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Abstract 

The annotation of protein function 
has not kept pace with the exponential 
growth of raw sequence and structure data.  
An emerging solution to this problem is to 
identify 3D motifs or templates in protein 
structures that are necessary and sufficient 
determinants of function.  Here, we 

demonstrate the recurrent use of 
Evolutionary Trace information to construct 
such 3D templates for enzymes, search for 
them in other structures, and distinguish true 
from spurious matches.  Serine protease 
templates built from evolutionarily 
important residues distinguish between 
proteases and other proteins nearly as well 
as the classic Ser-His-Asp catalytic triad.  In 
53 enzymes spanning 33 distinct functions, 
an automated pipeline identifies functionally 
related proteins with an average positive 
predictive power of 62%, including correct 
matches to proteins with the same function 
but with low sequence identity (the average 
identity for some templates is only 17%).  
Although these template building, searching, 
and match classification strategies are not 
yet optimized, their sequential 
implementation demonstrates a functional 
annotation pipeline which does not require 
experimental information, but only local 
molecular mimicry among a small number 
of evolutionarily important residues. 
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Introduction 

By August 2005, the NCBI Entrez 
Genome Project contained 273 fully 
sequenced genomes yielding almost 1.7 
million putative protein sequences in 
NCBI’s RefSeq database.  However, up to 
40% of these genes still lacked any 
annotation of biological function (Pruitt et 
al. 2005), thus illustrating the importance of 
reliable methods to identify protein function. 

To address this problem, broad 
categories of computational methods for 
functional annotation have emerged that rely 
on either sequence or structure, considered 
whole or through motifs.  Whole sequence 
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methods can fail when homologs develop 
unrelated functions, distinct chemistries, or 
different functional sites as sequence 
identity falls below 40% (Olmea and 
Valencia 1997; Russell et al. 1998; Todd et 
al. 2001).  Local sequence motifs, however, 
cannot adequately capture functions 
distributed over non-adjacent stretches of 
primary structure.  These limitations 
motivated the extension of the concept of 
functional motifs from sequence to structure 
(Wallace et al. 1996; Wallace et al. 1997; 
Russell 1998; Kleywegt 1999; Bartlett et al. 
2002; Barker and Thornton 2003; Stark et al. 
2003; Ivanisenko et al. 2004; Porter et al. 
2004; Shulman-Peleg et al. 2004; Ausiello et 
al. 2005; Ivanisenko et al. 2005; Torrance et 
al. 2005). 

The rationale for structural motifs 
(“3D templates”) is that typically, just a few 
key residues directly mediate catalysis or 
binding.  These same residues in the same 
conformation should therefore be reasonably 
expected to carry out the same function even 
in a different fold unless long-range effects 
impact their biophysical behavior. 

Many methods aim to derive 3D 
templates and match them to protein 
structures.  Some map sequence motifs onto 
structures (Kasuya and Thornton 1999; 
Liang et al. 2003); others  compare enzymes 
with known functional sites against a 
structural database (Fischer et al. 1994) or 
against each other (Wallace et al. 1997) (de 
Rinaldis et al. 1998) (Torrance et al. 2005) 
(Laskowski et al. 2005).  However, 
fundamental difficulties remain.  First, 3D 
templates that rely on experimental data are 
limited by the availability of such 
information.  Second, while the search for 
3D matches to small templates (3-4 
residues) is not computationally expensive, 
this quickly changes for larger motifs that 
include amino acid substitutions when 
searched against the full Protein Data Bank 

(PDB) (Berman et al. 2000).  Third, 
although sequence methods such as BLAST 
(Altschul et al. 1990) and PSI-BLAST 
(Altschul et al. 1997) can confidently claim 
to find sequence homologs and suggest—but 
do not prove—functional similarity between 
proteins, it is not yet clear what degree of 
functional similarity can be inferred from a 
structural match. 

With these issues in mind, we 
present an evolution-directed series of 
algorithms, which in the absence of 
experimental data, aim to identify relevant 
3D templates, to guide an efficient search 
for molecular mimicry in other protein 
structures, and finally to isolate from among 
all matches a subset that is highly enriched 
in proteins that perform the same function.  
Together these represent the first steps 
towards an automated functional annotation 
pipeline for proteins that can complement 
experimentally-driven annotation efforts. 

To measure the evolutionary 
importance of each protein residue, we use 
the Evolutionary Trace (ET) method 
(Lichtarge et al. 1996b). ET ranks residue 
importance by correlating amino acid 
variations in a multiple sequence alignment 
with evolutionary divergences in a 
phylogenetic tree.  The quality of the 
analysis is measured by the extent to which 
top-ranked (trace) residues cluster in the 
structure (Madabushi et al. 2002); (Mihalek 
et al. 2003).  Remarkably, these clusters 
match functional sites (Madabushi et al. 
2002; Yao et al. 2003) precisely enough to 
guide rational protein engineering (Lichtarge 
et al. 1996a; Lichtarge et al. 1997; Landgraf 
et al. 1999; Pritchard and Dufton 1999; Innis 
et al. 2000; Pascual et al. 2000; Sowa et al. 
2000; Sowa et al. 2001; Imanishi et al. 2002; 
Lichtarge et al. 2003; Madabushi et al. 2004; 
Raviscioni et al. 2005).  These data suggest 
that top-ranked trace residues represent the 
key determinants of protein function.  It is 
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therefore logical to use ET ranks to design 
3D templates, to prioritize matching of 
residues by their importance, and then again 
to interpret their matches. 

Results 

The key steps of the pipeline (see 
Methods) are:  the identification of 
evolutionarily important residues in the 
protein of interest (the query); the selection 
of some of these residues to construct a 3D 
template; the search in other structures 
(targets) for matches based on residue type 
and geometry (Chen et al. 2005; Chen et al. 
2006); the assessment of the significance of 
a match based on its least-root-mean-square 
deviation (LRMSD) from the template and 
finally, a selection of the most biologically 
relevant matches based on the evolutionary 
importance of the matched target residues. 

 An underlying hypothesis is that 
templates built using ET rank information 
can be useful in cases where the functional 
site of a protein has not been determined by 
experimental methods.  Accordingly, we 
start with a comparison in serine proteases 
of a 3D template (positive control) 
composed of the well-known Ser195-His57-
Asp102 “catalytic triad” (Wallace et al. 
1996)—the gold standard for proteolytic 
activity—with two neighboring but non-
overlapping templates:  one composed of 
highly ranked residues (the test template), 
and the other of poorly ranked residues (the 
negative control).  Figure 1 shows the 
distribution of matches of these templates 
against the PDB, with vertical lines marking 
the points at which p-value=1% (solid 
green) and 5% (dashed purple).  Matches to 
the catalytic triad template shown in Figure 
1A (geometric positions for the template are 
obtained from bovine chemotrypsin, PDB 
code 1acb), exhibit a bimodal distribution in 
which the left LRMSD peak is smaller but 
rich in proteases (312 true positives shown 

as red bars) and the right LRMSD peak is 
larger but contains mostly functionally 
unrelated proteins (blue bars).  The 
separation between the two modes shows 
that LRMSD from the template acts as a 
good discriminator of function (Wallace et 
al. 1996). 

 Remarkably, Figure 1B shows that a 
template of non-catalytic but highly ranked 
neighboring residues separates these two 
peaks nearly as well.  These residues were 
chosen because they are near the catalytic 
triad and are ranked within the top 5%, i.e., 
among the 12 most important residues in 
this 245-residue protein.  Unlike the triad, 
however, this “non-catalytic quartet” 
contains fold-specific residues:  Cys42 and 
Cys58 form a disulfide bond, Asp194 is 
involved in a salt bridge, and Ser214 is 
implicated in ligand binding.  As a result, it 
does not find matches to proteases with 
different folds, although it is able to find 
matches to proteins with less than 30% 
sequence identity.  In comparison, the 
negative control template of poorly ranked 
neighboring residues shown in Figure 1C 
cannot distinguish at all between proteases 
and other proteins.  This suggests that 
structural templates built from evolutionarily 
important residues will be useful, 
particularly when experimental data on 
functional residues is not available. 

 To confirm this hypothesis, we 
systematically selected high-ranking 
residues in a test set of 53 enzymes spanning 
36 folds and 33 distinct functions and 
searched the PDB for matches to each 
template for which the LRMSD has a p-
value ≤ 1%.  We examine only enzymes 
because the Enzyme Nomenclature provides 
an easy and reliable way to define each 
protein’s exact function (see Methods).  
Figure 2A displays the distribution of these 
1% significant matches over all 53 proteins 
as a function of LRMSD.  As with the match 
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distribution of the “catalytic triad” and the 
“non-catalytic quartet” above, true positive 
matches (red) generally have lower 
LRMSDs, suggesting that as before, ET rank 
allows us to build discriminating templates.  
Also as before, matches frequently occur to 
proteins with the same function but low 
sequence identity to the source (the average 
identity for some templates is only 17%).  
However, unlike the previous examples, 
there are many false positives (blue) even at 
the 1% p-value threshold.  Furthermore, the 
true and false hits are not well separated in 
the LRMSD dimension, which suggests that 
there is no universal LRMSD threshold to 
separate true from false geometric matches. 

 In order to better separate true and 
false geometric matches we focus next on 
the evolutionary importance of the matched 
residues.  The hypothesis is that a spurious 
match is less likely to occur at evolutionarily 
important residues than a true match.  
Indeed, Figure 2B demonstrates the 
strikingly different evolutionary importance 
of matched sites (the average ET rank of the 
matched residues) between functionally 
related (red) and unrelated (blue) proteins.  
Thus, consideration of the evolutionary 
importance in the target protein should let us 
separate true from random matches and 
thereby improve the positive predictive 
power of our templates. 

 We formalized and tested this 
observation with a support vector machine 
(SVM) trained to classify matches as true or 
false using the average ET rank of the target 
residues and/or LRMSD.  Table 1 shows 
that an SVM based only on ET rank 
identifies 554 of 570 true positives (97% 
sensitivity), and 4,959 out of 5,450 true 
negatives (91% specificity).  Its overall 
accuracy is 92% and its positive and 
negative predictive powers are 53% and 
99%, respectively.  In contrast, an SVM that 
uses only the LRMSD feature has a reduced 

accuracy of 85% and positive predictive 
power of 37%.  An SVM that uses both ET 
rank and LRMSD yields the best 
performance, with 94% accuracy and 61% 
positive predictive power.  Thus, most of the 
discriminatory power of this classifier 
comes from ET rank, with some 
complementary information arising from 
LRMSD. 

 Since we ultimately wish to predict 
protein function, we must test the classifier 
on proteins it has not been trained on.  This 
was done through leave-one-out cross-
validation experiments.  For each of the 33 
enzyme classes in the test set, we trained an 
SVM on the other 32 classes, and then tested 
performance on the left-out class.  Table 1 
shows that, overall, performance changes by 
less than 1%, comparing All vs. average 
Cross-validation results for each of the 
metrics used.  While the standard deviation 
for most of the metrics is on the order of 1-
10%, it reaches as high as 39% for positive 
predictive power.  These results indicate 
that, while template performance is not 
uniform across all enzyme classes, this 
classifier is not highly dependent on the 
proteins in this dataset, and therefore should 
work for other proteins as well. 

 We can now revisit the serine protease 
example using the annotation pipeline from 
beginning to end.  The 5-residue template 
chosen by this automated method partially 
overlaps the catalytic triad (Ser195) and the 
test template (Cys42, Cys58, and Ser214), 
since these residues are highly ranked by 
ET.  The distribution of matches, as before, 
is shown in Figure 1D.  Compared to the 
catalytic triad, the positive and negative 
predictive powers both decrease by only 1%, 
yielding a positive and negative predictive 
power of 93%.  The similarity of these 
numbers is remarkable because  no 
experimental data about the active site was 
used to build the new template except for 
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that inferred from evolution and structure.  
This example suggests that this approach 
will be useful in enzymes (and non-
enzymes) whose functional mechanisms are 
unclear. 

Discussion 

We linked algorithms that exploit 
evolutionary information in different ways 
towards the creation of an automated 
functional annotation pipeline.  First, 3D 
templates are built from residues that are 
top-ranked by ET, cluster in the protein 
structure, and are solvent accessible.  This 
choice follows from past studies that 
consistently show that top-ranked trace 
residues are key functional determinants.  
Indeed, in serine proteases, several 
templates built from top-ranked residues can 
distinguish serine proteases from other 
proteins nearly as well as the catalytic triad 
itself.  

Second, the structural matching 
algorithm exploits ET rank to prioritize its 
search.  Rather than perform a geometric 
search for the entire template in a single step 
(which would be very computationally 
expensive due to the amino acid labels), MA 
performs a fast search for the three most 
important trace residues (the “seed”) and 
then iteratively expands matches to template 
residues of lesser rank.  This method is fast 
enough to search the entire PDB and 
generate a non-parametric estimate of each 
p-value for any LRMSD. 

At that point in the pipeline, 
however, many false matches are found.  
Even at a 1% significance LRMSD 
threshold the average positive predictive 
power of the 53 3D templates is only 14%, 
and indeed Figures 2A and 2B display more 
false matches than true ones.  This may 
reflect template limitations such as the 
choice of residues; the choice of points for 

geometric representation of those residues 
(C-alpha atoms); the choice of size (five 
residues); and, unlike most other template 
search algorithms, the allowance for amino 
acid substitutions as they occur in the 
query’s multiple sequence alignment.  We 
note that this finding of many functionally 
unrelated geometric matches is in keeping 
with other studies (Laskowski et al. 2005; 
Torrance et al. 2005).  

For this reason, additional separation 
of the biologically relevant matches is 
imperative.  This is accomplished, again, 
through evolutionary importance—but this 
time in the matches themselves.  Used in 
this novel way, ET rank proves a powerful 
and robust discriminator that separates true 
from false geometric matches with 92% 
accuracy alone, and 94% with LRMSD 
added.  The average positive predictive 
power of all templates after using this 
classifier is 63% – a 4.5-fold improvement 
from the 14% seen without its use.  

Future improvements may arise from 
better template design, from the inclusion of 
biophysical features in the SVM classifier, 
and from larger scale studies with broader 
scope (including non-enzymes).  For now, 
these results show that the recurrent use of 
evolutionary information in the form of ET 
rank is a novel and useful approach for the 
functional annotation of protein structures 
based on local molecular mimicry among a 
small number of evolutionarily important 
residues.  

Methods 

 Test set 

 The test set consists of 53 proteins 
with 36 folds and 33 unique functions.  
These proteins were chosen from the PDB-
SELECT-25 (Hobohm and Sander 1994) 
and thus each has less than 25% sequence 
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identity to all the others, including those 
with the same function.  A complete 
description is available in supplementary 
materials. 

Template creation 

ET analyses were performed using 
an automated (Yao et al. 2003), real-valued 
(Mihalek et al. 2004) version of the ET 
algorithm (Lichtarge et al. 1996b).  For each 
protein, template residues were chosen as 
the 5 top-ranked residues for which the 
largest trace cluster contained at least 10 
surface residues, defined by DSSP solvent-
accessibility values ≥ 2 (Kabsch and Sander 
1983).  The 5 top-ranked surface residues in 
that cluster were chosen to make the 3D 
template, representing each by the geometric 
coordinates of its C-alpha atom and labeled 
by ET rank and allowed amino acid 
substitutions (those appearing at least twice 
in the corresponding column of the multiple 
sequence alignment used for ET). 

Matches 

The Match Augmentation (MA) 
algorithm is described elsewhere (Chen et 
al. 2005; Chen et al. 2006).  In brief, MA 
matches a query template to a target 
structure in two-stages:  Seed Matching 
identifies several low LRMSD matches for 
the template’s three best-ranked residues; 
Augmentation then iteratively adds template 
residues in order of their ET rank.  The 
output is the lowest LRMSD match, or none 
if all LRMSDs exceed 4Å.  MA can match a 
typical template to the entire PDB in ~40 
min on a single processor.  We then 
compute the statistical significance (p-value) 
of a match using a nonparametric density 
estimate of the distribution of match 
LRMSDs to all protein chains in the PDB 
(Chen et al. 2005; Chen et al. 2006). 

For this study, matches were 
searched against 13,600 chains from the 
PDB.  This representative subset is 
redundant at the protein level, but includes 
only a single chain in cases where multiple 
structures are available due to 
crystallographic symmetry.  Mutants, 
ionically perturbed structures, and small 
peptide fragments were manually removed, 
although structures bound to inhibitors were 
retained. 

Evaluation of Matches 

Throughout the paper, Enzyme 
Nomenclature (EC) (NC-IUBMB 1992) 
annotations are those reported in the PDB.  
A true match means exact agreement of all 4 
digits of the hierarchical EC number.  In all, 
5,200 proteins (38%) have full, 
unambiguous EC annotation while 7,900 
(58%) have none, although this number may 
include some unannotated enzymes.  Only 
500 proteins (<4%) have partial or 
ambiguous EC annotation (such as large 
proteins performing multiple functions).  As 
there were only 248 matches to these 
proteins (<2%), these were discarded. 

Machine learning 

We traced every matched protein and 
averaged the percentile ET rank of its 
matched residues.  This average ET rank, 
the LRMSD of a match, or both were used 
to train either a 1- or 2-dimensional support 
vector machine (SVM) using the Spider 
package for MATLAB (see 
http://www.kyb.tuebingen.mpg.de/bs/people
/spider).  Default parameters were used with 
a linear kernel and a balanced ridge 
calculated as the difference between the 
proportions of the two classes. 
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Figures 

 

Figure 1: Distribution of matches for serine protease motifs: (a) catalytic triad, (b) non-
catalytic quartet, (c) negative control, (d) surface trace cluster.  The vertical lines represent the 
points at which p-value=1% (solid green) and 5% (dashed purple).  Structural template 
representations created using PyMOL (DeLano 2002). 
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              a) 

 
              b) 

Figure 2: Distribution of matches for 53 enzymes in (a) a single dimension, LRMSD, and 
(b) two-dimensions, LRMSD and evolutionary importance. 
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Table 1 

Classification (53 proteins) 

ET+LRMSD LRMSD ET 
  

3D 
Matches Positive Negative Positive Negative Positive Negative 

Same EC 570 553 17 515 55 554 16 
Different EC 5450 350 5100 874 4576 491 4959 
Total 6020 903 5117 1389 4631 1045 4975 

SVM Performance 

  ET+LRMSD LRMSD ET 
Performance 

Metric 
 

All 
Cross-

validated All All 
Accuracy  0.94 0.94 ± 0.09 0.85 0.92 
Sensitivity  0.97 0.96 ± 0.10 0.90 0.97 
Specificity  0.94 0.94 ± 0.09 0.84 0.91 
Positive 
Predictive Power  0.61 0.62 ± 0.39 0.37 0.53 
Negative 
Predictive Power  1.00 1.00 ± 0.01 0.99 1.00 

 

Table 1: Performance of the SVM classifier in distinguishing between true and false 
matches for the attributes:  ET+LRMSD, LRMSD alone, and ET alone.  Leave-one-out cross-
validation is done for each enzyme class in the dataset for ET+LRMSD. 
 


