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Abstract— Motion planning research has been successful in
developing planning algorithms which are effective for solving
problems with complicated geometric and kinematic constraints.
Various applications in robotics and in other fields demand
additional physical realism. Some progress has been made for
non-holonomic systems. However systems with significant drift,
underactuation and discrete system changes remain challenging
for existing planning techniques particularly as the dimensional-
ity of the state space increases. In this paper, we demonstrate a
motion planning technique for the solution of problems withthese
challenging characteristics. Our approach uses sampling-based
motion planning and subdivision methods. The problem that we
solve is a game that was chosen to exemplify characteristics
of dynamical systems that are difficult for planning. To our
knowledge, this is first application of algorithmic motion planning
to a problem of this type and complexity.

I. I NTRODUCTION

Motion planning algorithms are employed as a tool for
reasoning about physical systems in diverse applications:ob-
ject manipulation [1], assembly [2], prototyping of mechanical
systems [3], autonomous robots [4], inspection and observation
[5], humanoid robots [6], animation [7], virtual environments
[8] and structural computational biology [9], [10].

Early algorithmic motion planning research focused on
constructing collision-free paths in the presence of geometric
constraints (workspace obstacles) and kinematic constraints
(restrictions on the robot’s motion). The earliest problems
considered were polygonal robots in polygonal workspaces
(Sofa Mover’s Problem) and polyhedral robots in polyhedral
workspaces (Piano Mover’s Problem) [11]. Another important
domain is path planning for2-D and 3-D linkages [12].
Sampling-based planning algorithms such as the Probabilistic
Roadmap Method (PRM) emerged as a powerful and effective
approach for solving these kinds of planning problems [13],
[14]. Applications using these techniques have been adapted
to a large variety of systems: freely moving2-D and 3-
D robots [13], serial and parallel linkages [13], [15], object
manipulation [16], humanoid robots [6], flexible objects [17]
and proteins [9], [10].

In early planning research, the task of executing a computed
path on a robot was viewed as a secondary problem. The path
could be smoothed and scaled to satisfy dynamic constraints
of the system and the resulting trajectory could be followed

with an appropriate controller. In some applications, however,
this leads to poor results since the converted motions tend to
be of very low quality. In non-holonomic planning, motivated
by applications for car-like robots, tractor-trailer robots and
spacecraft, converting unconstrained paths into motions which
satisfy dynamic constraints can introduce large numbers of
brief and jerky motions [18]. In some cases, the resulting
trajectories are impossible to follow on a physical platform
[19]. Path planners which were restricted to generating mo-
tions satisfying the non-holonomic constraints were designed
in order to address these difficulties. Non-holonomic variants
of PRM have been formulated [20] and results for such systems
have been achieved with the Rapidly Exploring Random Trees
(RRT) family of planners [21] as well as the Expansive
Spaces planner (EST) [22]. Non-holonomic motion planning
applications in the sampling-based planning literature have
been tested for car-like robots, tractor-trailer robots and other
similar 2-D platforms [20], [21], [22]. In the context of3-D
examples, several different variations of free flying spacecraft
have been examined [21].

In the sampling-based planning literature, there have been
a few studies on generating paths for robots with second-
order non-linear dynamics. The specific problem instances
that appeared were the lane-change problem for a second-
order car-like robot, the control of a spacecraft with omni-
directional thrusters in a cage, second-order differential drive
robots moving in a maze, and a second-order blimp-like robot
moving around pillars [21], [23], [24].

This paper addresses the implementation of a planning
method and its application to a motion planning benchmark
with severe underactuation, significant drift, high dimensional-
ity, discrete system changes that occur at boundary conditions
and finally a system which is not reduceable to a system
with lower order dynamics. This work has two concrete
goals in the context of planning applications that demand a
high degree of physical realism: the development of online
motion planners that can provide stability and completeness
guarantees and the development of offline motion planners
that can be used interactively in prototyping as tools for
feasibility and safety testing in complex environments. We
see applications such as dynamic obstacle manipulation, part
manipulation with force fields, pursuit-evasion problems and
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Fig. 1. Execution snapshots for a solution to the game of Koules with6 Koules

hybrid system verification.

A. Problem Characteristics

This paper details the generation of trajectories for a dy-
namical system which was chosen to have features which are
challenging for motion planning techniques: namely drift,un-
deractuation, discrete system changes and high dimensionality.
Drift in a dynamical system occurs when the system cannot in-
stantaneously stop. For example, second-order dynamical sys-
tems with bounded acceleration cannot instantaneously cancel
a non-zero velocity. From a planning perspective, systems with
drift are challenging since the shortest path cost between two
states frequently disagrees with the metric. Underactuation
occurs when the dimension of the control space is less than
the dimension of the state space. Underactuation can occur
as a result of non-holonomic constraints or other dynamic
constraints. An underactuated system has instantaneouslypas-
sive or coupled degrees-of-freedom. Analyzing the shape and
dimensionality of the reachable space in the presence of under-
actuation and kinematic constraints can be quite challenging.
Discrete system changes occur in hybrid dynamical systems
and manifest as discontinuities in the dynamic constraintsor
in the state variables as the system evolves. The behavior of
hybrid systems can be quite complex and difficult to analyze.
Finally, high-dimensional motion planning is well known to
be hard. This is particularily true for dynamical systems since
state parameters typically interact in a complicated way.

The dynamical system that this paper deals with is based
loosely on a Unix game called the game of Koules [25].
The game of Koules is a multi-agent second-order dynamical
system where inter-agent collisions are resolved by elastic
collision. The agents are discs which operate in the unit
square. Elastic collisions cause discrete system changes by
instaneously causing velocity discontinuities. One agentis a
robot (ship) that has four different controls and the other agents
(Koules) move according to a force-field function determined
by the current state of the system. The ship wins the game
by pushing or bouncing the Koules in the boundary of the
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Fig. 2. Motion Planning Architecture

workspace without touching the boundary itself. In Figure 1,
we show some snapshots of a solution of the game of Koules
with 6 Koules. The game of Koules is described in detail in
Section II.

B. Planning Technique

The planning technique we employ to solve instances of the
game of Koules is illustrated in Figure 2. The motion planning
algorithm we employ is the Path-Directed Subdivision Tree
exploration algorithm (PDST-EXPLORE) [24]. This paper
continues our work on thePDST-EXPLORE algorithm and
applies it to the game of Koules, which required additional
and non-trivial adaptation. In fact, although it is not within
the scope of this paper, obtaining an efficient and general
implementation ofPDST-EXPLORE was also interesting from
a programming perspective.

The design of the planner used in this paper is shown in Fig-
ure 2. The general component is thePDST-EXPLORE block.
The other blocks and data types need to be written specifically
for each planning application. Thesimulatorblock represents
the ground truth for the underlying system. As input, it takes
states and raw controls and outputs a state one time step in
the future. The simulator for the game of Koules is described
in Section II. Thecontroller block wraps the simulator by
structuring the controls sent to the simulator. This controller
is a motion generation model which creates trajectories that



have a nicer structure than a sequence of random controls.
The controller that we use is described in Subsection III-B.
The tree of random walksdata structure stores a collection of
path segments related by path branches. Representing pathsto
be compact and support fast interpolation is critical for good
planner performance. The representation we use is summarized
at the end of Subsection II-C. The search performed by the
motion planner is guided bycoverage estimateswhich we
compute using aspace partitiondata structure. Path segments
are subdivided and assigned to cells in the subdivision. Cover-
age estimates are computed by computing cell volume, density
and membership. The subdivision scheme we use is described
in Subsection III-C.

C. Organization

Our version of the game of Koules is described in detail
in Section II. Also in Section II, we describe the design
and implementation of the simulator. Section III summarizes
the PDST-EXPLORE planner, and the implementation of
the local trajectory generator and the coverage estimation
scheme. We also describe a high-level framework which uses
PDST-EXPLORE as a subroutine to generate full solutions
to game of Koules. Our experimental results are described in
Section IV. In Section V, we discuss the experimental results
and areas of future research.

II. PROBLEM DESCRIPTION

Our version of the game of Koules takes place in a 2-
D workspace, specifically a square. There are two types of
robots inside the workspace: a single ship and the Koules.
The ship is controlled by the user and the Koules follow
independent trajectories. When a robot touches the boundary
of the workspace, it is killed. The user loses the game if the
ship is killed and the user wins the game if all of the Koules are
killed. When two robots touch, an elastic collision occurs and
the robots bounce away from each other. The ship is capable of
four different actions that the user can control: to cruise,to turn
left or right at a constant speed, or to apply a constant thrust
in the direction of the ship’s current heading. The Koules are
attracted towards the center by a damped spring which makes
them difficult to push towards the sides. The user can only
influence the Koules by colliding with them.

Solving an instance of the game of Koules requires the
generation of sequence of timed controls such that the ship
survives and all of the Koules are killed. In the remainder of
this section, we describe the implementation of our version
of the game of Koules. In the next section, we describe the
planner that we use to solve input instances of the game.

A. State Space and Controls

We begin by describing the state and control spaces. The
state space for the game of Koules withn Koules is determined
as follows:

Qn = ([0, 1]2 × S1 ×R2) × ([0, 1]2 ×R2)n.

A stateq = (xs, θ, vs, x1, v1, ..., xn, vn) determines the posi-
tion, xs, heading,θ, and velocityvs of the ship together with
the positions,x1, ..., xn and velocitiesv1, ..., vn of the Koules.

There are four distinct control inputs in the set of controls
for the game of Koules,U = {u0, uL, uR, u1}, which corre-
spond to cruise,u0, turn left, uL, turn right,uR, and thrust,
u1.

An instance of the game of Koules consists ofn, the number
of Koules and an initial stateq0 ∈ Qn. A partial solution to
that instance is a pathπ of durationT such that at stateπ(T ), a
Koule touches the boundary and no boundary collisions occur
on the path before timeT . A full solution is a sequence of
pathsπn, ..., π1 with durationsTn, ..., T1 such that for alli <
n, πi is a partial solution to the instance(i, πi+1(Ti+1)).

B. The Dynamic System

The game of Koules is a second-order dynamic system. The
motion of the ship is determined by its state and the control
input using the following equations:
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where vθ is the turning speed,R(θ) is the rotation matrix
in SO(2) determined byθ and a is the thrust. The turning
speed,vθ, and thrust,a are determined as functions of the
current control inputu ∈ U ,

u vθ(u) a(u)
u0 0 0
uL vmax

θ 0
uR −vmax

θ 0
u1 0 amax

.

The motion of each Koule is determined by its state and
the position of the ship using the following damped spring
equation:

[

ẋi

v̇i

]

=

[

vi

(o − xi) · λc − vi · h

]

(2)

whereo is the center of the workspace,λc is spring constant
attracting towards the center andh is a friction parameter.

In the simulator, control inputs are applied over a fixed
timestep∆t and numerically integrated with a fourth-order
Runge-Kutta-Nystrom method [26].

C. Rules for Elastic Collisions

During each time-step of the simulator must simulate the
system to generate the state that results from applying the
current control,u ∈ U , to the initial state. This is a two-
step process: first, a numerical integration of the equations of
motion and followed by a discrete event simulation to resolve
any collisions.

At the beginning of the time-step, the system is in stateq0.
The result of integrating the controlu for time ∆t is a new
state,qf . However, althoughq0 is collision-free, it is possible
that collisions between robots or between the robots and the



boundary of the workspace occur along the path betweenq0

and qf . In order to calculate collisions and the results of the
induced velocity changes, a locally linear approximation is
used and first-order motions are simulated with a discrete event
simulator. To begin with, a new initial state,

q+ = (x+
s , θ+, v+

s , x+
1 , v+

1 , ..., x+
n , v+

n ),

is constructed fromq0 andqf as follows:x+
s = x0

s, θ+ = θ0,
x+

i = x0
i , v+

s = (xf
s − x0

s)/∆t andv+
i = (xf

i − xs
i )/∆t.

All robots are then assumed to begin atq+ and to move
along the lines determined by their velocities during the
discrete event simulation. If there are no collisions, after
time ∆t has elapsed, the system will reach a state with the
same positions as stateqf and with the velocities of state
q+. The velocities are constant along the time step and are
approximately correct with error linearly proportion to∆t.

The events in the discrete event simulation occur when a
pair of robots collide or when a robot touches the boundary.
The ship has radiusrs and massms. Each Koule has radius
rk and massmk.

Pairwise collisions occur when the distance between two
robots is equal to the sum of their radii. This is predicted by
the solution of the appropriate quadratic equation. It is best to
use iterative root polishing to avoid simulation errors caused
by near singular states. Collisions with the boundary are
determined by solving linear equations. Inter-robot collisions
are resolved by applying the1-D elastic collision formula and
boundary collisions end the simulation.

The minimum amount of information required to store a
path is the initial stateq0 and a sequence of timed control
inputs: 0 = t0, u1, t1, ..., tm−1, um, tm where the inputui is
applied from timeti−1 to time ti andui 6= ui+1. In order to
reconstruct the state,qt, at time t the integrator and discrete
event simulator must be run. Our implementation stores key
frames at times were collisions occurred and with a certain
minimum density to reduce the amount of integration that
needs to be done during interpolation while maintaining a
compact representation for path data.

III. PLANNER DESIGN

As described in Subsection I-B, the planner architecture
contains several components: thePDST-EXPLORE planner,
the controller, the simulator, the tree of random walks and the
space partition. In this section, we describe each part in detail.

ThePDST-EXPLORE planner, the tree of random walks and
the overall control flow in Figure 2 are described Subsection
III-A. In Subsection III-B, we decribe the controller that
we used generate trajectories for the game of Koules. The
simulator was described in the previous section. The space
partition that we used is described in Subsection III-C.

A single execution ofPDST-EXPLORE is used to find a
feasible path that kills one Koule. Multiple executions of the
planner can be used to construct a sequence of paths that
combine to be solution for given initial state, i.e. a feasible
path for which the ship kills all of the Koules. However,
it is possible that no solution is reachable from the final

state of a partial solution generated by one execution of
PDST-EXPLORE. To handle this possibility, we apply a task
planner, which is described in Subsection III-D.

A. ThePDST-EXPLORE Algorithm

The intuition behind thePDST-EXPLORE algorithm is
quite simple: the space of random walks is searched to
optimize coverage of the state space.PDST-EXPLORE is
presented in Algorithm 1. Beginning from an initial state,
q0 ∈ Q, a tree of reachable states is constructed incrementally.
The parameterNiter is the maximum number of iterations that
PDST-EXPLORE will run for.

A sample forPDST-EXPLORE is taken to be a collision-
free feasible path in the state space, i.e., a path which is
collision-free and obeys the motion constraints. The set of
samples generated during a run ofPDST-EXPLORE is re-
ferred to asP . The union of the samples form a tree withq0

as the root and pairwise intersections at the branch states.In
this way everyπ ∈ P is associated with a path,path(π),
beginning atq0 and withπ as its suffix (line8).

Coverage optimization is effected inPDST-EXPLORE by
maintaining an incrementally refined subdivision ofQ. The
subdivision,S is a set of cells (subsets ofQ) which partitions
Q. A probability measure,µ, is used to quantify the volume
of each cell. When a cell is subdivided it split into two cells.
The setS is updated by removing the subdivided cell and
adding the new cells. The subdivision scheme and measure are
referred to as the coverage estimation scheme. This component
of the planner is designed for the application and the one used
in this paper is described in Subsection III-C. The subdivision
operation occurs on line12 of Algorithm 1.

At the end of each iteration ofPDST-EXPLORE on line
13, an invariant relatingP and S is enforced. Everyπ ∈ P
must have the property thatπ is contained in a unique cell
of S. This is implemented by subdividing paths into a set of
segments if they cross multiple cells.

A new sample is created from an existing sample by invok-
ing the random propagation primitive,PROPAGATE. When
a sample is propagated from a pathγ ∈ P , the result of
PROPAGATE(γ) is a new path which branches fromγ. The
PROPAGATE operation is used on line7. Iterated calls to
PROPAGATE determine a random walk andPDST-EXPLORE
can be thought of as constructing a tree of random walks. The
implementation ofPROPAGATE is described in Subsection III-
B.

At each iteration ofPDST-EXPLORE a sampleγ ∈ P is
selected on line6 andPROPAGATE(γ) is invoked to obtain a
new sample on line7. The cell which containedγ is eventually
subdivided on line13. The crux ofPDST-EXPLORE is the
selection method which is designed to balance a completeness
guarantee with a search that greedily covers the space. Each
sampleπ ∈ P is associated with a score,score(π). The
selected sample is the sample with the smallest score and is
therefore deterministic. Each sampleπ ∈ P is assigned a pri-
ority, priority(π). The score for that sample is calculated
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by score(π) = priority(π)/µ(C), whereC is the unique
cell containingπ.

Algorithm 1 PDST-EXPLORE(q0, Niter)

1: Let π0 be the0 duration path consisting of the stateq0.
2: Set the sample setP := {π0}.
3: Set the subdivisionS := {Q} (the trivial subdivision).
4: Setpriority(π0) := 0.
5: for i ranges from1 to Niter do
6: Let γ be the sample such thatscore(γ) is minimized.
7: Let πi := PROPAGATE(γ).
8: if πi is a solutionthen return path(πi).
9: Add the new sampleπi to P .

10: Setpriority(πi) := i.
11: Setpriority(γ) := 2 · priority(γ) + 1.
12: UpdateS by subdividing the cell that containedγ.
13: UpdateP such that each sample lies in a unique cell.
14: end for

The data structure that stores the current subdivisionS in
Algorithm 1 is a binary space partition. The only operations
performed on it are stabbing queries which run in time
proportional to the depth of the tree. The selection on line
6 is implemented using a binary heap. The time cost for using
the heap is logarithmic in the number of entries. All other
lookup and referencing operations necessary for implementing
Algorithm 1 are done with hash sets which run in constant
time.

A sufficient condition for probabilistic completeness of a
motion planner operating on a dynamical system is illustrated
in Figure 3. Every subtree of positive measure in the control
input-time tree must eventually be touched by the planner. The
priority scheme ofPDST-EXPLORE is designed to ensure this
while permitting greedy coverage of the state space.

B. Design of the Controller

Let γ be a path segment of durationT . The operation
PROPAGATE(γ) creates a path segmentπ branching fromγ.
There are many possible choices for thePROPAGATE oper-
ation and the performance of thePDST-EXPLORE planner
depends on this choice. We have observed that the following
design principles are good choices: an iterated sequence of
calls toPROPAGATE should be able to approximate any given

path with some non-zero probability and a short sequence of
iterated calls should extend into the local space around the
initial segment. These principles were taken into the design
and testing of the trajectory generation scheme which was
used in the planner described in this paper. We now present
PROPAGATE in Algorithm 2.

Algorithm 2 PROPAGATE(π)

1: Generate uniformly at randomt ∈ [0, |π|].
2: Let q0 := π(t).
3: Let x0

s be the ship’s position atq0.
4: Generatex ∈ [0, 1]2 uniformly and at random.
5: Generatevmag

s ∈ [vmin
s , vmax

s ].
6: Setvtarg

s := vmag
s

x−x0

s

||x−x0
s
|| .

7: for i ranges from0 to Nmax do
8: Let vs be the ship velocity of stateqi.
9: Let θ be the ship direction of stateqi.

10: Let v := vtarg
s − vs.

11: Let θtarg be the direction of vectorv.
12: Let ∆θ := θtarg− θ.
13: if |v| < δ then u = u0.
14: else if |∆θ| < ǫ then u = u1.
15: else if ∆θ > 0 then u = uL.
16: elseu = uR.
17: end if
18: Let qi+1 := SIMULATE(qi, u).
19: if qi is a terminal statethen return the path{q0, ..., qi}.
20: end for
21: return ∅.

Algorithm 2 incrementally constructs a path by running a
controller with the simulator. The operationSIMULATE(qi, u)
is the result of running the simulator described in Section II
to compute the state that results from applying controlu for
time∆t from stateqi. The controller is designed to change the
ship’s velocity into a given target velocity. The target velocity
has a random magnitude. Its direction is towards a randomly
and uniformly chosen point in the workspace (unit square)
from the ship’s position at initial state of the new path. The
initial state is chosen randomly from the states along the path
being branched,π. The controller runs until the ship or a
koule collides with the boundary or untilNmax iterations have
occurred.

In lines 4, 5 and 6 of Algorithm 2, the target velocity is
computed. Notice the biased sampling that occurs as a function
of the ship’s current position. When the ship is close to the
boundary of the workspace, the target velocity will tend to
move away from the boundary. The target velocity is sampled
this way to reduce the probability that the ship will collide
with the boundary at the beginning of the path.

Algorithm 2 has several external parameters: the maximum
number of iterations,Nmax, the minimum and maximum veloc-
ity magnitudes,vmin andvmax respectively, and the switching
bounds for the controller,δ and ǫ. Choosingδ = amax·∆t

2
and

ǫ =
vmax

θ
·∆t

2
guarantees stability.
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C. Coverage Estimation

The subdivision scheme used in our implementation was
relatively unsophisticated. Initial tests determined that sub-
dividing the velocity dimensions led to poor performance.
Consequently, the scheme we employed only worked on
the position dimensions:xs, θ, x1, ..., xn. The variables were
subdivided in that order and we employed uniform splits. In
an example withn koules, the coverage space is3 + 2n-
dimensional and the state space is5 + 4n-dimensional. The
measureµ is uniform probability measure onR2×S1×R2n.

D. Task Planning Algorithm

ThePDST-EXPLORE planner creates partial solutions (re-
call of Subsection II-A). In order to construct a full solution, a
sequence of partial solutions must be generated. It is possible
that the endpoint of a partial solution may leave the system in
a state from which no further solution exists. Therefore thefull
solution planner needs a backtracking mechanism. The method
presented as Algorithm 3 is very simple but was quite effective
for the purposes of the game of Koules. The method proceeds
recursively:PDST-EXPLORE is invoked to find a solution
and if one is found then Algorithm 3 runs on the end state of
the solution path. If repeated invocations ofPDST-EXPLORE
fail to find a solution or if the recursive calls fail, then the
recursion stack pops one level and another attempt is made.
The operation of the full solution planner is depicted in Figure
4.

Algorithm 3 SOLVE(n, qn, Niter, Nattempts)

1: for i ranges from1 to Nattemptsdo
2: Let πn := PDST-EXPLORE(qn, Niter).
3: if πn = ∅ then continue.
4: if n = 1 then return π1.
5: Let qn−1 be the endpoint ofπn.
6: Let πn−1 := SOLVE(n − 1, qn−1, Niter, Nattempts).
7: if πn−1 6= ∅ then return πn ◦ πn−1.
8: end for
9: return ∅.

IV. EXPERIMENTS

Two different kinds of experiments were run to establish
evidence for our claims: partial solutions and full solutions.
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The partial solution experiments were run for various numbers
of Koules. They usePDST-EXPLORE to search for paths that
eliminate a Koule. The planner is allowed to continue after
finding a solution and may generate many solutions. The full
solution experiments were also run for various numbers of
Koules and uses Algorithm 3 to construct a sequence of partial
solutions each, in turn, generated withPDST-EXPLORE.

The experiments were conducted on a cluster of 16 dual
AMD 1900MPs with 1 GB of RAM running Debian un-
stable with the 2.4.18 Linux kernel. The code is written in
C/C++/fluid and uses theFLTK, GLUT, OpenGl and
S-Lang packages. Throughout the experiments, the following
parameters were used:vmax

θ = π, amax = 1, λc = 4, h = 0.05,
ms = 0.75, mk = 0.5, rs = 0.03, rk = 0.015 and
∆t = 0.005. These parameters were set to create a challenging
motion planning task and were tuned by using an interactive
interface to the game. With these parameters, we found that
human players in our research group were not able to solve
examples with more than a few Koules.

A. Partial Solutions

In this set of experiments, we measure the cost per iteration
of PDST-EXPLORE during partial solutions. Each run was for
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60000 iterations and worked on a randomly generated problem
instance. The data was merged and averaged from 80 runs, but
for these results there was very little variations. In Figure 2,
we see the total time in seconds versus the iteration counter.
Although runningN iterations of Algorithm 1 is guaranteed to
take at least time proportional toN log N , the timing plots are
very close to linear. This is explained by observing that most of
the runtime is spent in the simulator. The additional cost ofthe
PDST-EXPLORE algorithm is a slight super-linear cost due to
the binary space partition stab operations and the binary heap
make nearly no impact on the scale of a few hundred thousand
iterations. The growth in the cost of iterations is shown in
Figure 3. The super-linear trend is due to the increased number
of inter-robot collisions.

An important question that must be asked about Algorithm
1 is: how well doesPDST-EXPLORE perform as coverage
estimates become coarser due to the dimensionality increase?
One way to examine this is to look at the number of solutions a
run ofPDST-EXPLORE generates as a function of the number
of iterations. When the space becomes well covered then the
rate solutions are generated frequently. Before good coverage
is achieved, the solution rate will be much less. In Figure
4, we show the average solution count for partial solutions
with n = 1, ..., 6 Koules. The sharp drop-off that occurs when
moving fromn = 3 to n = 4 suggests the coverage estimator
begins to fail when moving from9 to 11-dimensional space.

B. Full Solutions

Algorithm 3 is used for generating full solutions for
instances of the game of Koules by repeatedly invoking
PDST-EXPLORE. For each trial, we generated a random
problem instance and then ran Algorithm3. In our tests,
Nattempts= 1 andNiter = 40000 were used.

The computed paths were quite complicated, with durations
of several hundred thousand simulator steps and thousands of
manuevers. In Figure 5, we see an example of a computed
solution for an instance with6 Koules. The figure shows the
path by the ship’sx-coordinate. Qualitatively, the paths tended
to look quite good. The random trajectory generation did tend
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to produce occasional path sections where the ship coasted
away from the Koules, however the usual mode was that the
ship would seperate a Koule from the pack and systematically
bounce it into the wall using three or four hits, while avoiding
the walls and the other Koules.

In Figure 6, we present the time used by the planner to solve
instances of various complexity. The number of backtracks in
Algorithm 3 grew at slightly higher rate than linear with the
number of Koules. This is due toPDST-EXPLORE failing to
find solutions more frequently asn increases. The amount of
time used grows fairly quickly with the number of Koules.
This is expected to be worse than quadratic since the number
of invocations of Algorithm1 grows linearly and the cost per
iteration is super-linear in the number of Koules. Experiments
with up to 20 Koules were conducted and solutions were
produced in less than3 hours. The runtime began to grow
very quickly aroundn = 18 due to memory paging. When
n = 15, the state space is65 dimensional and whenn = 20,
the state space is85 dimensional.



C. Additional Experiments

At the end of Subsection III-B we discussed the motivation
behind the design of Algorithm2. The direction of the target
velocity vector is set using the procedure on lines4 and 6.
We replaced this procedure with choosing the direction of
the target velocity uniformly and randomly. We then ran full
solutions trial with3, 6 and 9 Koules and observed a severe
peformance degradation. Sample bias in trajectory generation
and the kinds of paths being generated are extremely important
to determine the performance ofPDST-EXPLORE. Biased
trajectory generation helps the planner reduce the time spent
searching.

In Section I, we mentioned that the difficulty of the game
can be varied by modifying the physical parameters. The most
important parameters for varying difficulty are relative masses
of the Koules and the ship, the ship’s thrust,amax and the
spring constant for the Koulesλc. To our suprise, reducing
the valuevmax

θ by a factor less than4 did not seem to affect
the solution times which is interesting as human players seem
to be extremely sensitive to this parameter.

V. D ISCUSSION ANDFUTURE WORK

In this paper, we develop planning techniques that can
handle motion planning for dynamical systems with high-
dimensionality, drift, underactuation and discrete system
changes. We demonstrate the robustness and efficiency of
our planner by applying it to the game of Koules. To our
knowledge, this is first application of algorithmic motion
planning techniques to a problem of this type and complexity.

A major issue that arises in planning for dynamical systems
is that memory efficiency is a very important concern. The
number of iterations that we were able to perform for a partial
solution was memory bounded. Once the number of states we
needed to represent the tree exceeded the size of the core,
performance degraded significantly. Since the cost per iteration
of PDST-EXPLORE does not grow quickly, storage usage
becomes the bottleneck. Using a path sample representation
and by making these representations as compact as possible
was essential to solve the larger examples, however handling
applications with additional state complexity that may result
from increases in physical realism, algorithmic changes may
be necessary to further reduce storage requirements during
planning. These issues are almost certainly present regardless
of the planning algorithm that is employed.

Apart from attacking the storage problem, we would like to
study techniques for building and using multi-query structures,
improving the accuracy and utility of coverage estimates and
generating paths under optimality constraints.
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