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ABSTRACT

Metabolic processes in the human body can alter the structure of a drug affecting its efficacy and
safety. As a result, the investigation of the metabolic fate of a candidate drug is an essential part of
drug design studies. Computational approaches have been developed for the prediction of possible
drug metabolites in an effort to assist the traditional and resource-demanding experimental route.
Current methodologies are based upon metabolic transformation rules, which are tied to specific
enzyme families and therefore lack generalization, and additionally may involve manual work from
experts limiting scalability. We present a rule-free, end-to-end learning-based method for predicting
possible human metabolites of small molecules including drugs. The metabolite prediction task
is approached as a sequence translation problem with chemical compounds represented using the
SMILES notation. We perform transfer learning on a deep learning Transformer model for sequence
translation, originally trained on chemical reaction data, to predict the outcome of human metabolic
reactions. We further build an ensemble model to account for multiple and diverse metabolites.
Extensive evaluation reveals that the proposed method generalizes well to different enzyme families,
as it can correctly predict metabolites through phase I and phase II drug metabolism as well as other
enzymes. Compared to existing rule-based approaches, our method has equivalent performance on
the major enzyme families while it additionally finds metabolites through less common enzymes. Our
results indicate that the proposed approach can provide a comprehensive study of drug metabolism that
does not restrict to the major enzyme families and does not require the extraction of transformation
rules.

Keywords Drug Metabolism · Metabolite Prediction · Neural Machine Translation · Transformer

1 Introduction

Metabolic processes involve chemical reactions that are mediated by enzymes and take place to sustain life, either by
providing energy and building blocks to the cells or by eliminating potentially harmful compounds. Certain enzyme
families are responsible for the elimination of xenobiotics, that is compounds that do not naturally occur in the human
body, such as, drugs, pesticides and pollutants. Metabolism of xenobiotics commonly takes place in the liver in two
phases [1]. Phase I includes oxidation reactions, mediated mainly by the cytochrome P450 (CYP450) enzyme family,
which prepare the molecule to undergo a conjugation reaction in phase II. The conjugation reactions, which are mediated
by transferases, serve two purposes: first they deactivate possibly toxic compounds and second, they increase their
polarity to aid excretion from the body.

Although these processes constitute protection mechanisms for the elimination of xenobiotics, in the case of drugs they
can lead to reduced efficacy and raise safety issues. Phase I reactions, and less commonly phase II, can lead to the
formation of toxic metabolites posing threats for liver toxicity [2]. Indeed, a number of drugs have been withdrawn
from the market due to hepatotoxicity with the leading cause being the formation of active metabolites [3]. In addition,
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metabolism can affect drug bioavailability and can be the cause of drug-drug interactions. As a result, drug metabolism
studies constitute an essential part of drug development. They can provide insights on the suitability of a compound
as a drug or indicate possible chemical modifications that will improve the metabolic profile of a lead compound.
Traditionally drug metabolism is studied experimentally using analytical techniques, such as mass spectrometry, which
are resource demanding [4].

Multiple efforts have been made for developing computational tools for drug metabolism prediction [5, 6] to assist
experimental evaluation and also facilitate the incorporation of metabolic studies at the early stages of drug development
[7]. Most of the existing tools are specifically designed for predicting metabolism through CYP450 enzymes that
are responsible for metabolizing about 70-80% of existing drugs. Methods that have gained popularity, both from a
computational and a practical standpoint, are the ones that aim at identifying the atoms within the molecule involved in
the metabolic transformation, called sites of metabolism [5, 6]. In practice, if the sites of metabolism are known, the
structure of a lead compound can be modified in order to manipulate its metabolism. However, the sites of metabolism
per se do not give insights on the structure of metabolites that may cause toxicity or other complications.

The metabolite prediction problem has been studied to a smaller extent due to the intrinsic difficulty of the problem
which requires the generation of structured data, i.e., the structures of the metabolites. Current approaches are rule-based
methods, which rely on sets of transformation rules for generating possible metabolites. Existing such tools rely on
rules that cover reactions of mainly phase I and possibly phase II metabolism [6, 4]. Extending their coverage to account
for additional enzymes may be challenging. First, the extraction of rules from reaction databases often involves manual
work by experts. Second, an increase in the number of rules may result in a larger number of false positives, resulting
in a low precision performance, which is already a significant problem [4]. There have been some noteworthy efforts
for addressing these problems, which mainly attempt to reduce the number of false positives. Some approaches apply
statistical analysis or heuristics to rank the generated metabolites [8, 9]. Others apply machine learning techniques in
order, either to identify the sites of metabolism prior to the application of rules [9], or to predict substrate specificity
excluding unlikely reaction types [10]. There have been also efforts for obtaining greater coverage of the metabolite
space by developing multiple models, each one intended for a different enzyme family [10]. An additional problem
though, which is inherent to the rule-based methods, is that they fail to generalize for a variety of substrates, as a rule is
applied only when there is an exact match between the substrate and the rule pattern.

The metabolite prediction problem relates closely to that of reaction outcome prediction, which has attracted great
interest and has seen significant advancements the last few years. Similar to the metabolite prediction, most approaches,
and especially the early ones, are rule-based [11, 12, 13]. The adoption of deep learning methodologies though, along
with the availability of massive datasets of chemical reactions, such as the Lowe’s dataset [14], have led to significant
improvements in terms of accuracy [15, 16, 17]. In an effort to deal with the lack of generalization capabilities of
rule-based methods, the application of end-to-end learning has also been explored aiming at using neural network
based architectures for directly converting the reactant molecules into the product molecules bypassing the need of
explicitly encoding transformations rules. More specifically, the reaction prediction problem has been formulated as a
sequence translation problem where the reactants are translated into the products, relying on a sequence representation

(a) Chemical reaction
(b) Drug Metabolism

Figure 1: Drug metabolites prediction as opposed to reaction outcome prediction: In drug metabolism (i) multiple
products are possible, and, (ii) transferred structures (highlighted in red) are not known in advance.
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of molecules, similar to natural language translation [18]. One of the first approaches was developed upon a sequence
translation model which relies on recurrent neural networks for capturing dependencies within the sequence [16]. A
more recent model, called Molecular Transformer [17], further improved upon its predecessor by adopting a newer
architecture for neural machine translation, called Transformer [19], which relies solely on attention layers for capturing
inter-dependencies in sequences. Very recently, the Molecular Transformer proved to be a good starting point for
deriving a model that is specialized on predicting outcomes for a specific reaction class through transfer learning [20].

The lack of data is an important factor impeding the application of an end-to-end learning-based method for the task
of predicting drug metabolites. In addition to that, the metabolite prediction problem exhibits a number of additional
intrinsic difficulties when compared to that of reaction outcome prediction, as it is illustrated in Figure 1: A molecule
may be metabolized in different ways through multiple enzymes and the various metabolites may be quite diverse
in terms of structure. Oxidative enzymes for example, which include the CYP450 family, cause small local changes.
Transferases increase the size of the molecule attaching a new structure to it, while hydrolases, may break it down into
smaller structures. Therefore, in the context of reaction prediction, the prediction of drug metabolites can be seen as
predicting incomplete reactions in which multiple outcomes are possible.

Herein, we present Metabolite Translator (MetaTrans): a rule-free, end-to-end learning-based method for predicting
human metabolites of small molecules. We approached the metabolite prediction problem as a sequence translation
problem based on the SMILES representation of molecules. We constructed a training dataset, relying on human
metabolism data from publicly available databases, that we make publicly available in order to encourage further
development. Due to the limited availability of metabolic data, we used transfer learning, from a Molecular Transformer
[17] pre-trained on general chemical reactions, to a model that is specifically tuned on human metabolic reactions. We
further built an ensemble model to account for multiple and diverse metabolites. We evaluated our method specifically
on predicting metabolites for drugs and compared it against three existing drug metabolite prediction tools (SyGMa [8],
GLORYx [21], BioTransformer [10]).

2 Methodology

Our approach relies on transfer learning; we first pre-trained a Transformer model on a set of chemical reactions and
subsequently fine-tuned it on a dataset of human metabolic transformations as shown in Figure 2. We additionally
created an ensemble model which consists of multiple fine-tuned models. Each model takes as input the SMILES
sequence of the input molecule and predicts the SMILES sequences of possible metabolites. The output of the ensemble
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Figure 2: MetaTrans is derived through fine-tuning the Molecular Transformer on metabolic reactions. During inference, the
ensemble MetaTrans model outputs the metabolites predicted by 6 fine-tuned models.
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is the union of the predictions from each model. In the following, we discuss the three main components of this work: i)
the datasets for pre-training, fine-tuning and testing the model, ii) the training process, and, iii) the ensemble model.

2.1 Data

2.1.1 Pre-training Data

The dataset for pre-training the Transformer model [19] is a subset of the Lowe’s dataset of chemical reactions [14]
which has been used in the literature for training models for reaction outcome prediction [16, 17]. It was derived by
removing duplicates and retaining only single-product reactions resulting in about 900,000 training instances [16].
Molecules are represented using the canonical SMILES notation [22] including stereochemistry information. For
training the Transformer model, the input sequence consisted of the reactants and reagents separated with a special
token while the output sequence was the product molecule.

2.1.2 Fine-tuning Data

The dataset for fine-tuning the pre-trained model consists of pairs of parent molecules and human metabolites in
SMILES notation. The metabolites are derived through one-step enzymatic reactions. The dataset contains metabolites
for both, xenobiotics and endogenous compounds, in an effort to obtain a comprehensive human metabolism dataset
that is not restricted to specific enzyme families. It should be noted that although the outcome of a metabolic reaction
depends on the metabolizing enzyme, information on the enzyme and its action is not encoded in the dataset. Doing so
could possibly limit generalization of the method. On top of that, in practice, the metabolizing enzyme is not known
in advance when predicting metabolites for new molecules, and therefore this could limit applicability. However, we
explored the effect of incorporating the enzyme in the input of the model which we further discuss in Supplementary
Information (SI), section S7.

The databases from which we sourced the data are: DrugBank (version 5.1.5) [23], Human Metabolome Database
(HMDB) (version 4.0) [24], HumanCyc from MetaCyc (version 23.0) [25], Recon3D (version 3.01) [26], the biotrans-
formation database (MetXBioDB) of BioTransformer [10], and the reaction rules from SyGMa [8]. More specifically,
from DrugBank, we obtained pairs of parent molecules and human metabolites with the parent molecule being either
a drug or a drug metabolite in the case of multi-step reactions. From HMDB we utilised all experimentally verified
metabolites of either xenobiotics or endogenous compounds, excluding computationally predicted metabolites. From
MetXBioDB we utilised all metabolic transformations. Regarding MetaCyc and Recon3D, which provide complete
metabolic reactions mostly for endogenous compounds, we derived pairs of parent molecules and metabolites by
retaining for each reaction all such pairs for which the common atoms exceed 40% of the atoms of the parent molecule.
In the case of reactions indicated as reversible we created two training instances by reversing the reaction direction.
Finally, we made use of the SyGMa [8] rule database, which covers phase I and phase II drug metabolism, from which
we derived valid pairs of parent molecules and metabolites. The rules in SyGMa are described using the SMIRKS
language [27] which is a SMILES-like language for generic reactions. The exact process for generating valid pairs
from SMIRKS rules is described in the Data Augmentation section. For processing the data we used the RDKit toolkit
[28]. In particular, we canonicalized SMILES and subsequently merged the data from the various sources and removed

(a) Data sources (b) Enzyme distribution

Figure 3: The composition of the dataset regarding (a) the data sources and (b) the metabolizing enzymes based on the EC
classification (discarding the cases with no specified enzymes), in terms of pairs of parent molecules and metabolites.
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duplicates. The resulting dataset consists of about 11,670 unique pairs of parent molecules and metabolites. The
contribution of each source in the dataset, in terms of unique pairs of parent molecules and metabolites, is shown in
Figure 3a.

The metabolic transformations in the dataset span the full spectrum of enzymes and cover metabolism of xenobiotics
and endogenous compounds. Although for a big part of the dataset (about 43%) the enzyme information is not specified
in the source database, the distribution of enzymes among the labeled pairs, shown in Figure 3b, indicates that all
enzyme classes are covered. Metabolism of endogenous compounds was included to enhance the training set and obtain
greater coverage of the enzymatic space. The evaluation was done specifically on predicting drug metabolites. The
validation set, which was mainly intended for tuning the hyperparameters of the Transformer model, consists also of
drug molecules and drug metabolites. In particular, it consists of 100 parent molecules that we randomly sampled from
the molecules derived from DrugBank with the constraint that it includes molecules that are metabolized by other than
CYP450 enzymes in addition to the dominant CYP450 cases. Finally, we should note that since each parent molecule
may yield multiple metabolites, the dataset includes cases that share the same parent molecule but differ in the resulting
metabolites. However, we ensured that instances that share the same parent molecule were in the same data partition
(training, validation, test).

As a final note, the dataset we constructed for fine-tuning does not include negative cases, that is molecules that are not
metabolized in humans. Although technically it is possible to include cases for which the input sequence and the output
sequence are identical, in practise it is not easy to obtain confirmed negative cases.

2.1.3 Test Set

We evaluated the method for predicting one-step metabolites of drug molecules. The test set consists of drugs that were
derived from two different sources. First, 29 drugs were sourced from a manually curated dataset that was recently made
available by the developers of the GLORY method [9]. The dataset includes in total 81 metabolites through CYP450
enzymes, sourced from the scientific literature. We expanded the GLORY test set with 16 additional metabolites,
through mainly other than CYP450 enzymes, that we sourced from DrugBank. Second, we sourced 55 additional
drugs from DrugBank as follows: 19 drugs were manually selected in an effort to create a more diverse test set in
terms of metabolizing enzymes. The rest 36 drugs correspond to the drugs that were recently annotated in DrugBank
(version 5.1.7) and had not been included in the training set (version 5.1.5). In order to ensure that the test molecules
were not present in the training or validation sets, we compared the datasets using both, SMILES comparison and
fingerprint similarity (based on Tanimoto coefficient) [29]. In particular, we did not allow molecules in the test set
whose fingerprint similarity with molecules either in the training or in the validation set was equal to 1. Fingerprints are
vector representations of chemical molecules, which indicate the presence of certain structures, and are widely used as
an efficient way to judge similarity between molecules [29].

The resulting test set consists of 84 drugs with 217 verified metabolites which cover a wide range of enzymes. More
specifically, the big majority of metabolites (127) correspond to phase I metabolism mainly through CYP450 but also
other oxidasing enzymes. 29 metabolites are derived through transferase reactions of phase II metabolism from which
18 are metabolized by glucuronosyltransferases, also known as UDP-GT, (E.C. 2.4.1.17) and 7 are metabolized by
sulfotransferases (E.C. 2.8.2.-). Finally, 9 metabolites are derived through hydrolases and for 53 cases the enzyme is not
specified.

For the comparison between our method and existing tools we used only the GLORY test set of 29 drugs derived from
the scientific literature and the additional 36 drugs that were recently added in DrugBank. The rest 19 drugs from
DrugBank include common drugs (for example acetaminophen) which may have been used for the development of
existing tools and therefore were excluded from the comparison.

2.1.4 Data Augmentation

Data augmentation is a common practice for enhancing the training set, especially in cases with limited data, by creating
new valid training instances from the existing ones. We used two techniques to augment the dataset of metabolic
reactions: i) SMILES augmentation, and ii) SMIRKS augmentation, with the first one accounting for the biggest part
of the augmented data. SMILES augmentation refers to generating randomized SMILES representations from the
canonical SMILES by randomizing the order of the atoms in the molecular graph. This technique has been found to be
beneficial when training neural network-based architectures and generative models in particular [30, 31]. By SMIRKS
augmentation we refer to generating multiple valid pairs of parent molecules and metabolites that satisfy a SMIRKS
pattern [27]. The SMIRKS language is used for describing generic reactions in which the substrates and products may
contain generic atoms. Generic atoms can be seen as placeholders for different atom species and therefore provide
fertile ground for data augmentation. In order to generate pairs of parent molecules and metabolites, we substituted
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the generic atoms with one of the common atoms in organic chemistry (C, O, S, H, N) and subsequently checked the
generated SMILES for validity using RDKit [28]. SMIRKS augmentation was applied on the transformation rules from
SyGMa and the entries from MetaCyc that include generic atoms. SMILES augmentation was applied on the entire
dataset.

2.2 Training

2.2.1 Pre-Training on General Chemical Reactions

We pre-trained the Transformer model on the dataset of chemical reactions according to the specifications of the
Molecular Transformer model [17, 32]. We additionally experimented with reducing the size of the Transformer model
and also augmenting the dataset using SMILES augmentation. The final selection of these parameters was based on the
validation accuracy of the fine-tuned model.

2.2.2 Transfer Learning on Human Metabolic Reactions

MetaTrans was obtained through transfer learning from the pre-trained Transformer model. More specifically, the
pre-trained model was used as a starting point which was further tuned on the dataset of metabolic transformations.
The training specifications for fine-tuning the model were chosen based on the accuracy on the validation set. We
experimented with various parameters including the data augmentation method, the learning rate schedule and strength,
warmup steps, and batch size.

2.3 Generating Multiple Metabolites

An important challenge introduced when moving from reaction outcome prediction to metabolite prediction is the
possibly multiple and diverse metabolites that can be formed through different enzymes, as shown in Figure 1. To
account for such diverse outcomes, on top of the standard beam search algorithm for generating multiple sequences, we
constructed an ensemble model.

2.3.1 Beam Search

The beam search algorithm is a general heuristic-based search algorithm. When generating a prediction, instead of
expanding the predicted sequence with a greedy approach choosing the most likely character, the algorithm explores all
possible characters and keeps the k most likely sequences. For the metabolite prediction problem, this means that for a
given parent compound the model can generate multiple possible metabolites. The number of generated metabolites is
equal to the beam size which can be controlled by the user. With a smaller beam size we expect to get the most likely
metabolites while increasing the beam size we can obtain larger coverage of the metabolite space.

2.3.2 Ensembling

The ensemble model is created by combining the outputs of multiple fine-tuned models trained under different
specifications. More specifically, we fine-tuned multiple models varying the model hyperparameters and the SMILES
augmentation process. The selection process of the models to form the ensemble was based on finding a trade-off
between maximizing the number of correctly identified metabolites while keeping the output size, which is an indication
of false positives, low. The resulting ensemble model consists of 6 fine-tuned models. The output of the ensemble is the
union of the sets of predicted metabolites from each individual model.

2.4 Post-processing

The model output was filtered in order to discard invalid SMILES and unlikely metabolites. The first case refers to
sequences which violate the syntax rules of the SMILES language (e.g., unbalanced parenthesis). The second case
includes: i) metabolites that have obtained atoms whose species are not among the parent molecule atoms or among
the common atoms in organic molecules (C,O,H,S,P,N), ii) metabolites whose size, in terms of atoms, is significantly
smaller from the size of the parent molecule (less than 25%), and iii) metabolites which exhibit low fingerprint similarity
with respect to the parent molecule (less than 0.25). The cutoff values were determined based on the data of the
validation set. More details in SI S5.

As a side note, for the individual models the output size with a beam size of k will eventually be at most k since some
predictions may be filtered-out. For the ensemble model though, the output size will be larger than k, since the output is
the union of the 6 individual models.
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Table 1: Prediction performance of the pre-trained model, average performance and standard deviation of the individual fine-tuned
models that comprise the ensemble, and performance of the ensemble, for comparable output sizes. The table indicates the percentage
of drugs for which at least one, at least half and all reference metabolites have been correctly identified, as well as, the total number
of identified metabolites.

Output At least one At least half All Total
size metabolite metabolites metabolites identified Precision Recall

Pre-trained (beam 15) 9.1 39.3 27.4 13.1 49 6.4 22.6
Average (beam 15) 9.3±0.4 78.8±4.6 61.7±5.7 33.1±4.1 102.3±8.0 13.1±0.8 47.2±3.7
Ensemble (beam 5) 10.2 90.5 77.4 42.9 125 14.5 57.6

Table 2: Assessment of the ranking capability of the ensemble model regarding the percentage of drugs for which at least one, at
least half and all known metabolites have been identified, as well as, the total number of identified metabolites. The average output
size per input is also indicated.

Beam Average At least one At least half All Total identified
size out. size metabolite metabolites metabolites metabolites Precision Recall

2 5.0 77.4 60.7 27.4 93 22.2 42.9
5 10.2 90.5 77.4 42.9 125 14.5 57.6

10 20.0 91.7 82.1 45.2 139 8.3 64.1
15 29.0 94.0 84.5 48.8 147 6.0 67.7

3 Method Evaluation

The evaluation of the method mainly lies on the number of correctly identified metabolites as well as the output size
that is an indication of the number of false positives. In order to assess the ability of the algorithm to properly rank
the generated metabolites we present results for beam sizes of 2, 5, 10, and 15. For the evaluation of the method, we
compared the predicted metabolites against the reference metabolites using fingerprint similarity. If the fingerprint
similarity (based on Tanimoto coefficient) between a predicted metabolite and a reference metabolite is equal to 1 then
we consider the prediction as correct. Fingerprint similarity is chosen over SMILES comparison because it discards
discrepancies in stereochemistry and atom charges and in general does not depend on the syntax of the language used to
represent molecules.

3.1 Baseline Model

As a reference point, we tested the performance of the pre-trained model on the metabolite test set prior to fine-tuning
on the metabolic data. With a beam size of 15, the model identified 49 metabolites in total out of 217 with an output
size of 768 which corresponds to a specificity value of about 6% and recall 22%. Interestingly, the pre-trained model
retrieved only metabolites through oxidising enzymes and hydrolases while it did not predict any metabolites through
transferase reactions. This outcome demonstrates the differences between the two datasets used for pre-training and
fine-tuning the model. The set of chemical reactions includes complete reactions where all reactants and products are
listed (with possibly trivial compounds missing). On the other side, the dataset for fine-tuning consists of pairs of parent
molecules and metabolites. Oxidation reactions and certain hydrolysis reactions involve only one major compound and
therefore their representation in the two datasets will be very similar. However, for transferase reactions, the added
structure is not encoded in the input of the model. The pre-trained model cannot handle such cases since it has been
trained only on complete reactions where all reactants are listed.

3.2 Prediction Accuracy

To start with, we assessed the benefit of transfer learning as well as ensembling by juxtaposing the performance of the
pre-trained model, the averaged prediction performance of the individual fine-tuned models that comprise the ensemble,
and the ensemble model, in Table 1. The models are compared for similar output sizes which are obtained with
beam size of 15 for the individual models and beam size of 5 for the ensemble. The results highlight the significance
of both practises, transfer learning and ensembling. More specifically, on average, the fine-tuned model performed
significantly better than the model pre-trained on general chemical reactions. Additionally, the ensemble model achieved
a significantly higher recall rate than the average individual model. This shows that ensembling is a better strategy for
increasing the output diversity comparing to a further increase in the beam size of a single model.
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Next, we evaluated the prediction accuracy of the ensemble model. We report the results with varying choices of beam
size in order to assess its ranking capability, as shown in Table 2. The results show that with a beam size of 5, which
corresponds to 10 predictions per input molecule on average, the ensemble model identified at least one metabolite
for about 90% of the drugs (76 out of 84) while it successfully retrieved more than half of the verified metabolites
(recall 57.6%). Even within the top-5 ranked metabolites, which is achieved with a beam size of 2, the model correctly
predicted at least one correct metabolite for 77.4% of the drugs. Increasing the beam size to 10, which is equivalent to
top-20 predictions, the model retrieved at least half of known metabolites for about 82% of the drugs (69 out of 84) at a
cost of a decrease in precision (8.3%). Further increase of the beam size allowed the model to increase the recall rate to
about 68%, with an output size of almost. For practical applications, a beam size between 5 and 10 seems to provide a
good trade-off between precision and recall.

A closer look of the results revealed that the model achieved better scores specifically on the test cases that were
obtained from DrugBank comparing to the data from the GLORY set, as shown in Table 3. More specifically, the model
retrieved all known metabolites for almost half of the drugs derived from DrugBank, while this was the case for about
35% of the drugs from the GLORY set. The most plausible explanation behind this discrepancy is that the GLORY
data, which were derived from the literature, include a more exhaustive list of metabolites as compared to the data
derived from DrugBank. Indeed, the average number of metabolites per drug for the GLORY test set is 3.3 while for
DrugBank is 2.1. This highlights the difficulty for obtaining reliable datasets for assessing computational tools for
drug metabolites prediction. Although an exhaustive list of metabolites may seem more desirable, it does not allow to
differentiate between major and secondary metabolites.

Table 3: Prediction performance of the ensemble model broken down based on the source of the data for beam size 5.

At least one At least half All
Dataset metabolite (%) metabolites (%) metabolites (%)
Glory 93.1 65.5 34.5

DrugBank 89.1 83.6 47.3
All 90.5 77.4 42.9

3.3 Comparison with Existing Tools

Next, we assessed the performance of the ensemble model using as reference three existing rule-based drug metabolism
prediction tools: GLORYx [21], BioTransformer [10] and SyGMa [8]. All methods were evaluated for predicting
metabolites through one-step reactions. GLORYx and SyGMa are both based on rule databases that cover specifically
phase I and II metabolism of xenobiotics. BioTransformer has greater coverage and multiple operation options intended
for covering different enzyme families. For the purpose of this comparison, we used the module that covers human and
human gut microbial transformations (allHuman). Theoretically, MetaTrans and BioTransformer are expected to have
similar and greater coverage, while GLORYx and SyGMa are both specific to oxidation and transferase reactions.

The test set for the comparison consisted of 65 drugs with a total of 179 metabolites. We compared the four methods
taking into account the number of metabolites they correctly identified, the output size as well as their ranking capability.
GLORYx and SyGMa do rank the predicted metabolites while BioTransformer does not. In the case of MetaTrans,
although the generated metabolites are not strictly ranked, the output size can be controlled through the beam size. We
compared the top-5, 10, 13 and 20 performance between MetaTrans, GLORYx and SyGMa. The top-13 performance is
selected for providing a fair comparison with BioTransformer whose average output size on the specific test set was
13. For the ensemble model, top-5, 10, 13 and 20 were achieved with beam sizes of 2, 5, 7 and 10, respectively. All
methods were evaluated using fingerprint similarity.

The results, as presented in Table 4, demonstrate that although MetaTrans was trained on a general dataset not specific
to drugs, its performance is not compromised when compared to models that have been specifically developed for drug
metabolism. Indeed, MetaTrans shows better ranking capability when compared with GLORYx and similar ranking
performance with SyGMa. Within the top-5 predictions, MetaTrans and SyGMa both correctly identified in total 76
metabolites while GLORYx identified 54. Focusing at MetaTrans and SyGMa, although they identified the same
number of metabolites, the identified metabolites are differently distributed among the drugs with MetaTrans having
larger coverage of the dataset, that is finding at least one correct metabolite for a larger portion of the dataset. A similar
pattern is observed within the top-10 predictions with MetaTrans and SyGMa correctly predicting a similar number of
metabolites while MetaTrans being able to predict at least one metabolite, or even half, for a larger number of drugs.
For the top-13 predictions, SyGMa and BioTransformer both retrieved the highest number of metabolites. However,
still MetaTrans predicts at least one correct metabolite, and even half of known metabolites, for a larger number of
drugs. In the top-20 ranked metabolites, GLORYx significantly expanded its search surpassing MetaTrans and SyGMa.
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Table 4: Comparison between MetaTrans and GLORYx, SyGMa and Biotransformer for various prediction windows.

At least one At least half All Total
Method metabolite metabolites metabolites identified Output Precision Recall
Method (%) (%) (%) metabolites size (%) (%)

Top 5
MetaTrans 80.0 61.5 29.2 76 324 23.5 42.5
GLORYx 64.6 35.4 16.9 54 325 16.6 30.2
SyGMa 72.3 55.4 29.2 76 325 23.4 42.4

Top 10
MetaTrans 95.4 80.0 44.6 103 687 15.0 57.5
GLORYx 80.0 64.6 27.7 93 650 14.3 51.9
SyGMa 87.7 75.4 43.1 105 650 16.2 58.7

Top 13

MetaTrans 95.4 81.5 46.2 109 908 12.0 60.9
GLORYx 86.2 76.9 41.5 108 851 12.8 60.3
SyGMa 89.2 78.5 44.6 115 842 13.6 64.2

BioTransformer 87.7 78.5 44.6 115 842 13.5 64.2

Top 20
MetaTrans 96.9 86.2 46.2 116 1334 8.7 64.8
GLORYx 92.3 86.2 52.3 132 1259 10.5 73.7
SyGMa 90.8 84.6 49.2 127 1284 9.9 70.9

Overall though, MetaTrans was among the best performed tools when looking at about 10 highly ranked metabolites
which is a reasonable choice in practical applications. Additionally, it gave at least one correct prediction for a larger
portion of the dataset.

We further broke down the performance of each method looking into the different enzyme families as shown in Table
5. The enzyme families that were considered are oxidation enzymes, with the CYP450 being the most prevalent,
transferases, with UDP-GT and sulfotransferases being the most prevalent, and hydrolases. As we can see, the advantage
that BioTransformer and SyGMa obtained relates to oxidation reactions. However, they missed some metabolites
through transferases that MetaTrans correctly identified. Overall though, all methods seem to be able to cover all
enzyme classes. Interestingly, SyGMa and GLORY, which are specific to phase I and phase II metabolism, correctly
identified a number of hydrolase metabolites possibly due to the promiscuous activity of enzymes.

Regarding MetaTrans, the large variety of the training set allowed the model to predict metabolites through any enzyme.
More importantly, it performed equally well on the major enzyme classes of phase I and phase II metabolism while it
additionally identified metabolites through enzymes that are less commonly involved in drug metabolism and were
missed by other tools. More specifically, MetaTrans identified two additional metabolites through transferases which
are less common in drug metabolism. One of these cases is the drug Apomorphine which is metabolized through a
methyltransferase (EC 2.1.1.6) into the metabolite Apocodeine (Figure 4a) which is an active compound [33, 34]. This
metabolite was also identified by GLORYx but not by the other two tools. The second case, which was identified only
by MetaTrans, is the metabolite of the drug Fingolimond (Figure 4b) which is derived through phosphorylation (EC
2.7.1.91) and is also an active metabolite [35]. Another even more interesting case is the drug Favipiravir (Figure 4c).
DrugBank provides the structure of a metabolite that is obtained through oxidation and it additionally states that the
drug undergoes glucuronidation without providing the structure of the metabolite though. MetaTrans correctly predicted
the oxidation metabolite and it also gave as output glucuronidation metabolites resulting from conjugations in two
different positions (one of them depicted in Figure 4c). Interestingly, among the predicted metabolites we noticed a
ribosylated metabolite and a metabolite which was additionally phosphorylated (Figure 4c) which we both confirmed
from the literature [36]. Indeed, Favipiravir is a prodrug which is ribosylated through intracellural metabolism and
subsequently phosphorylated in three subsequent steps, forming a triphosphate which is the active compound with
antiviral activity [36]. MetaTrans did not identify the triphosphate but it identified the one-step ribosylated metabolite as

Table 5: Comparison per enzyme family.

Sulfo- Other
Oxidation UDP-GT transferases Trasferases Hydrolases Unspecified All

Total 118 11 4 3 6 37 179
MetaTrans 70 7 3 2 4 23 109
GLORYx 70 8 3 1 4 22 108
SyGMa 80 8 2 0 5 20 115

BioTransformer 81 7 2 0 5 20 115
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well as the two-step phosphorylated metabolite although it was trained only on single-step reactions. Favipiravir is a very
interesting case because it is metabolized through an uncommon reaction for drugs and additionally it is conjugated with
a structure of significant complexity contrary, for example, to the Apomorphine metabolite. Despite that, MetaTrans
correctly identified the metabolite and additionally a two-step metabolite. The other tools correctly identified the
oxidized metabolite and all predicted glucuronidation metabolites but none of them predicted the ribosylation. These
cases demonstrate that MetaTrans can identify metabolites through uncommon enzymes and reactions which may be
missed by rule-based approaches including BioTransformer which is expected to have greater coverage than tools that
are focused on phase I and phase II metabolism.

(a) Apomorphine and its metabolite apocodeine
(b) Fingolimond and its phosphorylated metabolite

(c) Predicted metabolites for favipiravir

Figure 4: Correctly identified metabolites through uncommon enzymes

Finally, although our method was not trained on negative cases, that is non metabolizing drugs, we applied our method,
as well as the other tools, on a dataset of 74 drugs which, according to DrugBank, are not metabolized in humans. For
MetaTrans, we investigated whether the parent structure was among the predictions. Our analysis showed that for the
dataset of non-metabolizing drugs the parent structure was found among the predicted structures for 51.4% of the cases
within the top-5 predictions. For the dataset of metabolizing drugs, this percentage corresponds to 42.4%. The ability of
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MetaTrans to identify non-metabolizing drugs seems to be limited especially considering that it intentionally gives a
diverse output, mostly through ensembling, and therefore the unchanged structure of the drug will be among multiple
predicted metabolites. However, the capacity of the other three tools to identify the non-metabolizing tools was also
limited.

As a final note, we noticed that, in the dataset of non metabolizing drugs, GLORYx was not able to make predictions for
cases that included rare atoms (such as B and Gd). The development of GLORY involved Machine Learning, and hence
it cannot handle compounds that include atoms that have not been seen during training [9]. On the contrary, MetaTrans
although it is a strictly learning-based method, it was able to predict metabolites for these cases. Although it is possible
that the specific atoms were not seen during fine-tuning, the model was pre-trained on a very large and diverse dataset
of chemical reactions which include atoms that are not restricted to the ones found in organic molecules.

4 Challenging cases

For a better understanding of the capabilities and limitations of the proposed methodology we visually inspected the
predicted metabolites for the test set of metabolizing drugs. A few representative cases of the model mispredictions are
presented in Figure 5.

For certain cases, the discrepancy between the reference metabolite and the closest prediction was limited to a single
atom. Such an example is the drug Tedizolid (case 1 in Figure 5). For that particular case, the error could be even be in
the reference metabolite. Indeed, for a difference case, which involved glucuronidated metabolites, we found evidence
in the literature which verified the predicted metabolites providing slightly different structures than the ones found in
DrugBank [37].

In general, our inspection revealed various problems that relate to transferase reactions, however, in most cases the
predicted metabolites appeared to be at least relevant. We recall here that transferase reactions are expected to be
challenging cases for our method since there are not such cases in the dataset used for pre-training and they are
under-represented in the dataset used for fine-tuning (Figure 3b). For certain cases the structure of the glucuronic acid
was not entirely correct or the conjugation point was not correctly identified. Such an example is the drug Lamotrigine
(case 2) where both problems coexist. In many cases we noticed that the model predicted conjugations with both,
glucuronic acid and sulfate, for the same molecule, even for cases where the reference metabolites included only one
of them. Indeed, from our dataset we noticed that conjugations with these two structures usually occur for the same
molecule. In other cases, the model missed a glucuronidation metabolite for a sulfation or the opposite. An especially
challenging case for the model is the case of metabolites that are derived through multiple transformations at different
sites. Such examples are the drugs Tamezapam and Umifenovir (cases 3 and 4). In both cases the metabolites are
derived through a conjugation and an oxidation reaction possibly in multiple reaction steps. The model correctly
identified the reaction type (conjugation) as well as the conjugation site but did not predict the simultaneous oxidation
reaction.

Regarding oxidation reactions, a common problem was that in certain cases although the model correctly identified
the position and the reaction type, the predicted structure was not entirely correct. Such examples are the drugs
Ciprofloxacin and Metoclopramide (cases 5 and 6). Specifically in the case of Ciprofloxacin the reference metabolite is
an aldehyde while the predicted molecule is the corresponding carboxylic acid. According to the literature, aldehydes
usually are intermediate compounds which are further oxidized forming carboxylic acids by CYP450 enzymes [38].
However, we did not make such assumptions for our evaluation. Especially for the case of Ciprofloxacin, DrugBank did
not specify where the drug was oxidized by a CYP450 enzyme.

Overall, our inspection showed that for many of the cases where the predicted metabolites did not exactly match
the reference ones, the prediction still provided useful information. More specifically, the predictions in many cases
succeeded in providing insights on the reaction type or even the reaction site in the parent molecule.

5 Invalid Predictions and Post-processing

Besides the prediction accuracy of the model, we finally evaluated two additional aspects: first, how susceptible the
model is for generating invalid SMILES, and, second what is the effect of the post-processing filtering. Our analysis
showed that the model generated at least one valid SMILES for all drugs in both, validation and test sets, for all beam
sizes. Specifically regarding the test set of 85 drugs, the number of atoms ranged from 8 to 62 with an average of 24.6.
The average number of invalid predictions per input molecule for a beam size of 5 was 0.9, and 2.5 for a beam size of 10.
These findings indicate that the issue of generating non-valid SMILES is insignificant for small molecules. Regarding
the effect of the post-processing filtering, our analysis showed that a very small percentage of the predicted molecules
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Figure 5: Drug structure, actual metabolite and closest prediction for a small number of challenging test cases.
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was filtered out proving that the big majority of the predictions are actually relevant. More specifically, for a beam size
of 10, only 5 predictions were filtered out in total which corresponds to about 0.3% of the total predictions.

6 Conclusions

We presented an end-to-end learning-based method, called MetaTrans, for predicting human metabolites of small
molecules. MetaTrans consists of a model that was trained using transfer learning on a diverse dataset of human
metabolic reactions. We evaluated the performance of our method for predicting drug metabolites and compared
it against existing rule-based drug metabolite prediction tools. Our analysis showed that despite the fact that our
model was trained on a dataset that is not specific to drugs its performance was comparable with methods that were
specifically developed for drugs. In fact it is the diversity of the dataset that allowed the model to predict metabolites
not only through the major enzyme families but also through uncommon enzymes which were missed by the existing
rule-based approaches. The proposed approach can provide a more comprehensive study of drug metabolism comparing
to the existing rule-based methods, which are enzyme-specific, while it additionally addresses the problems of limited
scalability and lack of generalization. As more data become available, especially on drug metabolism, the performance
of this approach can be further improved encouraging the adoption of such tools in drug discovery for accelerating and
enhancing safety studies.

7 Data Availability

The datasets as well as the running code can be found in: https://github.com/KavrakiLab/MetaTrans.
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