
How Much Do Unstated Problem Constraints
Limit Deep Robotic Reinforcement Learning?

W. Cannon Lewis II, Mark Moll, and Lydia E. Kavraki

Abstract—Deep Reinforcement Learning is a promising
paradigm for robotic control which has been shown to be capable
of learning policies for high-dimensional, continuous control of
unmodeled systems. However, Robotic Reinforcement Learning
currently lacks clearly defined benchmark tasks, which makes
it difficult for researchers to reproduce and compare against
prior work. “Reacher” tasks, which are fundamental to robotic
manipulation, are commonly used as benchmarks, but the lack of
a formal specification elides details that are crucial to replication.
In this paper we present a novel empirical analysis which
shows that the unstated spatial constraints in commonly used
implementations of Reacher tasks make it dramatically easier
to learn a successful control policy with Deep Deterministic
Policy Gradients (DDPG), a state-of-the-art Deep RL algorithm.
Our analysis suggests that less constrained Reacher tasks are
significantly more difficult to learn, and hence that existing
de facto benchmarks are not representative of the difficulty of
general robotic manipulation.

Note to Practitioners—This paper seeks to understand how well
common algorithms for learning robotic manipulation perform
and generalize. Though Deep Reinforcement Learning has been
the subject of much attention lately, the reported results may
be difficult to replicate in practice. In particular, this paper
shows how much the minutiae of a robotic problem definition
can impact learning. We find that for a particular sort of robotic
task, a popular Deep Reinforcement Learning algorithm only
succeeds when non-physical limitations are placed on the problem.
This suggests that care must be taken when applying these sorts
of learning methods to robotic problems in the real world, as
previously reported results may fail to generalize in surprising
ways. We also seek to give some intuition as to why certain
problem limitations may make learning easier. This paper may
be of interest to anyone considering applying Reinforcement
Learning for a real-world robotic problem, especially during the
problem formulation phase.

I. INTRODUCTION

Robotic autonomy is challenging for several reasons: robots
have many degrees of freedom, require an agent capable of
continuous observation and action, and can exhibit action and
sensing uncertainty. For many problems such as manipulation
under uncertainty, navigation in unknown environments, or
interaction with human beings, it is difficult or impossible to
model the environment well a priori. It is for this reason that
machine learning methods, which adapt to new environments
and tasks, are a promising frontier in robotic autonomy.
Reinforcement Learning (RL) [1] is a particularly promising
paradigm, as defining an RL problem requires only the
specification of a reward function encoding success.

In recent years, Deep RL (which extends RL with deep
neural networks) has had demonstrable success on manipulation

W. Cannon Lewis II, Mark Moll, and Lydia E. Kavraki are with the
Department of Computer Science, Rice University, Houston TX, USA.
wcannon@rice.edu, mmoll@rice.edu, kavraki@rice.edu. This
work has been supported in part by NSF 1718478 and Rice University Funds.

Fig. 1. An example of a typical goal constraint region in the ‘FetchReach-v0’
environment, a commonly-used example of the “Reacher” tasks that we analyze
in this paper. The orange box here is approximately the constraint region from
which goals are sampled. Image from [10] with added constraint visualization.

tasks [2], [3], [4], [5]. In reaction to these successes there
has been a push toward standardization of benchmarks and
testing conditions used to evaluate Deep RL methods [6],
[7]. Simulation suites such as OpenAI Gym [8] and MuJoCo
[9] have enabled this standardization, but no existing work
has shown that the de facto benchmark tasks are truly
representative of the challenges presented by autonomous
motion of commercially available robot manipulators. More
work is needed to clarify precisely when Deep RL methods
work well for general robotic autonomy.

More recently, the authors of [7] have shown that several
axes of variation serve as confounding variables in reported
Deep RL results. They demonstrate that hyperparameter setting,
network architecture, reward scaling, random seeds, environ-
ment specification, and codebase choice can have significant
impact on empirical learning behavior. Our goal in this paper is
to extend the binary observation that environment specification
can affect learning to a qualitative one; we wish to understand
to what degree small changes in problem description impact
the difficulty of a particular family of robotic tasks. We show
this by introducing subtle variations of a popular robotic
RL environment, the “Reacher” family of tasks. Indeed, [7]
performs some of their analysis on the “Reacher” task variant
introduced by [10], and so our analysis is highly related to
this prior work. “Reacher” tasks are a prime example of the
fundamental manipulation and locomotion tasks found in prior
work [11], [12], [10]. These tasks are necessary building blocks
to more complex control tasks such as search-and-rescue or
construction, but there has been no extensive analysis of how

their specification can affect learning.
The main contribution of this paper is an analysis showing

that the “Reacher” tasks used in prior works are not repre-
sentative of the full difficulty presented by general robotic
manipulation (or even basic pick-and-place tasks). More pre-
cisely, we show that existing benchmarks (e.g., those proposed
in [10]) constrain goal sampling, which has a significant impact
on learning. We perform this analysis by constructing a series of
“Reacher” tasks which interpolate between tasks similar to prior
work and a more general unconstrained task. “Reacher” tasks
challenge an agent to use low-level (joint position, velocity, or
torque) control to move the end effector of a manipulator to a
point in the robot’s workspace. Note that if position control
is used, this family of tasks amounts to learning the inverse
kinematics of the manipulator; if velocity or torque control
is used then the task is closely related to learning inverse
dynamics [13]. Thus, “Reacher” tasks expose some fundamental
challenges in robotics. However, prior work uses goal constraint
regions to restrict the effective workspace of the manipulator
being controlled to such a degree that the underlying learning
problem is changed and, we argue, simplified. Our empirical
analysis using the state-of-the art DDPG [14] algorithm on a
simulated UR5 robot supports this point and shows that this task
comparison is apt, as we find that the DDPG fails to generalize
in unexpected ways as the effective workspace is expanded.
Following the methods used by [7], we fix our algorithm, code,
and hyperparameter settings across all experiments, and focus
our analysis on the task definition.

This analysis is supported and systematized by a software
framework (ROSGym) that we developed to connect standard
implementations of RL algorithms to commonly used robot
control software. More precisely, we wrote a Python interface
that integrates the Robot Operating System (ROS) [15] and
OpenAI Gym, which we then used to generate the results in
this paper. The flexibility of ROS allowed us to easily compare
variations of the “Reacher” task specification in order to better
understand the influence of factors such as the number of joints
and goal constraint region on learning.

II. ON DEEP RL

In this work, we focus our analysis on the specification
of “Reacher” benchmark tasks for Robotic RL. In order
to eliminate the other sources of variability identified by
[7], we use a fixed learning algorithm (DDPG) and fixed
hyperparameters to perform our experiments. In this section,
we will provide the minimal necessary background in Deep
RL to contextualize our choice of DDPG for this analysis.

A. RL Background

We consider a standard reinforcement learning problem
definition [1], in which we model a task of interest as a
learning agent interacting with a Markov Decision Process
(MDP). An MDP M is a tuple M = (S,S0,A,P,R) describing
an environment which an agent interacts with in discrete
time steps t ∈ {0 . . .T}. More precisely, at each time step
t our agent occupies a state st ∈ S, initially sampled from
S0. At each time step, the agent takes an action at ∈ A, and

experiences a probabilistic state transition according to the
probability distribution over st+1 defined by the transition
function st+1 ∼ P(st ,at ,st+1) = Pr(st+1|st ,at). As a result of
this action, the agent also receives a reward rt = R(st ,at). The
tuple (st ,at ,st+1,rt) is typically called a transition, and the
full sequence of these transitions over t ∈ {0 . . .T} is called a
trajectory or rollout. In this paper we restrict our attention to
continuous control; specifically, the case where S = Rm and
A = Rn for m,n ∈ N.

In reinforcement learning we are concerned with learn-
ing a policy π : S → A which maximizes the total reward
RT = ΣT

t=0rt = ΣT
t=1R(st ,π(st)). This policy may also be

probabilistic, in which case we learn π : S → P[A], where
P[A] is the set of probability distributions over A, and seek
to maximize Es0∼S0,at∼π(st),st+1∼P(st ,at ,st+1)[RT]. In practice, RL
methods often modify this definition of the total reward
to include a discount for future states. This discounted
total reward is called the value function, and is defined as
Vπ(s)=E[ΣT

i=tγ
(i−t)R(si,ai)|st = s], where at ∼ π(st) at all time

steps. This definition of the value function naturally gives rise
to the action-value function Qπ(s,a) = Est+1∼P[Vπ(st+1)|st =
s,at = a], which intuitively assigns a value to being in a state
st and taking action at , while prioritizing earlier sources of
reward.

From previous results [1], it is known that the action-value
function satisfies the Bellman equation:

Qπ(s,a) = Es′∼P[R(s,a)+ γEa′∼π [Qπ(s′,a′)]].

The recursive nature of this equation allows RL methods to
iteratively estimate the action-value function from experience. If
Qπ is represented by a function approximator with parameters
θQ, we can derive a differentiable loss:

L(θQ) = Est∼P,at∼π [(Qπ(st ,at |θQ)− yt)
2], (1)

where
yt = R(st ,at)+ γQπ(st+1,π(st+1)|θQ).

Gradients from this loss can then be used to adjust the
parameters θQ and improve the approximation of Qπ [16].

In problems with finite action spaces, performing the above
optimization and using the greedy policy which selects the
action with the highest action-value at every time step is known
as Q-learning. However, for problems with continuous action
spaces it is impractical to find the optimal action at each
time step. In [14] the authors show that this problem can be
made tractable using an actor-critic method in which both
the deterministic policy µ and action-value function Q are
approximated by deep neural networks, which they term Deep
Deterministic Policy Gradients (DDPG). By decomposing (1)
and isolating the policy component of the action-value function
gradient, DDPG allows an agent to optimize a policy over
a continuous action space. Optimizing a policy in this way
causes learning instability, and so DDPG utilizes an experience
replay buffer to decorrelate experienced transitions and improve
stability. Transitions are added to this experience replay buffer
when the agent receives them from the environment, and then
the agent samples training examples from the buffer during
training. We refer the interested reader to [14] for further
algorithmic details.

B. Why DDPG?

In this paper, we focus on Deep RL as applied to robotic
control, particularly in manipulation settings. Among recent
Deep RL methods, DDPG demonstrates a number of desirable
features. First, DDPG learns continuous control policies which
eliminate the need for action discretization, the previously dom-
inant methodology enabling robotic RL [11]. Second, DDPG
learns a deterministic control policy, which is advantageous
for robotic applications because the learned policy can be
reproducibly tested and verified once learning has converged.
Though other methods such as TRPO [17] and Soft Q-Learning
[18] are promising for problems with continuous action spaces,
these methods learn stochastic policies which are more difficult
to verify. Third, DDPG is model-free, which means that it can
be applied to novel tasks and robots without extensive feature
engineering or incorporation of expert knowledge. Finally,
because DDPG is an off-policy method, it can be modified to
make use of additional sources of experience (such as human
demonstration) which have been shown to improve learning [4].

To the best of our knowledge, few results exist which
successfully apply Deep RL on simulated or real commercially
available robots. Some of the most impressive results in
this field use demonstration for initialization or make use
of a dynamics model to simplify the learning task [4], [19],
[20]. Model-free methods are often demonstrated on a variety
of simulated tasks from MuJoCo or OpenAI Gym, and
occasionally in tabletop manipulation tasks on a commercially
available robot such as a Fetch, UR5, or Baxter [2], [21],
[5]. However, examining the robotic benchmarks proposed
in [10] or implemented in MuJoCo reveals a core similarity
with manipulation benchmarks commonly demonstrated on
commercial robots: task goals (such as goal end effector
position) are sampled from a goal constraint region above
a “table” surface. Figure 1 shows a visualization of a typical
goal constraint region. Recently, [22] and [7] have previously
argued that seemingly innocuous unstated assumptions such
as algorithm implementation, parameterization, initialization,
and reward scale can have inordinate effects on the success
of learning. Here, we argue that the goal constraint region is
another significant assumption which affects robotic reinforce-
ment learning. This goal constraint region is an often unstated
part of the Reacher specification, and our recognition of this
phenomenon comes from examining the publicly available
implementations of environments in [10], [9]1.

III. METHODS

A. Algorithmic Details

In this work, we conduct experiments using DDPG [14]
with Hindsight Experience Replay (HER) [5]. We implemented
our own version of DDPG for this purpose, which we intend
to open-source along with the ROSGym interface described
below. The authors of [5] demonstrate that, in reinforcement
learning tasks similar to the “Reacher” tasks considered in our
current work, augmenting the learning agent’s experience with

1See, e.g., https://github.com/openai/gym and https://github.com/openai/
mujoco-py.

counterfactual experience can speed up learning convergence
and result in a higher success rate for the convergent policy.
We employ HER by, for each episode of training, appending a
modified trajectory to DDPG’s experience replay buffer where
the rewards rt are re-calculated as if the final end effector
position reached by the agent during the episode was the goal
position.

While conducting this research, we examined a number of
other modifications to DDPG and our environment specification
that are not employed in the following experiments. Some prior
work (e.g., [23]) suggests that Prioritized Experience Replay
may improve learning stability and rate of convergence, but
our experience was that this tended to destabilize or prevent
learning. The experiments below utilize uniform sampling from
the experience replay buffer. Other work [5] has suggested that
sparse rewards give rise to better learning than dense rewards,
but we found the opposite to be true and so used the dense
reward formulated in (2).

B. Environmental Specification

When conducting an experiment using RL, an experimenter’s
choice of (S,S0,A,P,R) can have a significant effect on learning.
Though we developed our own simulated environment using
ROS, we took inspiration from the existing “Reacher-v2”
implementation in OpenAI Gym in order to follow previous
results. In our setup, as in [8], each state s is formed in the
following way:

s = [θ , θ̇ , θ̈ ,goal− f k(θ),goal]

Here, θ is the vector of joint angles of the simulated UR5 robot,
f k is a function maps joint angles θ to end effector position
in Cartesian space, and goal is the current goal location in
Cartesian space. By including the goal in the state description,
we allow an agent to learn a policy parameterized by the goal
for a particular episode. Our experimental setup allows us to
specify the number of joints controlled by a learning agent,
so |s|= 3n+6, where 2≤ n≤ 6 is the number of joints being
controlled. The action vector a is simply the vector of desired
absolute joint angles, and hence |a|= n. Finally, with a slight
abuse of notation, we formulate our tasks’ reward functions
as:

R(s,a) =−‖ f k(s)− s[goal]‖−‖a‖2+

100 · I{ f k(s) ∈ ball(s[goal],ε)}
(2)

This is a fairly standard sort of reward function definition.
The first term in (2) penalizes the current Euclidean distance
between the agent’s end effector and the goal position, the
second term penalizes large actions, and the final term gives
a large positive reward when the agent reaches the goal. This
reward function is an example of a “shaped” reward, which
means that it attempts to steer the learning agent toward regions
of high reward. The first and second term in (2) accomplish this
by driving the agent to minimize the distance to the goal and
to minimize the sequence of controls necessary to accomplish
this. Though one could argue that in a position control regime
it is inappropriate to penalize large absolute actions, we do so
here by analogy to velocity and torque control, in which we

https://github.com/openai/gym
https://github.com/openai/mujoco-py
https://github.com/openai/mujoco-py

would seek to minimize absolute actions to avoid sudden, jerky
motions. In contrast, a “sparse” reward would only provide
the agent with nonzero rewards upon reaching the goal (e.g.,
using just the third term in (2) as a reward function).

IV. RESULTS

We examine several general variants of the popular “Reacher”
task, exemplified in prior work by the Reacher-v2 (planar)
and FetchReach-v0 (3D) tasks in OpenAI Gym [8], [9] 2. We
make use of a UR5 sitting on an impermeable plane, which
we simulate using ROS and our ROSGym interface. Deep
RL methods are commonly tested on discrete tasks, video
games, and simple control tasks. For these tasks, established
simulation suites such as OpenAI Gym and the Arcade Learning
Environment [24] are commonly employed, but there is not
currently a commonly accepted testing suite that integrates
well with existing control software for commercial robots. This
limits the reproducibility and generality of results in robotic RL,
as tasks for new robots or tasks must often be hand-engineered.
It is our hope that, when open-sourced, ROSGym will help
researchers to validate results gathered using existing robotic
RL simulation suites (e.g., [10], [9]) on commercially available
robots.

As in the established planar case, our experiments start UR5
robot from a fixed position such that the end effector is within
the goal constraint region. We consider two broad categories
of Reacher task: the unconstrained version, in which goals are
sampled from the whole workspace of the robot, and several
constrained versions, in which goals are sampled from a goal
constraint region. For the unconstrained version of the task,
the starting joint angles are [0,0,0,0,0,0]. For the constrained
versions, the starting joint angles are [0, π

2 ,
π

4 ,0,0,0]. These
starting configurations are visualized in Figures 2-3. The
learning agent is then tasked with controlling the end effector
to a randomly sampled goal location. We use joint position
control as the action space of the DDPG agent. In general, our
ROS–OpenAI Gym interface allows us to use joint position,
velocity, or torque control, but in our experiments only joint
position control resulted in a non-negligible success rate. It
is also worth noting that the choice of reward function had a
significant impact on the success rate achieved by DDPG on
the Reacher tasks that we tested.

TABLE I
DDPG TRAINING HYPERPARAMETERS

Hyperparameter Symbol Value

Discount factor γ 0.98
Replay Buffer Size B 106

Batch Size N 64
Exploration Rate ν 0.01

Target Update Ratio τ 0.001
Actor Learning Rate λµ 0.0001
Critic Learning Rate λQ 0.001
Episodes of Training M 20,000

Steps per Episode T 100

2All results in this paper were produced using the Docker container at
https://hub.docker.com/r/cannon/testing.

For all versions of the Reacher task described below, we
derive goals by uniformly sampling in the joint space of a
simulated UR5 robot. For each set of joint values generated,
we compute the end effector position by utilizing the forward
kinematics of the UR5. If the experiment involves a constraint
region, we reject candidate goals until a set of joint values
places the corresponding end effector location within the
constraint region. Goals could also be sampled directly in
the Cartesian space within the goal constraint region, but this
could generate goal locations without solutions for a given
robot. Our goal sampling strategy allows us to guarantee that
each sampled goal location is hit by at least one configuration
of the robot. When we restrict to fewer than 6 joints of the
UR5, we sample goals within the reachable space effected by
the joints being controlled.

The figures below show success rates for policies learned by
DDPG over 20,000 episodes of training. Every 100 episodes
of training, we conducted a testing session comprising 100
episodes in which we execute the deterministic policy learned
by DDPG without exploration noise. By default, episodes are
100 steps long, which corresponds to 2 seconds of simulated
time at a control rate of 50 Hz. Episodes are terminated early
upon success, which we define as the robot’s end effector
entering an ε-ball surrounding the goal position, where ε =
0.1m. The graphs below display the number of goals (out
of 100) that were successfully hit by the learned policy in
each testing session. Each graph shows the mean and 65%
confidence interval for 5 independent attempts at learning using
the same hyperparameters and task setup3. We use the same
actor and critic networks as [14] uses for low-dimensional
experiments. Table I summarizes the other hyperparameters
for DDPG which are held constant across our experiments.

In all of the following experiments, we strive to follow the
prescriptions presented by [7]. We report all of our hyperpa-
rameters in Table I, and report all runs of all experiments
(i.e., the results shown in this paper were not cherry-picked
to demonstrate the trend that we highlight). Unfortunately, the
baseline implementation of DDPG given by OpenAI [25] was
not available when we conducted these experiments, so we used
our own codebase. However, we did replicate existing results
using our code before beginning the experiments reported in
this work, and we intend to open-source our code (including
our implementation of DDPG and ROSGym).

A. Unconstrained

Figure 2 shows the results of running the variant of DDPG
described in Section III on the unconstrained Reacher task.
In this version of the task we place no constraint on the
sampling of goal end effector locations; hence, goals are
sampled throughout the robot’s workspace. It is easy to see
that, while DDPG succeeds in learning a highly capable policy
for 2 joint control, for 3–6 joints DDPG fails to learn a policy
that can hit more than 50% of the sampled goal locations.
This makes some intuitive sense, as the 2 joints at the base
of the UR5 effect roughly orthogonal motions and only a

3Note that each training run takes approximately 72 hours on an Amazon
EC2 c4.xlarge instance.

https://hub.docker.com/r/cannon/testing

(a) Joint numbers and bounding goal space region. (b) Joints 1–2. (c) Joints 1–3.

(d) Joints 1–4. (e) Joints 1–5. (f) Joints 1–6.
Fig. 2. Results for the unconstrained case.

simple control policy must be learned, whereas for 3–6 joints
a competent policy must involve coupled motion of multiple
joints.

It is interesting to note that the asymptotic behavior of DDPG
is approximately equivalent for 3–6 joints, as shown in Figure 2.
This may not be particularly surprising, however; we note that
the Cartesian workspaces for 3, 4, 5, and 6 joints of the UR5
robot are almost identical, since joints 4, 5, and 6 are primarily
responsible for the orientation, rather than the position, of the
end effector. For the unconstrained experiment we reported
training curves for all of these joint configurations in order to
verify that learning occurs similarly for all joint variants, but
for all following experiments we report 3 and 6 joint results as
these provide a lower and upper bound on learning difficulty,
respectively4.

B. Z-Height and Close Box Constraints

Figure 3 shows the results of running DDPG on the z-
height constrained and close box constrained versions of the
Reacher task. In the z-height constrained version, goals are
only sampled below a height of 0.4 meters from the plane on
which the robot sits. Note that the end effector of the simulated
UR5 can normally reach approximately 1.0 meters above the
plane on which the robot sits. In the close box constrained
version, goals are sampled from a 0.9m×0.8m×0.4m box that
includes the robot’s base. See Figure 3(a) and Figure 3(d) for
visualizations of these goal constraint regions. We only show
the 3 and 6 joint cases here, as DDPG is able to learn the
unconstrained task well for 2 joint control, and throughout our

4Apart from the 2-joint variant, which was learned easily in the unconstrained
case and in all other cases, and so is not further analyzed in this paper.

experiments we saw little variation in learning among the 3, 4,
5, and 6 joint versions of this task.

Though these two forms of constraint are quite different
workspace regions, the asymptotic performance of DDPG on
these constraint regions is identical. Note that the asymptotic
success rate of the policy learned by DDPG decreases from
approximately 40% in the unconstrained case to 20% in
the z-height and close box constrained cases. This lends
further evidence to the idea that certain regions of the robot’s
workspace (such as the region above z = 0.4m) are easier to
learn than others (such as the constraint regions previously
described). Finally, we can qualitatively observe that learning
takes longer to converge for 6 joint control, which lends some
validation to the conventional wisdom that RL scales poorly
to higher dimensions. However, this scaling effect is strongly
dominated by the similarly poor asymptotic behavior common
to the 3 and 6 joint cases.

C. Far Box Constraint

Figures 3(g) and 3(i) show the results of running DDPG on
the far box constrained version of the Reacher task. In this
version, goals are only sampled from within a 0.4m×0.8m×
0.4m box which is 0.5 meters along the X-axis from the robot’s
base. The dimensions of this box were changed because the
robot’s workspace does not extend beyond 0.9 meters from the
base of the robot. Though the volume of this constraint region
is approximately half of that of the goal constraint region in
the close box case, in our experiments an extension of the
height of the far box constraint region to 1.0 meters resulted
in a convergent success rate similar to that in the reported far
box case. See Figure 3(g) for a visualization of the reported

(a) Z-height goal constraint. (b) Joints 1–3, z-height. (c) Joints 1–6, z-height.

(d) Close box goal constraint. (e) Joints 1–3, close box. (f) Joints 1–6, close box.

(g) Far box goal constraint. (h) Joints 1–3, far box. (i) Joints 1–6, far box.

Fig. 3. Z-height and close box constrained experiments.

far box constraint region. As before, we only show the 3 and
6 joint cases here.

It is immediately apparent that the far box constraint is
easier to learn than any of the previously considered goal
regions. Learning converges to nearly 100% success within 10
testing sessions, or 1000 training episodes, for all independent
runs in the 3 joint case, and for 4 of 5 runs in the 6 joint
case (1 run experienced the type of catastrophic forgetting that
DDPG is known for [6]). We also found this rapid learning
and near-perfect asymptotic behavior holds even if the z-height
constraint of the box is removed. By simply moving the goal
sampling region away from the base of the robot, the apparent
asymptotic performance and sample complexity of DDPG on
this task are significantly improved. Note that this form of
constraint is the most similar to the goal constraints in existing
Reacher task implementations, and also displays the greatest
ease of learning.

D. Policy Success Visualization
Finally, Figure 4 shows how two runs of DDPG can learn

two very different policies. These visualizations were created

by taking two convergent (≈ 40% success) policies learned
by DDPG as described for the unconstrained 3-joint control
Reacher task and running them without exploration noise. We
measured the two policies’ rates of success on a coarse tiling of
the workspace of the UR5 by randomly sampling 10,000 goal
locations in the previously described manner, executing the
learnt policy, and binning the successes for each grid cell. The
figures above represent only a slice of the robot’s workspace
(between z = 0.7 and z = 0.8).

Though they were learned on the same task and with the
same hyperparameters, the two policies display very distinct
regions of competence (lighter regions, where nearly 100%
of goals are successfully hit). This could result from DDPG
attempting to learn a single unifying policy for regions of
differing difficulty. From the qualitative difference in these two
policies, we can infer that biases at the start of training may
have an inordinate effect on the resulting policy success regions.
This phenomenon could account for recent successes in robotic
RL: tasks have been restricted to small enough spaces that
a single policy can be learned which accounts for the entire
constrained space.

(a) Run 1, 0.7 ≤ z≤ 0.8. (b) Run 2, 0.7 ≤ z≤ 0.8.
Fig. 4. Goal success regions for independent runs on unconstrained 3 joint task.

V. DISCUSSION

Our results strongly suggest that 1) more exploration is
necessary into how Deep Robotic RL benchmarks should be
defined and run and that 2) more work is needed before popular
Deep RL methods will be capable of learning control policies
for general robotic tasks. Standard robotic RL benchmark tasks
can elide much of what makes robotic control difficult, and
much is still unknown about the true capability of popular
algorithms such as DDPG to learn to perform more general
tasks. Recent work has established that Deep RL methods may
be more difficult to generalize to complex tasks than prior,
non-deep methods [22], [26], [27], but it is still unknown how
broadly this applies. However, this does not necessarily mean
that the more general forms of these tasks are impossible to
learn; rather, it suggests that more work needs to be done in
assessing how popular learning algorithms perform on non-
constrained versions of robotic tasks. Given the efficacy of
ensemble methods [28] for supervised learning, we expect
that a regional Deep RL ensemble algorithm may perform
better on the Reacher tasks considered in this paper. We fixed
our choice of algorithm and hyperparameters in this paper to
focus on the effect of varying the “Reacher” task definition on
learning, but we have not yet attempted the same analysis with
other popular Deep RL algorithms such as TRPO. We expect,
however, to observe a similar trend of learning difficulty as
the goal constraint region is expanded and the dynamics of the
robot’s effective workspace become more complicated. More
research is necessary to confirm that the results presented in
this paper are general across Deep RL algorithms, but our
initial analysis has produced unexpected learning behavior that
merits further investigation.

ACKNOWLEDGMENTS

We would like to thank Zak Kingston and Bryce Willey for
their help in developing ROSGym and this manuscript.

REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press Cambridge, 1998.

[2] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement learning
for robotic manipulation with asynchronous off-policy updates,” in IEEE
International Conference on Robotics and Automation, Oct. 2017, pp.
3389–3396.

[3] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training
of deep visuomotor policies,” Journal of Machine Learning Research,
vol. 17, no. 1, pp. 1334–1373, 2016.

[4] M. Večerı́k, T. Hester, J. Scholz, F. Wang, O. Pietquin, B. Piot, N. Heess,
T. Rothörl, T. Lampe, and M. Riedmiller, “Leveraging demonstrations for
deep reinforcement learning on robotics problems with sparse rewards,”
arXiv preprint arXiv:1707.08817, Jul. 2017.

[5] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder,
B. McGrew, J. Tobin, P. Abbeel, and W. Zaremba, “Hindsight experience
replay,” in Advances in Neural Information Processing Systems, 2017,
pp. 5048–5058.

[6] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel, “Bench-
marking deep reinforcement learning for continuous control,” in Interna-
tional Conference on Machine Learning, 2016, pp. 1329–1338.

[7] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger,
“Deep reinforcement learning that matters,” in AAAI Conference
on Artificial Intelligence, 2018, pp. 3207–3214. [Online]. Available:
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16669

[8] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “OpenAI Gym,” arXiv preprint
arXiv:1606.01540, 2016.

[9] E. Todorov, T. Erez, and Y. Tassa, “MuJoCo: A physics engine for
model-based control,” in IEEE International Conference on Intelligent
Robots and Systems, 2012, pp. 5026–5033.

[10] M. Plappert, M. Andrychowicz, A. Ray, B. McGrew, B. Baker, G. Pow-
ell, J. Schneider, J. Tobin, M. Chociej, P. Welinder, V. Kumar, and
W. Zaremba, “Multi-goal reinforcement learning: Challenging robotics
environments and request for research,” arXiv preprint arXiv:1802.09464,
2018.

[11] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics:
A survey,” International Journal of Robotics Research, vol. 32, no. 11,
pp. 1238–1278, 2013.

[12] N. Kohl and P. Stone, “Policy gradient reinforcement learning for fast
quadrupedal locomotion,” in IEEE International Conference on Robotics
and Automation, 2004, pp. 2619–2624.

[13] J. J. Craig, Introduction to robotics: mechanics and control, 3rd ed.
Upper Saddle River, NJ, USA: Pearson/Prentice Hall, 2005.

[14] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, “Continuous control with deep reinforcement learning,”
in International Conference on Learning Representations, Sep. 2016.

https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16669

[15] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler,
and A. Y. Ng, “ROS: an open-source Robot Operating System,” in ICRA
workshop on open source software, 2009.

[16] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al.,
“Human-level control through deep reinforcement learning,” Nature, vol.
518, no. 7540, p. 529, 2015.

[17] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in International Conference on Machine
Learning, 2015, pp. 1889–1897.

[18] T. Haarnoja, H. Tang, P. Abbeel, and S. Levine, “Reinforcement learning
with deep energy-based policies,” arXiv preprint arXiv:1702.08165, 2017.

[19] X. B. Peng, P. Abbeel, S. Levine, and M. van de Panne, “DeepMimic:
Example-guided deep reinforcement learning of physics-based character
skills,” arXiv preprint arXiv:1804.02717, 2018.

[20] S. Gu, T. Lillicrap, I. Sutskever, and S. Levine, “Continuous deep Q-
learning with model-based acceleration,” in International Conference on
Machine Learning, Mar. 2016, pp. 2829–2838.

[21] A. A. Rusu, M. Vecerik, T. Rothörl, N. Heess, R. Pascanu, and R. Hadsell,
“Sim-to-real robot learning from pixels with progressive nets,” arXiv
preprint arXiv:1610.04286, 2016.

[22] A. Rajeswaran, K. Lowrey, E. V. Todorov, and S. M. Kakade, “Towards
generalization and simplicity in continuous control,” in Advances in
Neural Information Processing Systems 30, I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds.
Curran Associates, Inc., 2017, pp. 6550–6561.

[23] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” arXiv preprint arXiv:1511.05952, 2015.

[24] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The arcade
learning environment: An evaluation platform for general agents,” Journal
of Artificial Intelligence Research, vol. 47, pp. 253–279, 2013.

[25] P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford,
J. Schulman, S. Sidor, Y. Wu, and P. Zhokhov, “Openai baselines,”
https://github.com/openai/baselines, 2017.

[26] H. Mania, A. Guy, and B. Recht, “Simple random search provides
a competitive approach to reinforcement learning,” arXiv preprint
arXiv:1803.07055, 2018.

[27] A. R. Mahmood, D. Korenkevych, B. J. Komer, and J. Bergstra, “Setting
up a reinforcement learning task with a real-world robot,” arXiv preprint
arXiv:1803.07067, 2018.

[28] T. G. Dietterich, “Ensemble methods in machine learning,” in Interna-
tional workshop on multiple classifier systems. Springer, 2000, pp.
1–15.

https://github.com/openai/baselines

	Introduction
	On Deep RL
	RL Background
	Why DDPG?

	Methods
	Algorithmic Details
	Environmental Specification

	Results
	Unconstrained
	Z-Height and Close Box Constraints
	Far Box Constraint
	Policy Success Visualization

	Discussion
	References

