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1 Introduction

Metabolism  can  be  the  underlying  cause  of  drug  adverse  effects  and  diminished  efficacy.
Metabolic  reactions  in  the  human  body,  mediated  mainly  by  enzymes,  may  transform  the
administered drug into metabolites that exhibit  different biological activity [1,2]. As a general
rule, metabolic reactions deactivate a drug, however, off-target effects or toxicity, resulting from
the formed metabolites, cannot be excluded. On the flip side, metabolism is necessary for the
formation of the active substance in the case of prodrugs. In scenarios where multiple drugs are
co-administered, the presence of a drug may inhibit or further induce the clearance of another
setting metabolism as one of the underlying causes of drug-drug interactions. As a result, the
metabolic  fate  of  a  candidate  drug  needs  to  be  thoroughly  investigated  during  the  drug
development process. 

Aiming at an accelerated and less resource demanding evaluation than what in vitro studies
offer, multiple computational tools for drug metabolism prediction have been developed. Such
tools are covering various aspects of drug metabolism, with a focus on the prediction of enzyme
specificity,  sites of metabolism and metabolites [3,4]. Tools for enzyme specificity attempt to
identify the enzymes for which a candidate drug may act as a substrate, inhibitor or inducer.
This  information is important  for assessing metabolic stability and, also,  identifying potential
drug-drug  interactions.  Sites  of  metabolism  (SoMs)  are  atoms  in  the  molecule  where  the
metabolic  transformation  takes  place.  The  identification  of  the  SoMs  for  a  molecule  gives
insights  on  its  metabolic  stability  and  also  helps  medicinal  chemists  determine  structural
modifications to manipulate its metabolism. Finally, the identification of potential metabolites is
important  for  predicting  possible  adverse  effects  due  to  off-target  activity  or  toxicity.  Early
computational  approaches  rely  on  expert  knowledge.  Molecular  docking,  QSAR  modeling,
molecular  interaction  fields  and quantum mechanical  simulations  have been used to model
interactions between enzymes and molecules  and predict  regioselectivity  [4].  Regarding the
prediction of potential metabolites, rule-based methods have been the main approach where a
set of transformation rules, that  encode the action of enzymes in general reaction patterns, is
used in order to infer the molecular structures of potential metabolites.

As more data on drug metabolism are becoming available, there has been a shift to machine
learning  (ML)  models  which  offer  much  faster  inference  [3,4].  The  standard  approach  for



predicting enzyme specificity is to apply a classifier on a vector representation of the molecule
for  distinguishing  between binders  and non-binders.  Molecular  fingerprints  as  well  as  other
molecular descriptors, indicating physicochemical and structural properties, are widely used for
obtaining  vector  representations  for  chemical  molecules.  ML  classification  models  such  as
Support Vector Machines and Random Forests, as well as shallow Neural Networks have been
the main choices. The classifiers are enzyme-specific, that is, each classifier is trained to predict
interactions for a specific enzyme. A similar approach is followed for predicting SoMs where the
descriptors contain atom-level attributes, and the classifier predicts the probability for a given
atom to be a SoM for a specific enzyme. Regarding the prediction of metabolites, ML models
have been used alongside the rule-based methods in order to reduce false positives filtering out
unlikely predictions. These models are used to either predict substrate specificity or SoMs prior
to the application of the transformation rules.

2 Expert Opinion

In the following, we are discussing the challenges and current trends in the development of ML
models  for  the  prediction  of  drug  metabolism  and  we  are  giving  directions  for  future
developments.

2.1 Extending enzyme coverage: Existing tools are focused on the CYP450 enzyme family
which is known to metabolize the big majority of existing drugs in phase I metabolism [4]. There
is  increasing  interest  though,  for  extending  coverage to phase II  enzymes and,  also,  other
metabolic  reactions,  including gut  microbiome metabolism,  as complications  may arise from
various enzymes [2]. Especially as the repertoire of therapeutic agents is expanding from small
molecules  to  biologics  an  extended enzyme coverage is  deemed crucial  [5].  However,  the
current approach of  developing enzyme-specific  models cannot  be applied to enzymes with
limited experimental  data,  that  is,  for  the majority  of  human enzymes.  Therefore,  extending
enzyme coverage calls for a steer from enzyme-specific models. Training a single model on
data  from  multiple  enzymes  could  not  only  facilitate  predictions  for  enzymes  with  limited
experimental  data  but  also  allow  the  model  to  identify  shared  reactivity  patterns  between
enzymes  or  enzyme  promisquity  patterns.  The  most  recent  ML  approaches  for  metabolite
prediction  are  indeed  trained  on  data  covering  human  metabolism  in  its  entirety  including
metabolism of endogenous compounds [6,7].

2.2 Leveraging Deep Learning: Existing ML approaches for drug metabolism prediction are
mainly based on shallow ML models and mostly classification models for distinguishing enzyme
binders from non-binders, and SoMs from non-SoMs. In these approaches, the selection of the
molecule or atom level descriptors seems to be especially critical for the performance of the
models and possibly even more critical than the model architecture. On the other hand, deep
learning (DL)  models can directly  operate on structured and semi-structured data,  including
molecules  represented either  as molecular  graphs or  as  SMILES sequences,  and they are
intended  to  learn  task-specific  representations.  More  importantly  though,  DL  models  have
greater expressiveness as they can facilitate prediction tasks that call  for  methods that can
output molecular structures on top of the standard classification and regression tasks. Graph



Convolutional  Neural  Networks  have  attracted  a  lot  of  attention,  within  the  field  of
chemoinformatics, for learning molecule or atom level descriptors while language models have
been a suitable choice for outputting molecules or even generating de-novo molecules using
line notations such as SMILES [8, 9,10,15]. Although there is controversy on whether the learnt
representations can actually offer an advantage [8],  the ability to obtain descriptors that are
optimized for a given prediction task is certainly appealing while the generation of molecules
through language models opens the horizon for more complicated prediction tasks. Indeed, DL
models  have  been  applied  on  general  chemical  reactions  with  great  success  on  various
prediction tasks such as reaction outcome, reaction conditions, reaction center, reaction atom
mapping [10,9,11,12].  The impetus behind these advancements has been the availability  of
massive  datasets  on chemical  reactions  which  are challenging  to  obtain  in  the  metabolism
realm. DL though could be the response to the deviation from enzyme-specific models and
facilitate greater enzyme coverage [6,7].

2.3 Dealing with small datasets: It turns out that the lack of large datasets is not prohibitive to
the application of DL architectures on drug metabolism prediction. Various techniques are being
developed from the ML community to tackle the exact same problem including transfer learning,
few-shot  learning  as well  as  more traditional  techniques  such as ensembling.  In  particular,
transfer learning seems an intuitive choice since metabolic reactions are a subset of all possible
chemical reactions for which massive datasets are available and various applications have been
already explored with promising results. Indeed, recent studies have demonstrated that a DL
model, pre-trained on general chemical reactions, can be further tuned on metabolic data for
predicting the outcome of metabolic reactions or even drug metabolites [13, 6]. Similarly, the
tasks of SoMs and enzyme substrate prediction could also benefit from transfer learning starting
from  tasks  such  as  reaction  center  or  atom  mapping  prediction,  and  reaction  condition
prediction, respectively.

2.4 Introducing explainability: Existing ML-based approaches fail to give insights on how or
why a prediction is made as opposed to the traditional knowledge-based computational tools
which  offer  more  transparency.  This  often  averts  medicinal  chemists  from using  black-box
models. Besides boosting confidence on the model predictions, explainability can additionally
provide  the  user  with  actionable  information.  For  example,  Graph  Convolutional  Neural
Networks may offer insights on how a molecule interacts with an enzyme as opposed to simply
classifying a molecule as a substrate or non-substrate [14]. Similarly, the internal mechanisms
of language models may reveal valuable information such as the reaction mechanism on top of
predicting the reaction outcome [12].

2.5 Other data-related challenges: An additional challenge, besides the size of the available
datasets, is incomplete information or inconsistencies across different sources. Regarding the
first case, a major problem is the lack of negative training instances with regards to enzyme
interactions. Lack of information for specific enzymes may mean that there is no interaction or
that the interaction has not been studied. For the task of predicting SoMs, there is the additional
problem of inconsistent labeling of SoMs across different sources due to different definitions.
Inconsistencies  regard  the  metabolites  structures  as  well  with  some  sources  having  more



extensive  lists  of  metabolites  than  others  while  often  the  primary  metabolites  are  not
distinguished from the secondary. All  these issues hamper not only the development of ML
models for drug metabolism prediction but also the evaluation of the methods and comparative
assessment.  Besides improving the data collection processes, ML models as well  as model
evaluation should also account for such uncertainties.

2.6  Integrating  drug  metabolism  prediction  models  in  the  drug  design  pipeline: ML
models offer fast inference and therefore open up the possibility of integrating metabolic studies
in  the  early  stages  of  drug  development.  Combined  with  ML  models  that  perform
complementary evaluations, such as prediction of biological activity or toxicity of the predicted
metabolites, they can reveal complications that may arise in the later stages enabling a more
efficient pipeline. Taking one step further, ML models for drug metabolism prediction can serve
a fully  automated drug development  pipeline  where target-specific  molecules  are generated
using generative models and ranked using a set of ML models that evaluate different criteria,
including metabolic stability and safety of metabolites [15].
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