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Abstract—We present the first platform-independent evalua-
tion method for Task and Motion Planning (TAMP). Previously
point, various problems have been used to test individual planners
for specific aspects of TAMP. However, no common set of metrics,
formats, and problems have been accepted by the community. We
propose a set of benchmark problems covering the challenging
aspects of TAMP and a planner-independent specification format
for these problems. Our objective is to better evaluate and
compare TAMP planners, foster communication and progress
within the field, and lay a foundation to better understand this
class of planning problems.

Index Terms—Performance Evaluation and Benchmarking,
Task Planning, Manipulation Planning

I. INTRODUCTION

Everyday activities require reasoning about both high-level
task actions and specific geometric motions. Systems that
perform both task planning and motion planning have existed
for a long time, e.g., the pioneering robot Shakey [1]. These
systems were traditionally rooted in the classical sense-plan-
act paradigm, which separated the planning of logical task
actions from the execution of specific motions. However,
the increasing complexity of robots and their capacity to
manipulate the environment has uncovered a new class of
problems, which cannot be solved by considering task actions
and geometric motions in isolation. Many activities feature
dependencies between logical and geometrical levels. Deciding
which actions to do—and in which order—is closely linked
to how these actions can be physically performed. Thus, it
requires planning techniques that combine both task planning
and motion planning.

Combined task and motion planning is an active research
area with work proceeding in the robotics, AI, and formal
methods communities. Though the broad aims of these works
are similar, the focus spans many related areas: planar naviga-
tion [2], rearranging objects [3], dynamics in manipulation [4],
humanoid robots [5], achieving optimality [6]. The variation
in focus, assumptions, and scenarios presents challenges when
attempting to directly compare planners and measure the for-
ward progress of the field. This paper presents a set of criteria,
metrics, and scenarios for the evaluation, comparison, and
benchmarking of Task-Motion planners.
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The evaluation approach in this paper is a collaborative
development following TAMP workshops at RSS 2016 and
2017. We have produced a common set of benchmarks1 that
are independent of any of our specific planning systems.
Beyond the initial comparison of planners, we believe that
a common set of benchmarks—and ultimately a planning
competition—is crucial to promote development and measure
research progress, as demonstrated by the success of the
International Planning Competition (IPC) [7], the Satisfiability
Modulo Theories Competition (SMT-COMP) [8], or robotics
competitions such as RoboCup [9] and RoCKIn [10]. Through
the present work, we anticipate that other researchers will join
our initiative to improve and refine this evaluation method or
even develop a superior successor. The fundamental prerequi-
site for this benchmarking approaches is community consensus
on the choice of benchmark problems and methods. This paper
is a first step in this direction.

The paper is organized as follows: section II presents prior
work on TAMP. section III gives an overview of TAMP and
discusses the assumptions made in this paper. Based on these
assumptions, we formally define TAMP as considered for
this work in section IV. section V explains the data and
specification formats we adopt for TAMP problems. section VI
introduces the benchmarks problems and discusses how they
were developed. section VII offers practical details about
using the benchmark data and evaluation metrics. Finally,
section VIII provides a summary and perspective on future
work.

II. PRIOR WORK ON TAMP

The first work combining logical and geometric search
spaces originates from both the robotics and AI communities.
Cambon et al. developed aSyMov [11] in 2004, a motion
planner for multiple robots using AI planning as a heuristic
for probabilistic roadmap search. Likewise in the AI planning
community, Dornhege et al. introduce semantic attachments
in 2009 in order to account for the geometric side effects of
logical actions [12]. Navigation Among Movable Obstacles
(NAMO) [13] relates to TAMP in that it combines motion
planning together with discrete choices about obstacles to
move. However, NAMO focuses on a specific type of discrete
action (moving obstacles) in contrast to general task planning
in TAMP.

TAMP has become an active field of research in both AI
and Robotics communities, reflected by the emergence of
dedicated workshops, conference tracks, and journal special

1http://tampbenchmark.aass.oru.se
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issues: AAAI 2010 (workshop on Bridging the gap between
Task and Motion Planning), ICAPS (PlanRob workshop since
2012, Robotic Track since 2015), RSS since 2013 (workshop
on Task and Motion Planning), IROS 2013-2015 (AI-based
Robotics, AI and Robotics, Task Planning for Intelligent
Robots), AI Journal 2014 (special issue on AI and Robotics),
and the International Journal of Robotics Research’s current
call for a special issue on Task and Motion Planning.

Planning systems combining both types of planning have
flourished [14], [15], [16], [17], [18], [19], [20], [21], [4], [22],
[23], together with their own planner-specific evaluations, yet
no common benchmarks have so far been established. These
systems are evaluated on subsets of possible problems which
do not cover all the features of TAMP, therefore leading to
(over)specialized planners [24]. The topic of benchmarks for
TAMP is recurrently proposed in dedicated workshops, and
we hope through this paper to finally address the issue.

III. OVERVIEW OF TAMP

TAMP combines logical and geometric reasoning. Robots
need logical reasoning to determine which actions are needed
to achieve a given goal, and they need geometric reasoning
to know if and how these actions can be physically per-
formed. TAMP addresses this issue by combining discrete task
decisions about objects and actions with continuous motion
decisions about paths.

Typical algorithms for independent task planning and mo-
tion planning are fundamentally different. Task planning finds
a discrete sequence of actions to transition from a given start
state to a desired goal condition, typically using heuristic
search or constraint satisfaction. Geometric motion planning
finds a collision-free path from a given start configuration to
a desired goal, typically using sampling or optimization-based
methods. TAMP combines these two planning domains and
addresses the interaction between them.

The range of problems which may be considered “TAMP”
is large, spanning geometric vs. dynamic, fully vs. partially
observable, deterministic vs. non-deterministic, and single-
agent vs. adversarial vs. collaborative cases. For the scope of
this work, we have necessarily restricted the focus to produce
a workable benchmark set. We hope that further evaluation
and developments will lead to standardized benchmarks for
broader problem classes in the future.

A. Assumptions

This benchmark set addresses the geometric, fully-
observable, deterministic, single-agent subset of TAMP. We
focus on the computational complexity of searching coupled
logical and geometric spaces, in contrast to other areas of
robotics which may primarily focus on uncertainty and partial
observability. Hence, we make the following assumptions:
• Geometric: Motion planning over positions only is suffi-

cient. Objects that are grasped or placed are kinematically
coupled with the parent object and do not move or slide.

• Fully Observable: The initial state is entirely known
geometrically (positions, meshes, configurations), seman-
tically (e.g., movability of objects, placement locations).

• Deterministic: State is only changed by the planned ac-
tions. Robot motions and object grasp/release operations
exactly follow the output of the path planner.

B. Specification of TAMP Problems

1) Task Requirements: At a high level, task planners search
through a discrete transition system (see 1). We need a
specification format that is sufficiently expressive and compact
to represent our domains of interest. The Planning Domain
Definition Language (PDDL) [25], [26] is a task modeling
language with wide support due to its use in the International
Planning Competition [7]. PDDL’s status as a de facto standard
makes it a natural choice to exchange task domains for this
benchmark set. Though the problems are specified in PDDL
(see subsection V-A), we anticipate that task-motion planners
will also use other representations internally, e.g., answer set
programming (ASP) [27], SMTLib [28], or temporal logics,
based on specific implementation decisions. We discuss the
details of the task specification format in subsection V-A.

2) Motion Requirements: Abstractly, motion planners find
paths through a (typically continuous) configuration space.
Thus, we need to specify the configuration space for the
motion planner. For this initial benchmark set, we focus on
geometric motion planning and leave dynamic or physics-
based planning [4], [29], [30] to future benchmark sets. The
geometric case is sufficient for many manipulation scenarios.
The configuration space for the motion planner is based on
the robot’s kinematics, i.e., joints, and the positions of the
rigid bodies in the environment. There are many equivalent
formats to specify robot kinematics and rigid body geometry.
We discuss the details of the motion specification format in
subsection V-B.

IV. TAMP PROBLEM DEFINITION

We formulate the TAMP problem starting from the con-
ventional formulations of task planning [31] and motion
planning [32], [33].

A. Task Planning

Task planning finds a sequence of discrete or symbolic
actions from an initial state to a desired goal state. While task
planning covers a wide range of problems, all notations and
representations correspond to a state-transition-system [34]:

Definition 1 (Task State-Transition-System): A task domain
is the tuple Σ = (S,A, γ, s0, Sg) where,
• S is a finite set of states
• A is a finite set of actions
• γ : S×A→ S is a deterministic state-transition function,

thus gives one state when applicable, which we denote
by γ(s, a) = s′.

• s0 ∈ S is the start state
• Sg ⊆ S is the set of goal states
Definition 2 (Task Plan): A task plan for domain Σ =

(S,A, γ, s0, g) is the sequence 〈a0, a1, . . . , an〉, where each
ai ∈ A, for 0 ≤ i < n, si+1 = γ(si, ai), and sn ∈ g. That is,
the task plan is a string in the language of Σ.
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Since for even small task planning problems, it is compu-
tationally infeasible to explicitly represent all states S, one
must instead use various compact, symbolic representations,
e.g., the Planning Domain Definition Language (PDDL) [25],
Linear Temporal Logic (LTL) [35], Answer Set Programming
(ASP) [27], C+ [36], etc.

B. Motion Planning

Abstractly, motion planning finds valid paths through a
configuration space C from a given start to a given goal
state. The free configuration space, Cfree ⊆ C, is the space
of configurations, e.g., configurations where the robot does
not collide with objects or itself.

Definition 3 (Motion Plan): Given free configuration space
Cfree, initial configuration qI ∈ Cfree, and goal configurations
G ⊆ Cfree, a motion plan is defined as either:

1) A sequence Q = 〈q0, . . . , qn〉 where q0 = qI is the start
configuration, qn ∈ G is a goal configuration, each qi ∈
Cfree is valid, and subsequent configurations are nearby
‖qi+1 − qi‖ ≤ ε;

2) Or a continuous trajectory τ : [0, 1] → Cfree such that
τ(0) = qI and τ(1) ∈ G.

Typically, we will conduct motion planing in planar or 3-
dimensional worlds— W = R2 or W = R3—with obstacle
region O, and one or more multi-jointed robots. A config-
uration q ∈ C corresponds to joint position vector for the
robot, and a free configuration q ∈ Cfree is a joint position
vector not in collision. Widely-used software packages model
the configuration space of robot manipulators using kinematic
trees or scene graphs [37], [38], [39] of local coordinate frames
and attached rigid-body geometry (i.e., meshes), connected
by the robots’ joints. Explicit representations of the free
configuration space Cfree are generally infeasible to produce,
so we instead use “blackbox” collision checkers [40] to test
the validity (freedom-from-collision) of configurations during
planning.

C. Task-Motion Planning

The interaction between task planning and motion planning
is fundamental to TAMP. However, different planning ap-
proaches have formalized task-motion interaction differently.
Thus, we first informally discuss the necessary relations be-
tween task planning and motion planning. Then, we sum-
marize different specific formalizations. Finally, we present
a minimal interaction specification for the benchmark set.

TAMP requires that we establish relationships between (1)
states and configurations and (2) actions and motion plans.
These relations ensure consistence between symbolic and
geometric domains. Consistence implies, for instance, that the
initial state s0 ∈ S correspond to the initial configuration
q0 ∈ C. Similarly, each action a ∈ A in the task plan can
only occur if there exists a corresponding feasible motion
plan τa ∈ Cfree. Actions that change the free configuration
space—e.g., grasping an object with the robot’s gripper—
must be reflected at the motion planning level, e.g., with
an additional fixed joint between object and gripper. Finally,

symbolic-geometric consistence implies that during execution
of a motion plan, the world does not undergo uncontrolled
state transitions, i.e., given the state transition γ(s, a) = s′,
the configurations traversed by the motion plan cannot be
mapped to a state other than s or s′. Based on these necessary
relations, we now summarize different specific approaches to
task-motion interaction.

Various methods and formalizations of task-motion interac-
tion are used by different planning systems. The domain se-
mantics approach introduces a pair of functions to define task-
motion interaction in terms of abstraction and refinement [41],
[42]. The abstraction function maps from a scene graph to a
task state, and the refinement function maps from an action to
a motion planning goal and an updated scene graph. Similar
to the aforementioned refinement, Semantic attachments [12]
connect PDDL-type actions to external geometric procedures,
and the Planner-Independent Interface Layer [19] implements
a symbolic-to-geometric mapping. Pre-computing reachability
maps is another approach to ensure the semantics of a task do-
main or a logic program to reflect geometric constraints [16],
[43], [14]. The sample-based approach [44] introduces con-
ditional samplers to generate configurations corresponding to
task states or actions. For example, a conditional sampler for
a grasp action would generate configurations based on inverse
kinematics to put the manipulator in a grasping configuration.

For the scope of this paper, we adopt a simplified model
of task-motion interactions with the aim of maximizing com-
patibility with various planning systems. We use two abstract
mapping functions:

• φ : S → 2C which maps states to configurations;
• ξ : A→ 2C which maps actions to motion plans.

As an example, if task state s indicates “the robot is in the
kitchen”, φ(s) encompasses all the configurations such that the
robot is located in the kitchen, grasping or not all available
objects in any possible ways, the remaining objects lying in all
possible poses. φ and ξ are further described in subsection V-C
when we present a concrete implementation of task-motion
interactions in the context of manipulation problems.

Based on this minimal specification of task-motion interac-
tion, we now define the TAMP problem.

Definition 4 (Task-Motion Planning): Given a tuple
(C,Σ, φ, ξ, q0), the TAMP problem is to find a sequence of
actions 〈a0, a1, . . . , an−1〉 following a sequence of task states
〈s0, s1, . . . , sn〉 such that

sn ∈ Sg and (1)
si+1 = γ(si, ai) (2)

and to find a sequence of motion plans 〈τ0, τ1, . . . , τn−1〉 such
that ∀i = 0 . . . n− 1:

τi(0) ∈ φ(si) and τi(1) ∈ φ(si+1) (3)
τi ∈ ξ(ai), and (4)
τi(1) = τi+1(0) (5)
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V. SPECIFICATION OF BENCHMARK PROBLEMS

The data and formats to specify benchmark problems are
a necessary part of any planner-independent test suite for
TAMP. Thanks to existing benchmarks, competitions [7], and
software packages [39], there are already many standard
formats and languages for task planning and motion planning
in isolation. Thus, we adopt the standard and conventional
formats for the task domain (see subsection IV-A) and the
motion domain (subsection IV-B). For task-motion interaction
( subsection IV-C) at the current stage, we provide high-level
semantic information on grasp points, placement locations, etc.
with the hope of stimulating further testing and development
leading to an eventual standard format.

A. Task Specification

The de facto standard format for task domains is the
Planning Domain Definition Language (PDDL) [26] developed
for the International Planning Competition [7]. PDDL defines
the task language in terms of actions with symbolic (Boolean
expression) preconditions and effects, an initial state, and a
symbolic expression for the set of goal states. A transition in
the task language corresponds to taking a PDDL action, where
the PDDL precondition holds in the predecessor state and the
PDDL effect sets the successor state. PDDL compactly repre-
sents large state spaces using symbolic expressions for sets of
states. Figure 1 shows an example PDDL specification for the
classic Towers of Hanoi problem, detailed in subsection VI-A.

While we adopt PDDL for the benchmark set as a standard
interchange format for transitions sytems, this choice does not
preclude use of other representations, e.g., ASP, LTL, within
planners. The choice of modeling language may, however,
influence the focus of planners [45], and we hope further use of
the benchmarks will yield refinements to the task specification
format.

B. Motion Specification

The essentially universal model for robot manipulators is
the kinematic tree or scene graph with attached rigid body
geometry (meshes) [37], [38], [39], [42]. However, there are
various alternative formats to specify the tree structure and
the mesh data. We briefly summarize some major formats and
explain the choices for the benchmark set aimed at maximizing
compatibility.

1) Kinematics: Historically, Denavit-Hartenberg (DH) pa-
rameters [46] were a common approach to specify manipulator
kinematics, though they did not address the meshes necessary
for collision detection. The ROS Universal Robot Definition
Format (URDF) [47] is a currently popular representation
for robot manipulators with widespread support from robot
vendors and the ability to reference external mesh files. Due
to the wide availability of URDF models for many robots, we
specify the benchmark problems using URDF.

2) Geometry: Numerous formats for mesh data have been
developed by the animation and computer-aided design (CAD)
communities. One attempt at a universal interchange format is
the XML-based COLLADA [48]. However, the COLLADA

specification is difficult to implement and software support
and compatibility is poor. The Wavefront Object (OBJ) format
is a lightweight representation for mesh data that is human-
readable and easy to parse. Wavefront OBJ is widely supported
among animation and CAD software packages. Thus, we
specify meshes for the benchmark set using OBJ.

C. Specification of Task-Motion Interaction

TAMP planners use their own symbolic-geometric map-
pings, hence there is currently no standard language to specify
task-motion interaction. This stems from the fact that (1) at
the task level, domains can be modeled at arbitrary levels of
abstraction, and (2) at the motion level, there are various ways
of implementing motion primitives. Consider for instance a
planner using the following motion primitive for grasping:
“reach X with the manipulator, close the gripper, lift X off
the table by 5cm”, while another planner uses: “reach X
with full-body motion, close the gripper”. Comparing both
planners would not be fair because they do not afford the
same possibilities of action in the first place, therefore they
cannot reach the same solution space.

To promote fair comparison of planners, we provide sim-
plified symbolic-geometric mappings φ and ξ (see subsec-
tion IV-C) for manipulation scenarios. This semantic infor-
mation is based on both the properties of the robot and
environment. The existing Semantic Robot Definition Format
(SRDF) provides some of necessary information but does not
fully cover the needs of Task-Motion interaction. We provide
the data relating task actions and motions as XML files2

included with the benchmarks.
1) State-configuration mapping (φ): We make the follow-

ing assumptions which are restrictive, but allow us to specify φ
unambiguously and make sure that different planners actually
address the same problems:
• Surfaces Supporting Stable Placement (SSSP): When

moved, objects can only be placed at these regions. An
SSSP is a flat polygon, segment, or point attached to an
object (see Figure 2).

• Stable Object Poses (SOP) : At rest, objects have to lie
in one of these predefined poses. An SOP is represented
by a rotation matrix, an axis of rotation (both in world
frame) and a distance (to a SSSP) (see Figure 3).

For each object, an optional set of grasps is provided, i.e.,
the planner may use it or not. A discrete grasp is represented
by a grasp frame (in the reference frame of the object), and
a continuum of grasps is represented by a single grasp frame
plus an axis of rotation (see Figure 4).

2) Action-motion plan mapping (ξ): Specifying how sym-
bolic actions relate to motion plans is partly done in 4,
which imposes start and goal configurations (Equation (3)) and
continuity constraints (Equation (5)). Only motion primitives
needs to be specified. From our experience, there are as many
motion primitives as there are system designers. In order to
keep the benchmarks accessible to a majority of planners, we
only specify which joints are allowed to be actuated for a given

2 http://tampbenchmark.aass.oru.se/index.php?title=XML format
description

doi: 10.1109/LRA.2018.2856701 4

http://tampbenchmark.aass.oru.se/index.php?title=XML_format_description
http://tampbenchmark.aass.oru.se/index.php?title=XML_format_description
http://dx.doi.org/10.1109/LRA.2018.2856701


IEEE Robotics and Automation Letters

( : a c t i o n move
: parameters ( ? d i s c ? from ? t o )
: p r e c o n d i t i o n ( and ( s m a l l e r ? t o ? d i s c )

( on ? d i s c ? from )
( c l e a r ? d i s c ) ( c l e a r ? t o ) )

: e f f e c t ( and ( c l e a r ? from )
( on ? d i s c ? t o )
( not ( on ? d i s c ? from ) )
( not ( c l e a r ? t o ) ) ) )

(a)

( : i n i t
( s m a l l e r peg1 d i s c 1 ) . . . ( s m a l l e r peg3 d i s c 3 )
( s m a l l e r d i s c 2 d i s c 1 )
( s m a l l e r d i s c 3 d i s c 1 )
( s m a l l e r d i s c 3 d i s c 2

( c l e a r peg2 ) ( c l e a r peg3 ) ( c l e a r d i c 1 )
( on d i s c 3 peg1 ) ( on d i s c 2 d i s c 3 ) ( on d i s c 1 d i s c 2 ) )

( : goa l
( and ( on d i s c 3 peg3 ) ( on d i s c 2 d i s c 3 ) ( on d i s c 1 d i s c 2 ) ) )

(b)

Fig. 1: Example PDDL task specification for the Towers of Hanoi problem (see subsection VI-A). (a) represents the transition
function γ of the task language (see 1) using PDDL actions with preconditions and effects. (b) represents the start and goal
states of the task language using symbolic expressions.

Fig. 2: Rectangular SSSP for a table represented by the list
((x1, y1, z1), (x2, y2, z2), (x3, y3, z3), (x4, y4, z4))

.

Fig. 3: Two SOPs (upright and upside down) for a cup repre-
sented by the set {(R1, (0, 0, 1), 0.03), (R2, (0, 0, 1), 0.07)}.

action. No further details about motion planning are specified,
i.e., we consider the maximum number of degrees of freedom
as the common ground. Note that it is perfectly valid to actuate
a subset of the proposed joints. This leaves freedom for the
users in the design of their motion primitives. On the other
hand, it may be the case that a benchmark requires, e.g., the
manipulators to be actuated separately (because the problem
is more challenging that way). This would imply for some
users (e.g., using only dual-arm motion planning) to implement
new motion primitives to comply with the specifications. This
information is given in the XML files4 aforementioned.

VI. BENCHMARKS

This section examines five benchmark problems selected to
evaluate planners based on the criteria in Table I. These criteria
feature properties which make TAMP problems computa-
tionally difficult, based on scenarios from TAMP literature,
experience with empirically difficult TAMP problems, and
theoretical studies on difficult TAMP criteria [13], [49]. We
consider the following criteria to evaluate TAMP in the fully-
observable, deterministic case:

Fig. 4: A discrete grasp set : {G1, G2, G3} (left) and a
continuous grasp set (Go, (0, 0, 1)) (right).

Criteria Pb. 1 Pb. 2 Pb. 3 Pb. 4 Pb. 5

Infeasible task actions X X X X X

Large task spaces X X X

Motion/Task Trade-off X

Non-monotonicity X X

Non-geometric actions X

TABLE I: Criteria evaluated by each benchmark problem

• Infeasible task actions: Some task actions are not pos-
sible, i.e, no corresponding motion plan exists. Possible
causes of infeasibility include blocking objects and kine-
matic limits of the robot.

• Large task spaces: The underlying task planning prob-
lem requires substantial search effort.

• Motion/Task Trade-off: The problem can be solved with
fewer steps if grasps and placements are carefully chosen.

• Non-monotonicity: Some objects need to be moved more
than once for achieving the goal.

• Non-geometric actions: The problem involves actions
which change discrete state Σ but not configurations C.

A. Problem 1: Towers of Hanoi

We extend the classic Tower of Hanoi problem to robot
manipulation. The base of the robot is fixed. The rods are set
in a triangular fashion and the discs are very thick, so that
stacking them on a rod may temporarily create an obstacle
and prevent from picking/placing discs on other rods.

This problem evaluates the large task space and infeasible
task actions criteria. Although the rules are simple, the optimal
solution plan for n discs contains 2n − 1 steps, without
considering geometry (large task space). The rules of the
game require certain intermediate states, many of which are
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Fig. 5: The Towers of Hanoi benchmark

geometrically infeasible (infeasible task actions) if the chosen
order creates occlusions.

B. Problem 2: Blocks World

Fig. 6: The Blocks World benchmark

Another classical task planning problem, in which the goal
is to stack the blocks in alphabetical order anywhere it is
possible. The base is fixed, only top-grasps can be used, and
hand-over is not allowed.

This problem evaluates the infeasible task actions, large
task space, and motion/task trade-off criteria. An obstacle is
hovering over the table, such that the grippers would collide
with it if more than two blocks are stacked on the table
(infeasible task actions). Both initial piles need to be un-
stacked somewhere and re-stacked on one of the trays. During
this process, half of the blocks need to transit from one tray to
another, through the table. This requires many actions (large
task space). The region on the table where blocks transit has
to be reachable by both arms, therefore its size is limited. One
must choose between few steps and cluttered table, or many
steps and uncluttered table (motion/task trade-off).

C. Problem 3: Sort clutter

The goal constraints are that all N blue blocks must be on
the left table and all N green blocks must be on the right
table. There are also 2N red blocks acting as obstacles for
reaching blue and green blocks.

This problem evaluates the infeasible task actions and large
task space criteria. The close proximity of the blocks forces the
planner to carefully order its operations, as well as to move
red blocks out of the way without creating new occlusions

Fig. 7: The Sort Clutter benchmark

(infeasible task actions). Solving the problem requires to move
many objects, sometimes multiple times (large task space).

D. Problem 4: Non-Monotonic

Fig. 8: The Non-Monotonic benchmark

The robot must move the green blocks from the left table to
a corresponding position on the right table. In the goal state,
blue and cyan blocks have to be in their initial poses.

This problem evaluates the infeasible task actions and non-
monotonicity critiera. Both the initial and goal poses are
blocked by four blue and cyan blocks respectively (infeasible
task actions). The goal condition of blue and cyan blocks
requires to temporarily move them away and bring them back
later on (non-monotonicity) in order to solve the problem.

E. Problem 5: Kitchen

Fig. 9: The Kitchen benchmark
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The robot must “prepare a meal” by cleaning two glasses
(blue blocks), cooking two cabbages (green blocks), and
setting the table. Objects can be cleaned when placed on the
dishwasher and cooked when placed on the microwave. An
object must be cleaned before it can be cooked. Finally, the
radishes (pink blocks) initially obstruct the cabbages on the
shelf forcing the robot to move them. But, to maintain a tidy
kitchen, the robot must also return them to their initial poses.

This problem evaluates the infeasible task actions, non-
monotonicity, and non-geometric actions criteria. A cook
action is non-monotonic and both cook (via the stove) and
clean (via the dishwasher) are non-geometric from the
robot’s perspective. Reaching target objects may also require
removing blocking objects.

VII. USING THE BENCHMARK SET

The current benchmark set is independent of specific plan-
ners and specific robots to maximize portability to different
platforms and support physical testing on available hardware.
We have, however, used the PR2 as an example since it is
a commonly-used robot. We anticipate that the problems will
port to other robots, though some cases may require slight
modification. For example, the Blocks World benchmark (see
subsection VI-B) may require different placements of the
trays, or a different position of the hovering obstacle, because
reachability and occlusions may differ for some other robots.

Each problem is available in different scales. For instance,
the Towers of Hanoi problem is proposed with 3, 4, 5, and
6 discs. For each scale, there are N random variations of the
initial geometric state, over which the average values of the
metrics are computed.

A. Files

The proposed benchmarks are available online at the fol-
lowing address: http://tampbenchmark.aass.oru.se/index.php?
title=Problems

For each problem, we provide following data to define the
task domain, motion domain, and task motion interaction:

1) A PDDL file defining the task domain
2) An archive containing all scene meshes in Wavefront OBJ

format
3) An XML file describing:

a) the initial pose of all objects;
b) the initial configuration of the robot(s);
c) the initial kinematic coupling between objects;
d) which objects are movable;
e) the Surfaces Supporting Stable Placement (SSSP);
f) the Stable Object Poses (SOP);
g) Grasp Sets (optional).

B. Metrics

We propose to quantitatively compare TAMP systems based
on metrics that evaluate performance of the planner itself and
quality of the computed plans. Planner performance can be
measured in terms of average planning times, overall success
rate, or success rate within a time bound. For the current

benchmarks, we propose measuring plan quality in terms
of length of the computed plan, both for the number of
actions in the task plan and total length of the motion plans.
Multiple metrics that cover efficiency, successful instances,
and plan quality will measure the trade-offs between different
TAMP approaches with different focus, for example expected
efficiency vs. achieving probabilistic completeness.

VIII. CONCLUSION

In this paper, we have proposed a principled approach to
evaluate and compare TAMP systems. Though work in TAMP
has proceeded for more than a decade, it has remained until
now difficult to directly compare different planners. We have
formally define the TAMP problem under full observability
and determinism assumptions, presented a way to unambigu-
ously specify TAMP problems, and proposed five benchmark
problems selected to cover the known challenges of TAMP.
Finally, we provide a web page (http://tampbenchmark.aass.
oru.se) to download the necessary data for the benchmark
problems.

Our continuing step is to organize a workshop to use
and discuss this benchmark set. Based on feedback from the
community, the proposed problems and specification formats
may be revised and improved in several possible ways. Rather
than individual problem instances, we could produce prob-
lem generators with tunable hardness parameters, based on
community evaluation of the criteria in Table I. One could
extend the class of problems, e.g., to partially observable, non-
deterministic cases. Another possible direction is to organize
a TAMP competition, which would require a common output
format for plans and an automatic plan validator. We will
continue development and dissemination of this benchmark
set to promote direct comparison among TAMP systems.
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