpolation scheme.

x

y
z

t1

x0

x1

t0

}
(κi, τi, si)

Fig. 2. A curve consisting of n helical segments. Each segment is
parametrized by curvature κi , torsion τi , and segment length si . The positions
and tangents of the endpoints are denoted by xi and t i (i = 0, 1), respectively.

a) Nomenclature: In this section we will briefly in-
troduce the notation used in this paper. Let a curve x be
parametrized by arc length s. A point on the curve is denoted
x(s). The tangent at that point is written as x′(s) or T (s).
The magnitude of T ′, the derivative of T , is called curvature
and is written as κ(s). The vector N (s) = T ′(s)/κ(s) is the
normal of the curve at s and is orthogonal to T (s). The cross
product B = T × N is called the bi-normal. Together, T , N ,
and B form the so-called Frenet frame [36]. The magnitude
of the B ′ is called torsion and is denoted τ(s). Below, we will
introduce a compact representation of curves with piecewise
constant curvature and torsion. The parameters of such curves
are described by configurations qi .

b) Representation: We have developed an algorithm
for representing minimal-energy curves inspired by subdi-
vision techniques. By using subdivision instead of a fine-
grain representation such as finite element methods, we gain
computational efficiency and reduce the tendency of getting
stuck in local minima. There are three factors that make our
scheme more complicated than most subdivision schemes.
First, at each iteration we do not subdivide all segments
simultaneously. Instead, we adaptively subdivide segments one
at a time. Second, to minimize the energy and at the same
time maintain the constraints on the endpoints, we need to
solve a constrained minimization problem rather than simply
apply an interpolation rule. Finally, we want to maintain
the length of the curve. To accomplish this, we represent a
curve as a sequence of n segments with constant curvature
and torsion, i.e., parts of helices (see figure 2). When a
segment is subdivided, the sum of the lengths of the new
segments is equal to the length of the old segment. Each
segment of a curve can be described by curvature, torsion,
and length. So for a curve consisting of n segments we need
3n parameters. Figure 3 shows a minimal-energy curve and
corresponding curve parameters obtained using our algorithm
described below.

Below, we will describe a new algorithm that, given ma-
nipulator constraints like the endpoints and tangents where a
wire is held, finds a minimal-energy curve that satisfies those
constraints. We assume that the wire is free to rotate about the
endpoint tangents to reach the shape with lowest energy. In
other words, the manipulators have built-in compliance along
the tangential direction. This can be thought of as holding a
wire with slippery fingers. The idea is to start with a simple
curve that just satisfies the endpoint constraints and keep
refining it as long as we can lower the energy of a curve.
The basic refinement step can informally be stated as follows:
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Fig. 3. A minimal-energy curve of length 2. The curve is held at the
endpoints, constraining both the positions and the tangents. This is visualized
using small cylinders. The bottom two plots show the curvature and torsion
along the curve.

as long as the difference in curvature and torsion between
a segment and one of its immediate neighbors is larger
than some threshold, subdivide both and optimize the curve
parameters of the subdivided segments so as to simultaneously
minimize the energy and the error in the endpoint constraints.
Here we make use of the observation that we can locally
change the shape to get closer to a minimal-energy curve.
We also take advantage of the symmetries by solving only for
minimal-energy curves in ‘canonical form’ and aligning these
curves through an affine transform and scaling with the desired
endpoints and tangents. Typically the error in the endpoint
constraints is very close to zero after the first subdivision step.
Subsequent steps minimize the energy while maintaining the
constraints.

The parametrization supports the following operations in a
straightforward manner: downsampling to a coarser resolution,
upsampling to a finer resolution, computing the distance (or
shape difference) between two curves, and finding points along
a curve. All these operations take time linear in the number
of segments. The distance between two curves q0 and q1 of
length 1 is defined as

d(q0, q1) =

√∫ 1
0

(
(κ0(s) − κ1(s))2 + (τ0(s) − τ1(s))2

)
ds.

(1)
Because the curves have piecewise-constant curvature and tor-
sion, the integral simplifies to a summation. Using upsampling
and downsampling we can represent a curve at different levels
of detail. Curves in this representation can also be compressed
very well using, e.g., wavelets [38]. These primitives are all
necessary for path planning for minimal-energy curves in our
representation. It allows us to connect configurations with a
varying number of degrees of freedom.

We can think of a curve in our representation as a kinematic
chain where the affine transforms from the start of a segment to
its end are controlled by the curvature and torsion parameters.

Below we will derive a closed-form expression for the forward
kinematics of a piecewise-helical curve. This is useful to find
a curve that satisfies endpoint constraints. Let a piecewise-
helical curve consisting of n segments be described by a n ×3
matrix q , where row i contains the parameters for segment i :
(κi , τi , si ). A helix with curvature κ and torsion τ can be
described by a parametric unit-speed curve h:

h(s) =
1

κ2 + τ 2

κ cos(s
√

κ2 + τ 2)

κ sin(s
√

κ2 + τ 2)

sτ
√

κ2 + τ 2

 .

Let R(s) denote the Frenet frame [36] along the curve. The
relative change in orientation between the frame at s = 0 and
at s = ` is then given by R(0)T R(`). Similarly, the relative
change in position is given by R(0)T (h(`) − h(0)). After
writing out these expressions, we can obtain an expression for
the homogeneous transform from the start of segment qi =

(κi , τi , si ) to the end:

T (qi ) =

(
1R(qi ) 1x(qi )

0 1

)
,

where

1R(qi ) =
1
ρ2

κ2 cos r+τ 2
−κρ sin r κτ(1−cos r)

κρ sin r ρ2 cos r −τρ sin r

κτ(1−cos r) τρ sin r κ2
+τ 2 cos r

,

1x(qi ) =
1
ρ3

κ2 sin r+τ 2r

κρ(1−cos r)

κτ(r−sin r)

, r = ρs, and ρ =

√
κ2 + τ 2.

(The subscript i has been dropped for convenience.) The
homogeneous transform from the start of the curve to the
end is simply the product of the transforms for each segment:
T (q) =

∏n
i=1 T (qi ).

c) Energy Minimization: If a curve segment qi is sub-
divided into smaller segments, described by the matrix qnew,
the curvature and torsion parameters of the smaller segments
are optimized to minimize

energy(qnew) + K · (exp(err(qnew)) − 1), (2)

where energy(q) =
∑n

i=1(κ
2
i + τ 2

i ) · si , (3)

K is a penalty constant, and the error is measured after
alignment, as described in the next section. A sufficiently
large value for K , combined with the exponential scaling of
the error, almost guarantees that the error is very close to
zero after one or two subdivision steps. Note that we are
locally optimizing the shape and at the same time trying to
satisfy global endpoint constraints. Each subdivision can be
performed fairly quickly, since we are minimizing over only
a small number of parameters.

d) Subdivision Details: In our implementation we have
chosen to subdivide each segment into two smaller segments.
Subdividing one segment would give us four parameters to
optimize over: two curvature parameters and two torsion
parameters. But satisfying the constraints requires at least five
degrees of freedom: three for the endpoint position and two
for the endpoint tangent. We therefore need to subdivide two
segments at once, giving us eight degrees of freedom, three
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of which can be used for energy minimization. Initially, we
start off subdividing two helical segments of equal length with
arbitrary curvature and torsion. To decide which segments to
subdivide in subsequent steps we consider the difference in
curvature and torsion between consecutive segments. Let the
difference between segment i and i + 1 be defined as(

(κi+1 − κi )
2
+ (τi+1 − τi )

2)
· max(si , si+1).

Generally speaking, the minimization in a subdivision step
will minimize the energy by smoothing out the difference
in curvature and torsion. We maintain a priority queue of
the differences between all consecutive segments. The largest
difference is assigned the highest priority. Intuitively, subdi-
viding the segments with the largest difference between them
should likely result in the largest decrease in the energy and
the error. We keep subdividing as long as the error in the
endpoint constraints is larger than some threshold and as long
as the difference between some consecutive segments is larger
than some other threshold. If the difference in curvature and
torsion between any pair of consecutive segments is small then
subdividing is not going to reduce the energy much.

One detail ignored in the explanation above is that the pair
of segments being subdivided may not be of equal length. If
they are of equal length, then both segments are subdivided.
If one is longer than the other, only the longer segment
is subdivided into segments with length equal to that of
the shorter segment. This approach gives all segments equal
weight during minimization. Observe that the number of curve
parameters being optimized is at least 6; just large enough
to maintain endpoint constraints and lower the energy. By
keeping the branching factor of the subdivision as small as
possible, we aim to arrive at the most compact representation.

V. ALIGNMENT OF A CURVE TO MATCH CONSTRAINTS

In our subdivision scheme we maintain a curve in canonical
form and use an alignment procedure to match up the curve
with the endpoint constraints as best as possible. As we
mentioned before, the curve representation would not change
if we apply a translation, rotation, scaling, or reflection to
the endpoint constraints. The alignment procedure returns the
transform that brings the endpoint constraints in canonical
form such that the error in satisfying the constraints (as defined
below) is minimized. This way we exploit the symmetries of
minimal-energy curves.

Suppose we are interested in finding a curve of length L ,
having endpoints x0 and x1 and unit tangents t0 and t1. Our
subdivision scheme produces curves in canonical form: they
are all of length 1 and with x∗

0 = 0 and t∗0 = (1, 0, 0)T .
Let x∗

1 and t∗1 be the position and tangent at endpoint 1 of
a curve q in canonical form. They are simply the fourth and
first column of T (q). If qnew describes the curve parameters
of the segments being subdivided, then T (q) can be written
as T (q) = T0 · T (qnew) · T1, where T0 and T1 are the
combined transforms for the segments that precede and follow
qnew, respectively. So as qnew changes during the energy
minimization, it is very easy to update T (q) and therefore also
x∗

1 and t∗1. The alignment procedure described below simply

constructs another transform that aligns T (q) with a transform
derived from the endpoint constraints.

During energy minimization we use a penalty method to
satisfy the endpoint constraints. The error in the endpoint
constraints is measured after alignment. The alignment is done
in two steps. First we apply a transform that minimizes the
translational error. In the second step we apply a rotation that
minimizes the error in the tangents, but does not move the
endpoints. Let x = (x1 − x0)/L and x∗

= x∗

1 − x∗

0. The
translational error is ‖x − x∗

‖. This error is minimized if we
apply a rotation R to x∗ such that the angle between x and
x̂ = Rx∗ is 0. The next step is to minimize the error in the
tangents. Let u = x/‖x‖. We want to find a rotation Rφ about
this axis such that the following error measure is minimized:

err = (1 − tT
0 Rφ t∗0) + (1 − tT

1 Rφ t∗1) + c · ‖x − x̂‖
2,

where c is some positive weighting constant. Note that the
error is equal to 0 if and only if there is no translational error
and there exists a rotation Rφ that simultaneously aligns t0
with t∗0 and t1 with t∗1. Using Rodrigues’ formula [39] we can
write Rφ as I +sin φ · û+(1−cos φ)· û2, where û is the matrix
such that u × v = ûv for any vector v. Hence, the derivative
of the error function with respect to φ can be written as

∂
∂φ

err = − cos φ(

a︷ ︸︸ ︷
tT
0 ût∗0 + tT

1 ût∗1) − sin φ(

b︷ ︸︸ ︷
tT
0 û2 t∗0 + tT

1 û2 t∗1)

So the extrema of the error function are at φ = arctan(−a/b)

mod π . By inspection we can determine which value for φ

minimizes the error. The scaling, translation, and the two
rotations R and Rφ can be combined in one transform that
aligns a curve in canonical form to general constraints.

VI. CURVE REFINEMENT AND STABILITY

In this section we describe different ways to refine the basic
subdivision algorithm for computing minimal-energy curves.
Refinement is not strictly necessary, but is used to improve/test
the stability and reproducibility. The goal of refinement is to
lower the energy of a curve even further. Refinements come
in two forms: local and global refinements. Local refinements
change the basic subdivision step. Global refinements use the
basic subdivision algorithm as a subroutine to find better ap-
proximations of minimal-energy curves. Related to refinement
is the issue of stability: ideally, the refinement procedures do
not drastically change the shape. Small changes in the initial
guess for torsion and curvature should produce curves that
have similar curvature and torsion and thus similar energy and
a similar embedding in R3. Although we cannot prove that our
subdivision scheme has this property, we will show below that
at least in practice that seems to be the case.

a) Local Refinement: There are several ways the sub-
division scheme can be improved. The main flaw of the
basic scheme is that it does not address singularities. By
‘singularities’ we mean that the effective number of degrees
of freedom is smaller than the number of parameters we can
change. If the “true” minimal-energy curve is planar, then
making the torsion non-zero will increase the energy. The
effective number of degrees of freedom is therefore only 4, if
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we are optimizing the curve parameters of 4 segments rather
than 8 degrees of freedom in the general case. Since we need
5 degrees of freedom just to satisfy the endpoint constraints,
we will not be able to minimize the energy. If we could
recognize this situation, then we could increase the number of
segments to be subdivided so that we have a sufficient number
of degrees of freedom. If the error in the endpoint constraints
is small (which is usually the case after the first subdivision),
then we can use the affine transform for the segments under
consideration to check if the curve segment is close to being
planar. A necessary condition for a curve segment to be planar
is that the vector connecting the endpoints and the tangents are
coplanar. Using the notation from the previous section, this
condition can be expressed as

u · (t∗0 × t∗1) = 0.

The left-hand side measures the volume of the paralleliped
defined by u, t∗0, and t∗1. If this expression is 0 (or close to
0), we subdivide one more neighboring segment, namely the
one that has the largest difference with the segments already
selected. Sometimes this refinement is still not enough. For
instance, if after minimizing the energy has hardly decreased,
then we may want to add a neighboring segment and redo the
subdivision and energy minimization.

b) Global Refinement: In our implementation the scheme
starts off with two segments with the following parameters:
(κ1, τ1, s1) = (1, 2, 1

2 ) and (κ2, τ2, s2) = (2, 1, 1
2 ). This choice

is arbitrary; many other choices would work equally well
on average. However, for specific endpoint constraints there
may be specific initial conditions that result in a minimal-
energy curve with lower energy. Note that for given endpoint
constraints there may exist many different minimal-energy
curves. To see this consider the following simple example.
Suppose we want a minimal energy curve were both endpoints
are at the origin and both tangents are along the x-axis. Then a
circle of the appropriate radius is the global energy minimum.
But a curve of constant curvature that makes a 2πk turn
(k = 2, 3, . . .) is also a minimal-energy curve. If we make
the curve parameters of the initial segments “small”, then we
are biasing the subdivision scheme towards the global energy
minimum.

There are three ways to improve the chances of finding a
curve at a global energy minimum. The first approach is to just
repeatedly run the subdivision scheme starting from different
initial curve parameters. Obviously, this is computationally
rather expensive. The second approach is to run the subdivision
scheme once with arbitrary initial curve parameters, and use
the final curve to come up with an improved guess for
the initial curve parameters. This improved guess can be
derived by downsampling a minimal-energy curve to a coarse
resolution and start the subdivision at that resolution. The
second approach is more efficient than the first one, but is
limited to finding minimal-curves in a neighborhood of the
initial curve. Finally, to further refine a curve we can perform
a global energy minimization, where the energy and error
(see expression 2) are minimized as a function of all curve
parameters. Of course, all these techniques can be combined
for even better results.

c) Refinement and Stability: We can now consider the
stability of the subdivision algorithm. In our implementation
we added the local refinements mentioned above and tested
the three global refinement techniques. Figure 4 shows the
curvature and torsion profiles for six different sets of endpoint
constraints. The endpoint positions were picked uniformly
random within a unit ball, and the tangents were picked
uniformly random as points on a unit sphere. The curve length
was set to be 2 (the diameter of a unit ball). The subdivision
and energy minimization tolerances were set to very small
values, so that we can study what limit curves the subdivision
algorithm converges to. For each set of endpoint constraints
we computed 30 different curves as follows. The thick solid
curve shows the profile for the curve constructed using the
default initial parameters. The dashed curve shows the profile
after downsampling that curve to 8 segments and rerunning the
subdivision scheme. The remaining 28 curves were created
with initial curve parameters drawn uniformly random from
the [−2, 2] interval. The curve with lowest energy is drawn
with a dot-dash line. In the legend the energies for these
curves are shown. The color of the curves corresponds to the
energy: a dark color means low energy, a light color means
higher energy. This figure shows that for certain endpoint
constraints the subdivision scheme is relatively insensitive
to the initial conditions, whereas for others the scheme can
converge to several distinct minimal-energy curves. Generally
speaking, the different initial curve parameters produce a small
number of clusters of minimal-energy curves. Within a cluster
curves tend to have similar energy. The default initial curve
parameters tend to produce curves in a low-energy cluster.
Notice in the last set of curves in figure 4 there can be a large
difference between the curves, even though the curvature and
torsion profiles do not seem to be that different. In this case,
this is caused by the turn at the end of the curves in the low-
energy cluster that is not present in the high-energy cluster.

We also tried the global optimization of curve parameters
as described above. The minimization procedure used was
a quasi-Newton method with a BFGS approximation to the
Hessian, and with gradients computed using finite differences
[40]. This produced curves that were very close to the starting
curve for the optimization. This suggests that the subdivision
scheme produces curves that are close to being minimal in the
variational sense.

VII. PATH PLANNING FOR MINIMAL-ENERGY CURVES

The path planning problem for minimal-energy curves can
be stated as: given endpoint constraints for a start and goal
curve, can we find (a) minimal-energy curves that satisfy those
constraints, and (b) a deformation from the start curve to the
goal curve such that all intermediate curves are also minimal-
energy curves and are not colliding with any obstacles. The
planner we present below is described in terms of a roadmap-
based method [6], but it is not tied to any roadmap construction
algorithm. In fact, it could also be used with a tree-based
planner [41, 42]. Various algorithms have been proposed for
the construction of roadmaps and trees elsewhere [43], and will
not be discussed in this paper. Instead, we will focus on the
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Fig. 4. Curve refinement. The curvature and torsion graphs show the curvature and torsion profile for different minimal-energy curves with the same endpoint
constraints that are plotted in the 3D graphs immediately above them.

specifics of the local planner for minimal-energy curves. The
general idea of roadmap and tree-based planners is to sample
collision-free configurations and connect ones that are close
together. This results in a graph representation that compactly
represents the free space of a robot. Finding a path between
configurations is reduced to finding a path in this graph. In
our case we do not handle collisions at this stage, but we
impose the constraint that every configuration corresponds to
a minimal-energy curve.

To solve the path planning problem we propose the follow-
ing approach. First, a roadmap of all minimal-energy curves is
pre-computed in the absence of obstacles. Due to the symme-
tries that exist in the space of these curves, it suffices to build
a roadmap for curves in canonical form. The local planner
that connects minimal-energy curves is described below. The
second step is to build another roadmap for the environment
of interest that may include obstacles. The local planner for
this roadmap uses the roadmap of the first stage as a lookup
table. It will just need to check whether paths in the first
roadmap after applying the alignment transform are collision-
free. This approach is reminiscent of the planner described in
[44]. Whereas Leven and Hutchinson pre-compute a roadmap
in configuration space and modify this roadmap as obstacles

are added, we only do this for “shape space.” By taking
advantage of the symmetries in the configuration space, we
can re-use the roadmap for shape space in other parts of the
configuration space. The subdivision scheme presented in this
paper is efficient enough that computing a roadmap of the
shape space is possible.

The problem that the local planner needs to solve can
be stated as: given two minimal-energy curves, does there
exist a deformation from one curve to another such that
all intermediate curves are all minimal-energy curves? The
solution we found is very similar to the approach we took in
[33]. We find a sequence of minimal-energy curves connecting
the start and goal curve such that consecutive curves are at
most a distance ε apart (see equation 1). The path planner
recursively finds a path as follows. It first computes minimal-
energy curves for the start and goal. It then linearly interpolates
the curvature and torsion between the two curves to obtain
a curve that has distance ε/c, c > 1, to the start curve.
This solution is downsampled to a very coarse resolution and
is used as an initial guess for a minimal-energy curve that
satisfies the interpolated endpoint constraints. The ability to
quickly go from a complex representation to a very coarse
one is critical in our path planning algorithm.
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Fig. 5. A path of minimal-energy curves. The inset shows the start and goal
curves. The start curve connects start0 and start1, the goal curve connects
goal0 and goal1.

The interpolation scheme for the endpoint constraints is
slightly more complicated. A straight-line interpolation be-
tween endpoints would not work well, for instance, because
this may cause the curve to “fold up” onto itself and cause
large shape changes. Instead, we linearly interpolate the mid-
point (x0 + x1)/2 between the endpoints x0 and x1. We
use spherical interpolation to determine the position of the
endpoints relative to the mid-point. The tangents are also
spherically interpolated. This is done so that the relative
change between the endpoints is small, which makes it more
likely that the minimal energy curves connecting successive
pairs of interpolated endpoints are close together as well.

Given the interpolated endpoint constraints and the initial
guess for the curve parameters, we apply our subdivision
scheme to obtain a minimal-energy curve. If the distance
between the resulting curve and the starting curve is larger
than ε, the path planner fails. Otherwise we make the new
curve the starting curve and recurse. Alternatively, we can
recurse by making the new curve the goal curve, and making
the old goal curve the new start curve. This way a path is
‘grown’ from both directions. The planner terminates if the
distance between the start and goal is less than ε or if some
maximum number of iterations is exceeded (in which case the
planner fails). The path returned by the planner consists of all
the minimal-energy curves generated.

Figure 5 shows an example of a path as found by our
path planner. Figure 6 shows the curvature and torsion of
the minimal-energy curves that constitute the path. From this
figure it is clear that the planner is “well-behaved”: the change
in shape along each curve is smooth, as is the change in shape
along the path.

VIII. MULTIPLE CONTROL POINTS

So far we have assumed that the only control points and
tangents that a minimal-energy curve needs to pass through are
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Fig. 6. Curvature and torsion along a path of minimal-energy curves.

at the endpoints. In practice a curve may collide with obstacles
in the environment or with itself. We would like to model the
constraints imposed by the obstacles as well. Solving for the
contact points such that the curve is at an energy minimum
is extremely difficult in general. To make the problem more
tractable we will assume that contact points are given as well
as the tangents at those points. We can think of this as a curve
passing through a number of cylinders. This is also a useful
abstraction if we are trying to route cables through a number
of rings.

To find a minimal energy configuration we solve for each
curve segment between consecutive control points separately
while maintaining the global length constraint. Initially, we
allocate to each segment a length of the curve proportional to
the workspace distance between the endpoints of the segment.
The workspace distance between control point i and i + 1 is
defined as

dw(i, i + 1) = ‖ pi − pi+1‖ + arccos(t i · t i+1),

where pi and t i specify the position and tangent of control
point i . If we think of tangents as points on a sphere, then
the distance between tangents corresponds to the length of
the shortest geodesic on the sphere connecting two tangents.
So the work space distance is simply the sum of the distance
between the positions and the distance between the tangents.
This distance is only used as a heuristic to pick initial guesses
for the curve lengths between subsequent control points and
start the energy minimization. As the linear distance increases,
the difference in tangents matters less, since the curve will not
have to make any sharp turns. This idea is captured by this
heuristic.

After we have found initial guesses for the lengths needed
to connect consecutive control points, we solve each minimal-
energy curve segment separately. The energy of the whole
curve is simply the sum of the energies of the curve segments.
Suppose we have n curve segments and the lengths of the
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Fig. 7. A minimal-energy curve of length 9 passing through 13 control points
and tangents to spell the word “cello.”

segments are given by l1, . . . , ln . Then we can further mini-
mize the energy of the curve by varying the initial guesses for
l1, . . . , ln−1. (Note that ln = L −

∑n−1
i=1 li .) We use a general

constrained optimization technique for this. The constraints
arise due to upper and lower bounds on the li ’s. A lower bound
for li is the Cartesian distance between the corresponding
control points, since a curve segment needs to be long enough
to connect the control points. An upper bound for li is obtained
by subtracting the lower bound for all l j ’s ( j 6= i) from
L . In other words, we cannot use a curve length for the i th

segment that would make it impossible to satisfy the lower
bounds on the other segments. The energy minimization will
not necessarily find a global minimum, but in our simulations
it produced good results. Figure 7 shows a minimal-energy
curve of fixed length connecting 13 control points. The control
points are drawn as small cylinders to emphasize that the curve
also needs to match the tangents at those points. Our approach
works in 3D; the curve in figure 7 is planar only because it is
easier to visualize.

IX. NOTES ON THE IMPLEMENTATION

The subdivision scheme and the path planner described
in this paper have been in implemented in C++. We also
implemented Matlab bindings, so that almost all functionality
in the C++ classes can be accessed from Matlab. For energy
minimization we made use of a nonlinear optimization library
called OPT++ [45]. In particular, in the subdivision step we
used a quasi-Newton method with a BFGS approximation
to Hessian, and with numerically computed derivatives [40].
In the optimization of curve segment lengths we used a
derivative-free parallel direct search [46].

We evaluated the performance of the subdivision scheme by
randomly selecting constraints for the endpoints and timing
how long it takes to compute the corresponding minimal-
energy curve. The positions were picked uniformly at random
within a unit ball, and the tangents were picked uniformly
at random as points on a unit sphere. The curve length was
set to be 2, the branching factor was 2, the subdivision
tolerance was 0.001, the energy minimization tolerance was
set to 10−8, and the minimum segment length was set to 0.002.
The implementation uses the local refinement rules described
in section VI, but not the global refinement techniques. We

generated 50,000 random curves and computed the following
statistics:

time (s) error energy #segments
mean 0.114 8.29 × 10−4 19.9 36.8

median 0.103 6.39 × 10−5 17.9 33.0
std. dev. 0.0636 0.183 20.7 17.7

The error denotes the error in the endpoint constraints after
alignment as described in section V. These results were ob-
tained on a Linux workstation with an AMD Athlon XP 2600
processor. From the table above we see that the computation
of minimal-energy curves is reasonably fast. Note also that
the number of segments needed to represent a minimal-
energy curve varies significantly, which shows the benefit of
a variable-resolution representation. It helps speed up path
planning by using only as many parameters as necessary.

X. DISCUSSION

This paper described a new approach to path planning for
deformable linear objects. Our approach makes it possible to
explore the entire space of stable, collision-free configurations.
The stable configurations can be represented with minimal-
energy curves. We introduced an algorithm to construct such
curves very efficiently. The size of the representation adapts
automatically to the geometric complexity of the underlying
curve. With this representation it is easy to find paths between
minimal-energy curves such that all curves along the path are
also minimal-energy curves. This work has applications in
simulated and automated suturing, cable routing, and hyper-
redundant / snake robots.

In future work we plan to explore the following problems.
We would like to develop a more complete model for flexible
objects in contact with obstacles. The results in section VIII
where we modeled contact points as being fixed in space are
a starting point, but even finding the contact points such that a
curve is at an energy minimum is very difficult. The location
depends on the geometry of the obstacle and on the contact
kinematics between the curve and the object.

The model we proposed can easily be extended to a more
realistic model of energy. Clearly, giving bending energy and
twisting energy different weights by weighting curvature and
torsion differently in equation 3 would not affect the algorithm
at all. Wire extension can be incorporated by relaxing the
assumption that the segment lengths sum up to a constant
length L . In the subdivision algorithm segment lengths are in
that case also optimized over to lower the energy. The energy
function can then take the following form:

energy(q) =

n∑
i=1

(
κ2

i + τ 2
i + (si − s̄i )

2),
where s̄i is the natural, un-extended length of segment i , and
si ≥ s̄i . Adding gravity is also possible, but this would remove
some of the symmetries that we exploited in our canonical
form. There is still translational symmetry and rotational
symmetry about the z-axis (assuming gravity acts along the z-
axis). To include gravity in the energy function, it is necessary
to integrate the potential energy along the curve. Due to our
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simple parametrization, this integral can be simplified to a
summation.

In conclusion, we have presented a general framework
for path planning for deformable linear objects. It has few
dependencies on the energy model used. This framework can
be used to build up a roadmap of the entire shape space formed
by all minimal-energy curves, which is something that was not
possible with previously proposed methods.
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