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Abstract
Part positioning and orientation is a key issue in man-

ufacturing. Recent approaches perform this task using
force fields over a plane. Force fields can be implemented
in the microscale with MEMS actuator arrays and in the
macroscale with mechanical motors or small air jets. A part
placed on a force field is subjected to a resultant force and
torque acting on the contact surface of the part. As a result,
the part moves toward an equilibrium configuration. Ex-
tensive recent work has investigated a series of force fields
for part positioning and orientation. Typically, a strategy
that brings a part to a unique equilibrium consists of sev-
eral force fields that are employed in sequence. Böhringer
and Donald conjectured a few years ago that the combina-
tion of a unit radial field with a constant field would give
rise to a unique equilibrium. Such a field is extremely inter-
esting as it positions and orients parts without the need of
sensing or a clock. Recently we proved this conjecture for
non symmetric parts. In this paper, we focus our attention
on symmetric parts and we show that some of them can be
uniquely positioned and oriented using the same field. Our
work further explores the capabilities and limits of force
fields and provides additional evidence that force fields are
a powerful tool for parts manipulation.

1 Introduction

During manufacturing, parts typically stored in boxes
have to be manipulated and oriented before assembly. This
task is critical in manufacturing since it strongly affects the
productivity of the assembly line. Orientation has been tra-
ditionally performed by vibratory bowl feeders. However,
these devices are usually designed for the orientation of a
single part and need to be redesigned if the shape of the
part changes.

Recent work has investigated alternative ways of orient-
ing parts in assembly workcells. Programmable part feed-
ers are more flexible and can be adapted easily to different
types of parts [1, 11]. Moreover, they are usually more ro-
bust and easier to implement. In particular, methods that do
not require sensors are favored [1, 3, 7, 9, 11].
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Figure 1: Radial-constant potential field �������	��
��� ������������ � � . The corresponding force field uniquely positions and orients
non-symmetric and some symmetric parts.

One of the alternatives proposed in [11] consists in ori-
enting a polygonal part by a sequence of squeezes per-
formed by two parallel jaw grippers. Given a polygonal
part, this work proposed an algorithm that computes the
best sequence of squeezes that uniquely orients the convex
hull of the part no matter what the initial configuration is.

Another alternative is the use of programmable force
fields implemented on a plane [4, 14]. A part lying on the
field is subjected to a resultant force and torque that move
the part toward a stable equilibrium configuration, if one
exists. This technique requires no sensing. Current technol-
ogy permits the implementation of certain force fields in the
microscale with MEMS actuators [4] and in the macroscale
using mechanical devices [15], or air jets actuators [2]. Vi-
brating plates can also be used to produce a force field in
the plane [3, 4].

A theory for programmable force fields has been devel-
oped in [4] and the reader is referred to this paper for a com-



prehensive discussion on the work of Böhringer and Don-
ald on the theory and uses of programmable force fields. A
number of force fields have been proposed for part manipu-
lation, including the constant, the radial, the inertial field,
and their combinations. Strategies that include squeeze
fields or a combination of radial and squeeze fields have
been developed to position and orient parts. These strate-
gies are based on the sequential application of a number of
fields. Their implementation does not require sensing but
requires a clock. Complexity (i.e., the number of squeezes
necessary to accomplish a task) is an important issue in this
context and minimal complexity, which could eliminate the
need of a clock, is desirable. Significant progress has been
made toward this goal for the task of positioning and ori-
enting a part. An elliptic force field that gives rise to two
stable equilibria for non symmetric parts was proposed in
[12]. A long standing conjecture of Böhringer and Don-
ald stating that the combination of a unit radial field and a
constant field can orient uniquely any non-symmetric part
was recently proved in [5]. The field that achieves unique
equilibrium arises from a potential; the latter is drawn in
Figure 1. The condition for unique orientation under the ra-
dial and constant field is the following: under the radial field
only and at equilibrium, the center of mass of the part is not
above the origin of the field. In this paper, we investigate
the case where this condition is not fulfilled and we give an
additional condition under which the part has exactly two
stable equilibrium configurations. We restrict ourselves to a
theoretical investigation of the problem in this paper trying
to understand the limitations of programmable force fields.

This paper is organized as follows. Section 2 outlines the
conditions for equilibria. Section 3 discusses the properties
of the unit radial field. Section 4 presents the radial-constant
field and its properties. Our main result is in Section 5. We
conclude with a discussion in Section 6.

2 Conditions for Equilibrium

Let
���������
	

be a force field in the plane and let us con-
sider a part occupying a surface � in a reference configu-
ration �� , with center of mass at the origin. Let us denote
by ��� the surface occupied by the same part in configura-
tion ��� ������������	

where ����� �������
	
is the position of the

center of mass � of the part and
�

is the orientation. When
placed on a force field, the part is subjected to a resultant
force and torque given by:� ����
 � ��� �"!��$# 
&%'# �( ����
 � ��� � �$#*)+# , 
.-/!��$# 
&%'# �
An equilibrium configuration is a configuration where the

force and torque vanish.

Potential fields As described in [4], if
���0�����
	

derives
from a potential field, we can define a potential field in the
configuration space by integration over the surface occupied
by the part. This field is called the lifted potential field and
is defined as follows:1

��� 
��2�3� �.4 �$# 
&%'# �
The stable equilibrium configurations of a part subjected to
a potential force field are the local minima of the lifted po-
tential field. In this paper, we are going to use this property
since the fields we use derive from potential functions.

3 Unit Radial Field

The unit radial field is defined by
���������
	 �5 67 8 9�:<;=9 �������
	 and derives from the potential function

4 �����	��
� � � � ��� � (1)

over the plane. This field is combined with a constant field
to achieve unique orientation. We first examine the proper-
ties of the radial field.

3.1 The Lifted Potential Field

The unit radial field is symmetric by rotation about the
origin. For this reason, if we rotate the part about the ori-
gin from a given configuration, the lifted potential field >
remains constant. Exploiting this idea, we define a new sys-
tem of coordinates over the configuration space by:? � @BADC�E� �FCHGJIKE � �L � )MCHGJINE � �F@BA COE � �
Two configurations obtained from one another by a rota-

tion about the origin have the same
�0PQ��RM	

and therefore,
expressed in the

��PQ�SRN����	
system of coordinates, the lifted

radial potential field depends only on
��PQ�SRT	

and can be
written: 1

� ? � L 
� ��� 4 � ? �FU � L �FV�
&%WUD%'V � (2)

The key property of our reasoning is that > ��PQ�SRX	
as a

function of
��PQ�SRT	

has a unique local minimum [5].

3.2 Unique Minimum of Y[Z&\^]=_Q`
We will need the following proposition. Note that our

discussion below provides an alternative proof to [4] for the
existence of the unique minimum. The proof below was
also given in [5] but we repeat it here for completeness.



Proposition 1
(i) The Hessian of > �0PQ��RM	

is positive definite
everywhere

(ii) > �0PQ��RM	
has a unique local minimum

�0P  �SR  	
Proof: (i) Using common results from Lebesgue theory of
integration, it can be established that > �0PQ��RM	

is
���

. The
Hessian of > ��PQ�SRT	

can be written

Hess

1
� ? � L 
� ��� 9���	� 9 � ? � L 
 � 9���	�
��� � ? � L 
� 9 ��	�
��� � ? � L 
 � 9 ���� 9 � ? � L 
 

where the partial derivatives of > �0PQ��RT	
are obtained by

differentiating � ��P���� ��R����
	
in the integral in equa-

tion (2), using expression (1). Hess > ��P ��RT	
is a symmet-

ric matrix and therefore is diagonalizable. The Hessian of> �0PQ��RT	
is positive definite iff its eigenvalues are both pos-

itive. The sum and product of these eigenvalues are respec-
tively the trace and determinant of Hess > ��PQ�SRX	

. There-
fore, Hess > �0PQ��RM	

is positive definite iff its determinant
and trace are both positive. Let us compute the second par-
tial derivatives of ����� � :� �	����� �� ? � � � � � L �FV 
 �

�	� ? � U 
	�� � L �FV 
	� 
! #" � %WU %'V� �	����� �� L � � ��� � ? � U 
 �
�	� ? � U 
 � � � L �FV 
 � 
  #" � %WU %'V� � �$��� �� ? � L � ��� ) � ? � U 
 � L �FV�

�	� ? � U 
 � � � L �FV 
 � 
  #" � %WU %'V �

From these expressions, we deduce easily that
tr Hess � ��� � ��P ��RX	&%('

. Then using the identities�*),+ �-�3	#./�3	=�0)21��-�3	#./�3	 � )3),+ �4�3	!1 �4�
	5.6�7./� �)3)3+ �4�
	!1 �4�3	5.6�7./�
, we have:8/9;:

Hess ����� � � � ������� �� ? � � �	����� �� L � ) �
� �	�$��� �� ? � L 
 �

�2� � L �< ? �� ) ? < L < ? � L �� ? �< � L �< 
! #" � � ? �� � L �� 
! #" �
�>=? � � L �< ? �� � L �� ? �<� ? �< � L �< 
  #" � � ? �� � L �� 
  #" �
�@=? � � ) ? ? < L < ? � L �� ? �< � L �< 
  #" � � ? �� � L �� 
  #" �
� =? � � � L < ? < ) L � ? < 
 �� ? �< � L �< 
! #" � � ? �� � L �� 
! #" �3ACB �

where
P 6 � PD�E� 6 , P,F � PG�H��F

,
R 6 � RI�H� 6 ,RJF � RK�L�6F

and
./� 6 ./� 6 ./��FM.6�/F has been omitted to make

the notation clearer.
(ii) > ��PQ�SRT	

is convex. As � �0�����
	 tends toward infinity
with

�������
	
, so does > ��PQ�SRX	

therefore, > �0PQ��RT	
has one

and only one local minimum.

Pivot point According to Proposition 1, the set of equilib-
rium configurations of a part subjected to a unit radial field

N O
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Figure 2: In the equilibrium configuration corresponding to E �B , the center of mass _ is at � ?a` � Lb` 
 .
is stable by rotation of the part about the origin of the field.
For all these configurations, the point of the part situated at
the origin is called the pivot point of the part and is denoted
by c (see Figure 2).

4 Radial-Constant Field

We now add to the unit radial field, a constant field of
magnitude d oriented toward the negative direction of the�

-axis. This force field derives from the potential d � . Fig-
ure 1 shows the corresponding potential function. The lifted
potential field of this combination is expressed as follows in
the

�0PQ��RK����	
system of coordinates��� � ? � L � E 
� 1

� ? � L 
 �feWg hig �$CHG IKE ? �F@BADCOE L 
 � (3)

where j �kj is the area of � . For clarity purposes, we define
the following functions����� � � ? � L 
� � � ? � L � E �Se 
� �$� � ? � L � E 
 �
where the variables we put in the subscript are considered

constant.

4.1 Equilibrium curve

The second term of the right hand side of expression (3)
is linear in

�0PQ��RX	
. For this reason, � �	� � has the same sec-

ond order partial derivatives as > and Hess �^��� � � Hess >
is positive definite (Proposition 1). For any fixed value of

�
and dml�n , � ��� � ��PQ�SRX	

tends toward infinity with
�0PQ��RX	

.
Thus, ����� � has a unique local minimum. We denote by��Ppo��0�
� d 	=��Rqo3��� � d 	�	 this local minimum that we can ex-
press in the standard system of coordinates by

�sr ��E �Se 
 � @BA C E ? r ��E �!e 
�)+CHG IKE L r ��E �Se 
 � (4)

�Wr ��E �Se 
 � CHGJINE ? r ��E �Se 
 �Q@BA C E L r ��E �Se 
 � (5)

For each value of d2ltn , these local minima define a curve
of parameter

�
that we call equilibrium curve [5].

If we defineu
� ? � L � E �!e 
�>v �xw�	� � ? � L � E �#e 
�xw��� � ? � L � E �Se 
zy �



��P o���R2o 	
is implicitly defined by:

� �0Ppo���R2o����
� d 	 � '
.

For each
�

and d fixed, the partial function
� ��� � �0PQ��RX	

is
� F

and its differential is exactly the Hessian of > �0PQ��RT	
. This

Hessian is invertible everywhere according to Proposition 1.
Therefore, the implicit function theorem enables us to state
that

P o
,
Rqo

and thus
��o

,
�bo

are
� F

functions of
�

and d .
4.2 Condition for Local Minima of ���

As explained above, we are interested in the local min-
ima of the lifted potential field induced by the combina-
tion of a unit radial field and a constant field. These local
minima are the stable equilibrium configurations of the part
subjected to this field. A local minimum of � � is necessar-
ily on the equilibrium curve. To find these local minima,
we just have to look at the lifted potential along the equilib-
rium curve. Our minimization problem thus becomes one-
dimensional. Let us define� r� ��E 
� � � ? r ��E �Se 
 � L r ��E �Se 
 � E �!e 
 �
be the value of the lifted potential along the equilibrium

curve and let us compute the derivative of this function w.r.t.�
: % � r�%�E ��E 
 �

� �� ? � ? r ��E �#e 
 � L r ��E �Se 
 � E �!e 
 � ? r� E ��E �Se 

�

� �� L � ? r ��E �Se 
 � L r ��E �Se 
 �HE �#e 
 � L r� E ��E �Se 

�

� �� E � ? r ��E �#e 
 � L r ��E �Se 
 � E �Se 
 �
As

P o
and

R3o
minimize � in

�0PQ��RX	
, the two first terms

of the right hand side of the above equation are zero. The
third term can be computed from (3). We get% � r�%�E ��E 
 � eWg hig �$@BADC E ? r ��E �!e 
�) CHGJINE L r ��E �Se 
	


� eWg hig � r ��E �Se 
 �
This equation means that the variation of the lifted potential
along the equilibrium curve depends on the abscissa of the
translational minimum. This property leads directly to the
following proposition.

Proposition 2 The stable equilibrium configurations of a
part placed on the combination of a radial and a constant
field are, given by the values of

�
where the equilibrium

curve crosses the
�

-axis from left to right when
�

increases.

In the general case, we do not have an exact expression
of

��o����
� d 	 to apply Proposition 2. However, for small val-
ues of d , it is possible to guess the shape of the equilibrium
curve from the values of

��o���� �;'�	
and �

8��
� � �0�
�;'�	

using Tay-
lor expansion:

�br ��E �Se 
�� �sr ��E � B 
 �me � � r� e ��E � B 
 ����� e 
 � (6)

This is the topic of the next section.

5 Unique and Non-Unique Orientation

Let us recall that
�0Ppo��0�
�;'�	 ��R3o��0�
�;'�	�	 � ��P  �SR  	 is the

minimum of > ��PQ�SRX	
and thus does not depend on

�
. Us-

ing (4), � o ��� �;'�	 �
	��� �/P  5 ���� �/R ��
5.1 Unique Stable Equilibrium

If
��P  �SR  	��� �*'
�;'�	

, i.e. the pivot point and the center of
mass are distinct, the equilibrium curve for d � '

is a circle
centered at the origin. This circle crosses only once the

�
-

axis from left to right. In [5], we proved that by continuity
of

��o
and its partial derivative �

8��
� � , this property remained

true for small values of d and therefore that the part had a
unique equilibrium configuration.

We are now interested in the case
��P  ��R  	 � �-' �;'�	

,
where the pivot point and center of mass are the same. This
condition arises for symmetric parts like rectangle or regu-
lar polygons.

5.2 Two Stable Equilibria

When
��P  ��R  	 � �-' �;'�	

,
� o �0�
�;'�	

is uniformly zero and
cannot be used as an approximation of

� o��0�
� d 	 for smalld . To predict the sign of
��o��0�
� d 	 for small d , we use for-

mula (6) that becomes:

�sr ��E �Se 
� e � � r� e ��E � B 
 ��� � e 
 �
In the rest of this section, we will determine an expression

of �
8��
� � �0�
�;'�	

and we will show that for small d , the values
of

�
where

��o3�0�
� d 	 and �
8��
� � ��� �;'�	

vanish are close to each
other.

Computation of �
8 �
� � ���
��'�	

. Let us differentiate (4) w.r.t.d , we get� � r� e ��E � B 
�� @BADC�E � ? r� e ��E � B 
<)+CHGJINE � L r� e ��E � B 
 � (7)

�
8��
� � �0�
�;'�	

can be deduced from ���
�

� � �0�
�;'�	
and ���

�
� � ��� �;'�	

.
Let us recall that

�0P o���Rqo 	
minimizes � in

��PQ�SRT	
and

therefore that� � �� ? � ? r ��E �Se 
 � ? r ��E �!e 
 � E 
 � B �� � �� L � ? r ��E �Se 
 � ? r ��E �!e 
 � E 
 � B �
Replacing � � by expression (3) we get:� 1� ? � ? r ��E �!e 
 � L r ��E �!e 
	
 �me/g hig&CHGJIKE � B �� 1� L � ? r ��E �Se 
 � L r ��E �Se 
	
��me/g h g @SADCOE � B �



Differentiating these equations w.r.t. d , we have� 9 ��	� 9 � ? r � L r 
 �Y� �� � � � 9 ��	�
��� � ? r � L r 
 �7� �� ��ag hig CHGJINE � B �� 9���	�
��� � ? r � L r 
 �Y� �� � � � 9;���� 9 � ? r � L r 
 �7� �� ��ag hig&@BA C E � B �
where

Ppo
and

R3o
are evaluated at

�0�
� d 	 . Now, takingd � '
in these expressions, we get

Hess

1
� B � B 
iv �	� �� � ��E � B 
��� �� � ��E � B 
 y � g hig/v CHG INE@BADC�E y � B � (8)

This is a linear system of equations whose coefficients are
the second order partial derivatives of > at

�-' �;'�	
. Let us

recall that the Hessian of > is symmetric positive definite
everywhere. Thus it is diagonalizable, i.e. there exist two
positive number n ��� 6 and n ��� F , and a rotation matrix ���
such that

Hess

1
� B � B 
���
	�� v <�� BB < 9 y ��� �

Multiplying (8) by Hess > �-' �;'�	�� 6 , we get:v �Y� �� � ��E � B 
�7� �� � ��E � B 
 y ���
	�� v�� < BB � � y ���@v ) g hig&CHGJINE) g hig @BA COE y
and using (7),� � r� e ��E � B 
� =? g hig � � � ) � < 
�CHGJI�� ? ��E ��� 
	
 � (9)

The following proposition states that for small d , � o����
� d 	
vanishes close to the values of

�
where �

8��
� � �0�
�;'�	

vanishes.

Proposition 3 If the pivot point c and the center of mass �
are the same and if Hess > �-' �;'�	

has two different eigenval-
ues, then the part has two stable equilibrium configurations
for small d . In these configurations, the axis of the part
coinciding in configuration �< with

��� � 	
aligns with the

eigenvector of Hess > �-'
��'�	
of larger eigenvalue.

Proof: Without loss of generality, we assume that 6� 9 is
the larger eigenvalue:

� 6 5 � F %E'
. The idea of the proof

is that as
��o����
��'�	 � '

, the sign of
��o3�0�
� d 	 for small d

is given by the sign of �
8��
� � ���
��'�	

. As this latter function
vanishes 4 times (2 times from

� l '
to

�H%�'
) when

�
describes the unit circle, so does

� o��0�
� d 	 and the part has
two stable equilibrium configurations.
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Figure 3: Partial derivatives of the equilibrium curve.

As we consider only small values of d , we can constrain��� � d 	 to remain on a compact set, so that
� o

and its deriva-
tives are uniformly continuous. We now divide the unit cir-
cle into the following intervals:
��� ��� )�� �! " � �  � �S)�� �$#

�&% <('  � )� "�)*�� ��� )�� )  " � �  � �B)�� �  " � �  � )
�,+.-0/ B � = � ? �2143 �

as shown in Figure 3. The first step is to show that ford small enough,
��o��0�
� d 	 does not vanish over the 5�6 . We

notice that

7 E8- � `:9 � � � � � r� e ��E � B 
<;2) g hig � � < ) � � 
 = 1� �
7 E8- � < 9 �  � � � r� e ��E � B 
 A g hig � � < ) � � 
 = 1� �

From the uniform continuity of �
8��
� � , there exists d 6 % '

such that:

7 e8->� B �#e < ) � 7 E
- � `:9 � � � �@? �� � ��E �Se 
A; B �7 E
- � < 9 �  � �@? �� � ��E �Se 
 ACB �
From these inequalities, and since

� o��0�
�;'�	 � '
, we can

deduce that for any d3l d 6 , �$o���� � d 	 is positive over 5 6 and
5 � and negative over 5  and 5 F .

The second step is to show that
� o3���
� d 	 vanishes only

once over each of the B�6 . We can differentiate (9) with
respect to

�
to get� � � r� E � e ��E � B 
� ) g hig � � < ) � � 
�@BADC � ? ��E*)>� 
	
 �

Over the B 6 , the partial derivative �
9 8��
� � � � is lower bounded

in absolute value:

7 E8- *Y` 9 * � � � � � r� E � e ��E � B 
<;2) g hig? � � < ) � � 
 �
7 E8- * < 9 *  � � � � r� E � e ��E � B 
 A g hig? � � < ) � � 
 �

Using the uniform continuity of �
9 8��
� � � � , we can deduce that

there exists d�C % ' such that

7 e8->� B �#e � ) � 7 E
- * `A9 * � � � 9 ? �� � � � ��E �Se 
A; B �7 E
- * < 9 *  � � 9 ? �� � � � ��E �Se 
 ACB �
and as �

8��
� � �0�
�;'�	 � '

, the above inequalities lead to:

7 e8->� B �#e � ) � 7 E8- * `A9 * � � �@? �� � ��E �#e 
A; B �7 E8- * < 9 *  � �@? �� � ��E �#e 
 ACB �
As �

8��
� � �0�
� d 	 keeps a constant sign over each interval B 6 ,�$o3��� � d 	 can vanish at most once on each of them. As�$o

changes sign between the intervals 5 6 , for d l d 6 , it
changes sign exactly once between these intervals defining
thus two stable and two unstable equilibrium configurations
for the part.

Notice that in this proof, the intervals B�6 can be cho-
sen as small as desired around the values 5ED �GFIH F ,

F!J
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Figure 4: A rectangle in the radial constant field rotates to align
its long edges with the constant component of the field.

� ' � n ��� ����� , where �
8��
� � ��� �;'�	

vanishes. This just makes d 6
smaller. Thus, when d tends toward 0, the roots of

� o����
� d 	
tend toward 5ED � F H F . This ensures the second part of the
proposition.

Example Let us consider the rectangle defined by the fol-
lowing domain � ��� 5 � ���
	�� � 5 n � n 	 shown in Figure 4.
Because of the symmetry, both the center of mass and the
pivot points are located at the center of the rectangle. When
this part is placed in the radial field, we have� 9 ��	� 9 � B � B 
 �� argsinh

<
��� 1 � �� �� 9���	�
��� � B � B 
�� B �� 9����� 9 � B � B 
�� � argsinh
?
� � � ��� �

The Hessian is already in diagonal form. The larger eigen-
value is �

9��
���

9 �-'
��'�	 and the associated eigenvectors are along
the

�
-axis. Thus, for small d , the main axis of the rectangle

aligns with the
�

-axis.
Notice that the rectangle is uniquely positioned up

to symmetry under the radial-constant field. Of course,
there might exist non geometrically symmetric parts
with the same center of mass and pivot point. These parts
cannot be positioned uniquely by the radial-constant field.

6 Discussion and Future Work

In this paper, we have extended former results on part
orienting using a combination of a unit radial field and a
small constant field. We proved that some symmetric part
can be oriented up to symmetry. In another paper [13], we
investigate parts with more symmetries. In the future we
would like to investigate if there are force fields other than
the ones presented in this paper that can achieve unique po-
sitioning and orientation of parts.
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