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Using Experience to Improve Constrained Planning on Foliations for
Multi-Modal Problems
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Abstract— Many robotic manipulation problems are multi-
modal—they consist of a discrete set of mode families (e.g.,
whether an object is grasped or placed) each with a continuum
of parameters (e.g., where exactly an object is grasped). Core to
these problems is solving single-mode motion plans, i.e., given
a mode from a mode family (e.g., a specific grasp), find a
feasible motion to transition to the next desired mode. Many
planners for such problems have been proposed, but complex
manipulation plans may require prohibitively long computation
times due to the difficulty of solving these underlying single-
mode problems. It has been shown that using experience from
similar planning queries can significantly improve the efficiency
of motion planning. However, even though modes from the
same family are similar, they impose different constraints on
the planning problem, and thus experience gained in one
mode cannot be directly applied to another. We present a
new experience-based framework, ALEF, for such multi-modal
planning problems. ALEF learns using paths from single-mode
problems from a mode family, and applies this experience
to novel modes from the same family. We evaluate ALEF
on a variety of challenging problems and show a significant
improvement in the efficiency of sampling-based planners both
in isolation and within a multi-modal manipulation planner.

I. INTRODUCTION

Solving manipulation planning problems can be complex
and time-consuming, as both a sequence of actions and
their corresponding valid motions must be found. During
search, a manipulation planner will evaluate many different
variations of an action (e.g., different grasps and placements
of an object), as a variation may not have a corresponding
feasible motion (e.g., due to obstacles). To find valid motions,
manipulation planners such as task and motion planners [1] or
multi-modal planners [2], [3] use motion planning algorithms
as a subroutine. Thus, improving the efficiency of motion
planning improves the efficiency of manipulation planning.

Many manipulation problems are multi-modal, and contain
a discrete set of actions (mode families) that are parameterized
by continuous values, e.g., the placement of an object on a
table is given by x, y-coordinates. Each parameterization of
an action defines a mode which imposes different constraints
on the problem, namely a manifold constraint. Moreover,
as the parameters are continuous, problems with parameters
“nearby” other parameters will be similar, albeit under different
constraints. As each mode within a mode family defines
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similar problem constraints, results from prior plans could
be used as experience to improve future queries.

Experience-based planning methods [4]–[6] learn from
prior motion planning problems to expedite search in new,
similar problems. For these methods, similarity is typically
defined in terms of the obstacles in a changing environment,
and cannot cope with changing problem constraints. In multi-
modal planning, as solutions from different modes lie on
disjoint manifolds, experience in one mode cannot be directly
applied to another, and thus these methods cannot be used.

This work proposes a novel experience-based framework,
ALEF, that can effectively reuse experiences in multi-modal
problems to improve the efficiency of manipulation planning.
ALEF builds a sparse roadmap within an augmented, manifold-
constrained state space which unifies and relates experience
gathered from different single-mode problems within a mode
family. Our method learns by using paths from these problems
to construct the sparse roadmap. Upon a new query, paths
from the sparse roadmap are retrieved and used to bias
sampling in a sampling-based planner. Learning is quick
and can be run online within a manipulation planner. We
demonstrate the effectiveness of our approach on challenging
manipulation problems with varying environments.

II. PRELIMINARIES

In this work, we consider manipulation planning problems
that are parameterized by a continuum of values. We use
terminology from multi-modal planning, a type of manipu-
lation planning, to describe these types of tasks (as in [2],
[3]). Parameterized actions are mode families, where each
parameterization of the action is a mode. We use a multi-
modal planner to demonstrate our framework within the
context of a manipulation planner (Sec. V-B).

Consider a robot with a configuration space Q. Typically,
in motion planning we are interested in finding a collision-
free path σ from a point qstart ∈ Q to some region of interest
Qgoal ⊂ Q, where σ : [0, 1] → Qfree such that σ(0) =
qstart, σ(1) ∈ Qgoal and σ(t) is collision-free for all t.

A. Single-Mode Planning

A specific parameterization of an action defines a mode
ξ which imposes a set of manifold constraints on a robot’s
motion. Manifold constraints are determined by a constraint
function F ξ : Rn → Rkξ (1 ≤ kξ < n). Constraints are
satisifed when F ξ(q) = 0; the set of all configurations which
satisfy the constraint define the mode manifold Mξ:

Mξ =
{
q ∈ Q | F ξ(q) = 0

}
.
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Fig. 1. Our experience-based constrained planning framework, ALEF. a) The arm has two continuous joints α, β. In this simple task, the arm is constrained
to move its end-effector along a line, which imposes a manifold constraint (a mode). The line is parameterized by values from X , which determines
its height (a mode family). The set of these lines forms a plane—the parameter of each line is visualized with a color gradient. An example line at
χ ∈ X is shown in white. b) Visualization of the set of manifold constraints defined by this task in configuration space. The color gradient is shared
with a)—colors in the configuration space correspond to the colors in workspace (the arrows). The manifold corresponding to χ (white line) is shown
in grayscale (FΞ(q) = χ). c) The sparse roadmap learned by ALEF from 10 randomly sampled problems (end-effector constrained to line). The color
gradient is shared with b), indicating each configuration’s parameters χ. Although vertices in the roadmap satisfy different constraints (modes), ALEF makes
connections between them. d) The manifold constraint corresponding to χ intersecting our sparse roadmap. The parameters X are another dimension (see
Sec. IV-A). Note that edges between vertices are geodesics on this manifold (giving their curvature), and show related experience our method can apply.

Thus, single-mode planning requires finding a valid path in
Mξ , an (n− kξ)-dimensional submanifold of Q. See [7] for
more on planning under manifold constraints.

B. Motion Planning within a Mode Family

We consider manipulation problems where actions have
continuous parameterizations that determine how an action
is done. Parameterized actions are defined as a mode family
Ξ, as each parameterization defines a mode. For example, a
robot can grasp a bar anywhere along its length: each grasp
location is given by a parameter that defines a mode in the
family. An example of a mode family is given in Fig. 1a.

The modes from a mode family are similar—crucially,
there is continuity between the manifold constraints of a
mode family’s modes. This is codified by defining mode
families as foliated manifolds [8]. A foliated manifold is a
manifold with additional structure: there exists a transverse
manifold XΞ of parameters χ ∈ XΞ of dimension k, which
parameterizes a set of (n−k)-dimensional leaf manifolds (the
mode manifolds) Lχ for all χ ∈ XΞ. A foliated manifold
can also be represented as a constraint function, FΞ.

A mode ξχ ∈ Ξ is defined by a parameter χ, FΞ(q) = χ.
The mode’s manifold is the leaf manifold Lχ:

Mξχ = Lχ =
{
q ∈ Q | FΞ(q) = χ

}
.

An example foliated manifold and a leaf manifold is given in
Fig. 1b. The definition of mode families as foliated manifolds
enables us to use the general manifold-constrained motion
planning framework presented in [9] used by our experience-
based framework.

III. RELATED WORK

There are many kinds of manipulation planning algorithms,
such as Task and Motion Planning algorithms [1], [10]–[12]
and multi-modal planning algorithms [2], [3], [13]–[15]. Each
algorithm handles the continuity of action parameterization
differently, but all use motion planning to determine if a
parameterization is valid. See [16] for a survey of techniques.

Sampling-based planners are probabilistically-complete
methods able to scale to high-dimensional problems [17]–[19].
To find motions within a mode, there are many approaches
for planning under manifold constraints (e.g., [9], [20]). A
survey of sampling-based techniques is given in [7].

To improve efficiency, many methods adapt search online
with information gathered during the same query. For exam-
ple, the authors of [21] weight different samplers based on
their performance. Other methods use prior collision checking
to adapt sampling [22], improve solution quality [23], or adapt
the local planner [24]. Our method too can be trained online
during a single query of a manipulation planner, improving
performance during search as well as on future queries.

Other experience-based methods store gathered experiences
for later retrieval. Experiences can be retrieved based on
start and goal similarity [4], [25] or workspace similarity [5],
[6]. These methods can only retrieve experiences that satisfy
the constraints they were trained on, and cannot transfer
experiences between constraints. Our method uses experience
from one mode and transfers that experience to other modes
within the same family. The method most similar to ours
is THUNDER [4], which also uses a sparse roadmap to
store previous paths. However, THUNDER does not consider
constraints, retrieves a path for repair rather than sampling,
and requires significant processing time to store experiences.

In the context of manipulation planning, learning has been
used to infer which action parameterizations are likely to be
valid, both offline [26], [27] and online [3]. Other techniques
use demonstrations to infer which constraints are needed
to perform a task [28] or approximate constraints observed
from data [29]. However, these methods learn information
about the constraints themselves and do not improve motion
planning. More similar to our method, the authors of [30]
bias search from demonstrations to solve parameterized
constrained problems. Our method learns from prior planning
queries within a mode family, either in a manipulation planner
or standalone, to improve performance on motion planning
problems within the same mode family.
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IV. THE ALEF FRAMEWORK

We present the ALEF framework (Augmented Leafs with
Experience on Foliations) for experience-based manipulation
planning under manifold constraints. ALEF learns using
valid paths from leaf-constrained problems and applies this
experience to problems constrained by different leaves within
the same foliation. That is, experience from one mode can
be transferred to another within the same mode family.

From valid paths (Fig. 2a), a sparse roadmap is constructed
in an augmented foliated space (AFS) (Fig. 2b). The AFS is a
manifold-constrained configuration space with respect to the
foliation constraint. Configurations in the AFS are augmented
to include their transverse parameters, i.e., what mode/leaf
they are in. The AFS and sparse roadmap are explained in
Sec. IV-A and Sec. IV-B.

Upon a new query, ALEF uses experience to bias a
sampling-based algorithm. Given a start and goal configura-
tion, nearby vertices within the sparse roadmap are retrieved.
If a valid path exists in the roadmap between the retrieved
start and goal vertices (Fig. 2c), the path is projected onto
the current query’s leaf manifold using a projection operator
(Fig. 2d). Configurations from this path that are valid are used
as samples. Experience retrieval is discussed in Sec. IV-C.

A. Augmented Foliated Space (AFS)

Recall from Sec. II-B that we model mode families as
foliated manifolds with constraint functions FΞ. Foliations
are parameterized by a transverse manifold X , where each
χ ∈ X corresponds to a different mode. To relate configu-
rations across different modes, we introduce a composite
space Q × X , where each configuration is indexed with
the parameters of the mode it satisfies. This can be seen
in Fig. 1c, which visualizes configurations only in Q, and
Fig. 1d, which visualizes the same configurations in Q×X .

However, not all configurations satisfy the foliation con-
straint. We define the augmented foliated space (AFS), a
submanifold within the composite space Q × X . The AFS
manifold is formally defined as:

MΞ =
{

(q, χ) ∈ Q×X | FΞ(q) = χ
}
.

We leverage the general manifold-constrained sampling-
based planning framework of [9] in order to model the AFS.
Through the transverse dimension, connections can be made
between configurations that satisfy different leaf constraints,
since the AFS manifold is a superset of all leaf manifolds
(Fig. 2b). The connections are such that all intermediate states
satisfy the aforementioned foliation constraint.

As sampling-based methods require a metric to explore and
find nearby configurations, we define a weighted metric for
the AFS. This metric uses a weighted sum of the metrics of
the configuration space and the transverse space. By default,
we use the Euclidean metric for the transverse space. This
weight relates to the relative importance of the transverse
parameters versus the configuration. This can be visualized in
Fig. 1d as “stretching” the X dimension. In our experiments,
we weight the transverse parameter three times more than
the configuration space.

B. Sparse Roadmap in the AFS

In this work, we represent experiences as valid paths
gathered from leaf-constrained motion planning problems.
Information from these paths is stored within a sparse
roadmap that resides in the augmented foliated space. In
particular, we employ SPARS2 [31], a method that does not
require the maintenance of a dense roadmap. SPARS2 has
guarantees of asymptotic near-optimality—as the roadmap
“fills out” the probability of inserting a new configuration
goes to zero, and paths within the roadmap are within some
bound of optimal. A sparse roadmap has the benefit of finite
memory requirements; the small size of the sparse roadmap,
as compared to a dense roadmap, enables fast search times on
new retrieval queries (Sec. IV-C). Note that we use SPARS2
within the manifold-constrained AFS. We conjecture that
the theoretical properties of SPARS2 hold in this case given
theoretical results from [9].

The idea of using SPARS2 as a database to store and
retrieve experiences was first introduced in the THUNDER
algorithm [4]. However, inserting, retrieving, and reusing
paths for SPARS2 in the AFS demand different methods as
compared to the standard unconstrained roadmap used in [4].

As noted by [4], a naı̈ve insertion of the waypoints
in sequential order will most likely result in the vertices
of the path being disconnected within the roadmap. This
stems from the way the SPARS2 chooses which vertices to
connect in order to maintain sparseness. Connections between
disconnected components of the roadmap are only attempted
when a new vertex acts as a connectivity node, meaning it
is “visible” from two vertices that do not belong to the same
connected component. A node is visible by another if it is
within a certain radius (visibility radius) and there is a valid
connection between them. Additionally, nodes are added as
guard nodes when there are no other nodes that are visible.
However, with this insertion policy, many paths will end up
disconnected. For example, when sequentially inserting a
straight-line path, only nodes that act as guards will be added,
and no connections between them will be attempted. Thus, we
use the ordering heuristic proposed by [4]—first, the inserted
path is interpolated at high resolution, then, nodes that are
likely guards are inserted, and then select nodes between
these guards are added as connectivity nodes. Additionally,
to improve connectivity, we check if these newly inserted
nodes can be connected to the other connected components
of the roadmap. Effectively, this increases the visibility
radius of SPARS2 (and thus affects SPARS2’s asymptotic near-
optimality property), possibly resulting in longer paths but
quickly improving roadmap connectivity. This enables ALEF
to be trained online within a manipulation planner.

As the sparse roadmap is built in the AFS, edges are added
between nodes from different leaves if the edge satisfies the
foliation constraint and is collision-free (Fig. 2c). In the ex-
ample shown in Fig. 1, nodes in the roadmap from problems
that were constrained to different lines are connected by edges
that correspond to a motion of the manipulator that moves
between these lines. Valid connections made in the AFS are
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Fig. 2. Sketch of ALEF, the proposed method. a) Valid paths from different action parameterizations are gathered as experience. These paths exist in the
leaves L1 and L2 of the foliated manifold of the action. Note that these are paths in configuration space, but are such that each configuration satisfies their
leaf’s constraint. b) ALEF builds a sparse roadmap in the augmented foliated space (AFS, Sec. IV-A), finding feasible connections across leaves. Connections
are such that the foliation constraint is always satisfied. c) Upon a query in new leaf L′, a path is found in the roadmap (highlighted) given a start and
goal (blue and orange circles). d) The retrieved path is projected to L′. Valid configurations are used as samples in the new query.

indicative of possibly valid motions on all leaves in-between
two nodes, due to the continuity between the leaves of the
foliated manifold. A roadmap generated by ALEF is shown
in Fig. 1c. Vertices and edges are colored according to their
transverse parameter. An example of this continuity can be
seen in Fig. 1d, where a leaf manifold is shown intersecting
the roadmap in the AFS.

C. Retrieving Experience from the AFS Roadmap

In manipulation planning, many candidate goal configura-
tions are considered during motion planning in order to find
a valid transition from one mode to the next (the intersection
of manifolds). ALEF considers all goal configurations that are
sampled. Given each start and goal configuration pair, their
nearest neighbors in the AFS roadmap are found using the
weighted AFS metric. Then, a collision-free path between
these configurations within the roadmap is found using
A∗ search (Fig. 2c). As there might be changes within
the environment (e.g., changing obstacles between queries),
edge validity is lazily evaluated in roadmap search, which
invalidates edges as they are discovered. Paths retrieved from
the roadmap hopefully contain configurations important for
the current planning problem.

Given a retrieved path, the waypoints of the path are
projected to satisfy the query’s leaf constraint and are checked
for collision (Fig. 2d). For projection, we use gradient de-
scent with respect to the leaf’s constraint function, but any
projection operator would suffice (see [9] for further details).
It is unlikely that the entire retrieved path is successfully
projected onto the new leaf, thus, we cannot use the retrieved
path directly. Instead, the waypoints of the retrieved path
are used as samples to bias the search of a sampling-based
planner. ALEF uses all valid waypoints from retrieved paths
given all start and goal pairs. Samples are used with some
probability 1 > λ > 0. For all experiments we use λ = 0.5.

V. EXPERIMENTS

We evaluate the performance of ALEF on a “monkey” robot
tasked with climbing across a set of bars and a “handoff”
problem with two manipulators. Although these problems
have a 2D workspace, they contain complex robots with 9
and 8 degrees-of-freedom (DOF) respectively, and are subject
to non-trivial end-effector constraints. ALEF is implemented
with the Open Motion Planning Library (OMPL) [9], [32].

We use PRM for all single-mode planning problems under
manifold constraints. We demonstrate ALEF’s ability to learn
given only a few examples and improve planning over a
foliation in Sec. V-A. Then, we show how ALEF improves
the performance of manipulation planning by using it within
a multi-modal planner (Sec. V-B).

A. Planning in a Mode Family
The robot has 9 DOF and has two end-effectors, shown in

Fig. 3a. There are two foliations we consider in this problem:
all grasps of the right limb on bar 1 (the source foliation), and
all grasps of the left limb on bar 2 (the destination foliation).
The transverse parameter is the location on the bar the robot
has grasped, shown in Fig. 3a. Problems were generated by
randomly sampling grasps on bar 1, which determine the leaf
of the problem. The goal is to reach the destination foliation.
All problems in both the test and training sets are solvable.

Fig. 3b shows timing results for planning on 500 randomly
sampled problems with a timeout of 30 seconds. Our frame-
work achieves notable speed-up even with a few examples
and continues to improve performance as the training set size
increases. Additionally, even with few examples, the variance
in solution time decreases, showing that our framework learns
to solve “hard” problems faster. This is also visible in
Fig. 3c, which shows the cumulative distribution of solving
the planning problem versus planning time.

Fig. 3d shows the path retrieval and valid state ratio
distributions for our framework over the 500 tested queries.
The path retrieval ratio is the ratio of how many paths were
successfully retrieved for all start/goal query pairs. A ratio
of 1 means that all queries had relevant experience retrieved
from the roadmap, while 0 means that no relevant experience
was found. The valid state ratio is the ratio of the states from
retrieved paths that were successfully projected onto to the
new leaf. A high valid state ratio means that the experience
retrieved was “useful” to the new problem. Even with only 10
plans inserted into the roadmap, a high ratio of experience is
retrieved. However, the average of the ratio of valid states was
low (the peak at 0 in Fig. 3d). As the amount of experience
in the roadmap increases so does the ratio of the valid states,
improving the performance of ALEF.

B. Multi-Modal Planning
Our framework also improves the performance of a ma-

nipulation planner, where there are multiple mode families
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Fig. 3. a) The “monkey” environment. A two-limbed robot with 9 DOF must grasp Bar 2. Start configurations are sampled such that the robot grasps
Bar 1. The location of the robot’s grasp on the bar corresponds to the transverse parameter of the foliation, indicated below the bar. b) Timing results
for 500 trials. On the x−axis, our method is trained on increasing sizes of training plans. Significant speed-up is achieved given only a few examples. c)
Cumulative probability of finding a solution versus time. Our method solves more problems faster as experience is gathered. d) Retrieval ratio and valid
state ratio for ALEF trained on 10 and 500 examples. As ALEF is trained, more paths are retrieved and the amount of relevant experience increases.

to traverse in a single query. ALEF was implemented in the
multi-modal planner of [3]. We test the following variations:

• “None”: This is the baseline motion planner in [3] and
does not utilize our framework at all.

• “Adaptive”: Here, ALEF learns online while the multi-
modal planner is running. The results of every planning
query the multi-modal planner makes are inserted into
the roadmap. ALEF can only learn during the current
multi-modal planning query. Learning time is included.

• “n Plans”: Here, ALEF was trained using all motion
plans generated from n multi-modal planning queries.

1) Monkey Example: Fig. 4a shows an extension of the
environment from Fig. 3a with three bars (6 foliations). The
robot is tasked with climbing to reach a goal past the far bar.
That is, the planner must find a sequence of feasible mode
transitions to reach the goal, requiring at least three mode
transitions (e.g., from grasping the initial bar to grasping
the middle, then middle to far, and then far to the goal).
The monkey starts always from the same configuration,
but obstacles are varied between queries. Specifically, each
obstacle can rotate 20 degrees about its center and vary in
position by as much as its thinnest width. Depending on the
pose of the obstacles, an alternate route to the goal might
need to be taken, as the middle corridor might be closed.

Timing results for total multi-modal planning time are
presented in Fig. 4b and Fig. 4c. Starting from nothing, the
“Adaptive” planner provides a small benefit over baseline
performance, showing that our framework helps solve queries
even with limited experience. Note that these reported times
include training time for ALEF, which is negligible. Offline
training from other queries gives substantial benefit and
accelerates multi-modal planning.

Fig. 4d shows path retrieval and valid state ratio distri-
butions for all single-mode plans made by the multi-modal
planner. Here, “Adaptive” does not retrieve much experience,
and the experience it retrieves is typically unhelpful, given
the low valid state ratio. As our method is trained on more
plans, the retrieval ratio and valid state ratio both increase
significantly, which is corroborated by their performance.

2) Handoff Example: Fig. 5a shows a “handoff” environ-
ment (8 DOF), where an object must be transferred from one

a)

b)

c)

d)

Start

Goal

Fig. 4. a) The “monkey” environment. The start and an example goal
configuration are highlighted. The robot must alternate grasps to climb
from bar to bar to reach the goal. The swept volume of an example multi-
modal plan is shown. b) Total multi-modal planning time for 100 trials for
each method, including training time for ALEF. Obstacles vary in position
and rotation between each query. Shown are a baseline method with no
experience (“None”), ALEF which learns from scratch (“Adaptive”), and ALEF
trained on n multi-modal queries (“n plans”). Starting from scratch, our
method provides a small benefit over the baseline. Training from prior queries
provides substantial benefit. c) Timing results presented as a cumulative
distribution curve. d) Retrieval and valid state ratios for all motion planning
queries. ALEF retrieves more relevant experience as its training set increases.

side to the other (stills 1 and 3 in Fig. 5a). However, due to
the length of the manipulators and the obstacle in the middle,
the object must be handed off (still 2 in Fig. 5a). Additionally,
the end-effector of the manipulator is constrained to always
remain upright. Here, there is a mode family for grasping the
object anywhere along its length, and another mode family
for placing the object anywhere on the flat surface. Similar
to before, the problem starts from the same configuration,
but the gray obstacle varies between queries. Here, the gray
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Fig. 5. a) Three stills from a multi-modal plan in the “handoff” environment.
The thin object must be handed off so it can be transferred to the other side
of the environment. Many motion plans are attempted in this environment,
as the initial grasp mode determines if a handoff is possible. b) Multi-modal
planning time over 100 trials for each method, including training time for
ALEF. Obstacles vary in position and rotation between each multi-modal
query. ALEF shows significant improvement over baseline.

obstacle can vary up to ±20 degrees about its center, and in
position by the height of its peak in both the x- and y-axes.

Results for total multi-modal planning time are presented
in Fig. 4b. As before, the “Adaptive” planner provides a
small benefit over baseline, while training ALEF with multiple
queries gives dramatic performance improvements. This
example reveals the generality of our framework.

VI. CONCLUSION

We have presented our framework, ALEF, for experience-
based planning in the context of manipulation planning.
ALEF transfers experience between a continuum of manifold-
constrained problems, specifically problems that are drawn
from a “mode family”, or foliation. ALEF builds a sparse
roadmap in an augmented space that makes connections
between problems with different constraints and uses this
roadmap to retrieve experience as a sampler on future queries.
ALEF provides significant speedup in isolation and within
a manipulation planner given only a few examples. In the
future, we plan to demonstrate ALEF on problems with 3D
workspaces using realistic robots, as well as foliations with
higher dimensional traverse manifolds. Moreover, we plan to
investigate other experience storage methods and apply our
method within other manipulation planning algorithms.
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