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Abstract

Robots with many degrees of freedom (e.g., humanoid robots
and mobile manipulators) have increasingly been employed to ac-
complish realistic tasks in domains such as disaster relief, space-
craft logistics, and home caretaking. Finding feasible motions
for these robots autonomously is essential for their operation.
Sampling-based motion planning algorithms have been shown to
be effective for these high-dimensional systems. However, incor-
porating task constraints (e.g., keeping a cup level, writing on a
board) into the planning process introduces significant challenges.
This survey describes the families of methods for sampling-based
planning with constraints and places them on a spectrum delin-
eated by their complexity. Constrained sampling-based meth-
ods are based upon two core primitive operations: (1) sampling
constraint-satisfying configurations and (2) generating constraint-
satisfying continuous motion. Although the basics of sampling-
based planning are presented for contextual background, the sur-
vey focuses on the representation of constraints and sampling-
based planners that incorporate constraints.
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1. INTRODUCTION

Consider a mobile manipulator, tasked with carrying out various chores and maintenance
tasks. Robonaut 2 (R2) (1), shown in Figure 1, is an example of such a high-dimensional robotic
platform, designed to work with humans in spacecraft. Future concept NAsA missions involve
spacecraft to be uncrewed for large periods of time, but the spacecraft will still require main-
tenance. R2, and other robots, could fill a unique role in such missions and are mechanically
capable of executing the complex tasks necessary for spacecraft upkeep, such as turning valves
(Figure 1a), opening doors, and extracting cargo from a rack (Figure 1b). However, for these
robots to do so autonomously, a motion planning system that can generate feasible motion
from high-level requirements is needed. Additionally, this motion planning system must re-
spect the constraints on a task in order achieve success, such as turning the valve only about
its axis, rotating the door about its hinge, or extracting the cargo linearly from its hold. The
requirements produced by this scenario and in many other problem domains (e.g., household
caretaking, disaster recovery) motivate the study of sampling-based motion planners with con-

straints.

Motion planning is an essential tool for autonomous robots, as it enables description and
execution of motion as high-level goals, rather than lower-level primitives (e.g., manual speci-
fication of joint angles for a manipulator). However, motion planning is a PSPACE-hard prob-
lem (2), with complexity growing with the number of a robot’s degrees of freedom. Although
exact algorithms exist, they are difficult to implement and scale poorly to high-dimensional
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Figure 1

Examples of motion planning with constraints. a) NAsA’s Robonaut 2, a highly dextrous humanoid
robot, opens a valve, which constrains the end effector to follow a circular motion. Next, it slides
open the door, which requires a whole-body sideways movement while maintaining its stance. b)
Robonaut2 holds a bag with two hands and move its entire body. Credit: NASA.

robots. Before going into detail on constrained sampling-based planning algorithms, we first
provide a brief summary of historical approaches to the motion planning problem and point
out which approaches have considered constraints.

Early on, potential field methods were proposed, which follow the gradient of a potential
that guides a robot to its goal (3). It is difficult, though, to come up with a general mechanism
to escape local minima of a potential function (4) or design a potential function that has only
one minimum (5). Another family of planning algorithms is composed of heuristic search
techniques (e.g., A* (6)) that operate over a discretization of possible robot configurations.
These algorithms provide resolution completeness: a path will be found if the discretization is
fine enough (7, 8). A careful choice of resolution and heuristics is critical for efficient heuris-
tic search. In principle, the classes of motion planning algorithms described above could be
adapted to incorporate constraints (e.g., discretized search with constraints (9)). However, due
to the complications of scaling these methods to higher-dimensional systems such as Rz, they
are generally not applied to modern systems.

The techniques presented so far do not consider task constraints. In general, specialized
methods are required to cope with motion constraints on robotic systems. The rich history
of motion constraints began in industrial control, with Cartesian constraints on manipula-
tor end-effectors to describe assembly tasks (10—12). One of the most common constraints
seen is Cartesian curve tracking, which requires a manipulator to follow a pre-planned end-
effector path: a constraint on the end-effector’s motion (e.g., welding and painting tasks in
manufacturing). As robotic manipulators on the factory floor became more complex and had
degrees of freedom redundant to the task at hand, more advanced techniques for Cartesian
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curve tracking required resolution of the degrees of freedom of the robot (13) using inverse
kinematic (1x) techniques (14, 15). However, using IK to generate paths is difficult, as it is
hard to guarantee path continuity (16). The first applications of geometric constraints to plan-
ning techniques in low-dimensional spaces were reduced to problems of finding geodesics on
polyhedral structures (17), similar to finding shortest paths of visibility graphs (18, 19). How-
ever, as motion planning was applied to more complex, higher-dimensional robotic systems,
geometric constraints increased the difficulty of the motion planning problem and required
additional consideration for effective planning.

In recent years, approaches that use penalty functions and optimize over full trajectories
have been proposed (20-23). These approaches relax the “hard” constraints of the task (that
must be satisfied exactly, e.g., geometric task constraints, obstacle avoidance) into “soft” con-
straints (corresponding to some cost to optimize), combining the constraints into the formu-
lation of the penalty function. Additionally, probabilistic completeness can still be preserved
by combining optimization with random trajectory initialization in an appropriate functional
space (20). However, tuning the penalty functions to avoid local minima and avoid paths that
go through thin obstacles (as obstacle avoidance is relaxed) is challenging for robots with many
degrees of freedom in complex scenes. This becomes even more challenging with multiple con-
straints and complex task goals.

Sampling-based algorithms take a very different approach. They randomly sample valid
robot configurations and form a graph of valid motions (7, 8). Many algorithms provide prob-
abilistic completeness: the probability of finding a solution goes to 1 with the run time of the
algorithm, provided a solution exists (7, 8). Sampling-based motion planning algorithms have
been shown to be effective at solving motion planning problems in a broad range of settings
with minimal changes, including very high-dimensional systems. They have also been used in
very different contexts, such as computer graphics and computational structural biology (e.g.,
(24, 25)).

Among the classes of algorithms presented, sampling-based planning algorithms have
emerged as the basis of several constrained planning approaches. This is in part because such
algorithms are inherently modular and adaptive: constraints can be easily incorporated into
the core of a sampling-based algorithm without affecting its method for solution finding. With
these methods, systems like R2 (26) can successfully accomplish complex, constrained tasks
and find motions that respect constraints. However, there have been a variety of sampling-
based methods proposed to handle constraints, each with a distinct methodology for handling
and incorporating constraints into the planning process.

The rest of the review is organized as follows. First, we will give a more formal description
of the motion planning problem and the specification of constraints (Section 2). Next, we
will provide a brief overview of the main varieties of sampling-based planning algorithms and
their core components (Section 3). After that, we describe in detail the main algorithms for
sampling-based planning with constraints (Section 4). This includes a description of how the
core components of sampling-based planning can be modified to handle constraints. Finally,
we conclude with a discussion of the the state of the art and possible avenues for future research
(Section 5).
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2. MOTION PLANNING AND CONSTRAINTS

This section develops the notation and mathematical objects necessary to understand
sampling-based motion planning with constraints. Motion planning, particularly motion plan-
ning with constraints, draws from concepts in differential geometry to describe the various
spaces utilized in the planning process. A good reference for these topics is (27).

This section is organized as follows. First, the mathematical notation is introduced in
Section 2.1. Next, a discussion on how constraints have been expressed in the literature is given
in Section 2.2. Finally, some methods for constraint composition are presented in Section 2.3.

2.1. Notation

The classical version of the motion planning problem can be defined as follows. One of the
key ideas in motion planning is to lift the problem of planning for a dimensioned, articu-
lated robotic system into planning for a single point that represents the robot in a higher-
dimensional space. This space is called the configuration space, Q: the space of all configura-
tions for a given robot. The configuration space is a metric space (distance is defined between
all points), and is usually a differentiable manifold. The dimensionality n of Q corresponds
to the number of degrees of freedom of the robot. Let Qg C Q be the free space: the set
of configurations where the robot is not colliding with any obstacles or itself. Given a start
configuration gstart € Qfree and a set of goal configurations Qgoal € Ofree, the motion planning
problem is then to find a continuous path 7 : [0,1] — QOfee that connects gstart = 7(0) and
7(1) € Qgoal- The algebraic complexity of Q. determines the pPsPACE-hard complexity of
this problem (2). A key idea of sampling-based planning is to avoid computing Ofe. exactly,
described in Section 3.

The constraints we are considering in this re-
view are geometric, and rely only on the configu-
ration of the robot ¢, not on other properties of
the motion such as velocities or accelerations. Con-
straints reduce the effective number of degrees of
freedom, denoted by m. Here, m is less than n, the
number of degrees of freedom. It is usually not pos-
sible to re-parameterize the system in terms of its ef-

fective degrees of freedom. Instead, the constraints Figure 2

are often written in terms of a constraint function
F : Q — R¥ such that F(g) = 0 when g satisfies the
constraints. Here, k = n —m is the number of equal-

On the left, an end-effector constraint
(orange plane) is imposed on a simple
3-link manipulator. On the right, the
end-effector constraint corresponds to
the lower-dimensional constraint
manifold X (orange sheet) within the
manipulator’s configuration space Q C R3
(black axes).

ity constraints imposed. Generally, F must be a con-
tinuous and differentiable function. For example,
take a robot with its end-effector constrained to re-
main at one position. That end-effector constraint
could be encoded as:

F(q) = distance of end-effector to position,
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Configuration space
Q: the space of all
robot configurations

Free space QOyee: the
set of configurations
where the robot is not
colliding with any
obstacles or itself

Motion planning
problem: find a
continuous path
7:[0,1] = QOfree that
connects gseart = 7(0)
and 7(1) € Qgoal-
Constraint function F:
F : Q — R¥ such that
F(q) =0whengqg
satisfies k given
constraints.

Constraint manifold
X: an implicit
configuration space
within the ambient
configuration space Q:
X={qeQ|F(g) =
0}
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a) distance of left foot to grasp
b) distance of right foot to grasp
c) angle of waist from upright
d) distance of left hand to grasp

Figure 3

A breakdown of the constraints shown in Figure 1a, encoded within a constraint function. For R2 to
make a full-body motion, all four constraints must be satisfied, i.e., F(g) = 0.

which evaluates to 0 when the constraint is satisfied. A more complicated example with R2 is
shown in Figure 3. Inequality constraints can be dealt with in much the same way as collision-
avoidance constraints, as will become clear in the next section.

The constraint function defines an m-dimensional implicit constrained configuration
space within the ambient configuration space (shown in Figure 2):

X={qeQ|F(g=0},

which consists of all configurations that satisfy the constraint. Although hard to visualize in
higher-dimensions, it is clear to see that there is a much smaller subset of allowable motion
a robot can take when attempting to achieve a task, e.g., keeping a cup level or a welding tip
on the surface of a piece of metal. The relative measure (volume) of X compared to Q is small
and usually o, which highlights the problem of using uninformed sampling to obtain valid
configurations. If F is continuous and differentiable and Q is a differentiable manifold, then X
is a differentiable manifold as well. k, the number of equality constraints, is also referred to as
the co-dimension of the manifold. The problem of motion planning with constraints can now
be defined as finding a continuous path in Xgee = X N Qfee that connects a given ggtart and

q € Qgoal-

2.2. Constraint Expression

Specialized constraints most commonly take the form of end-effector constraints. These are
constraints phrased in terms of the position and orientation of the robot’s end-effector. End-
effectors are generally the component of the robot that carries out the task, and as such are
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usually subject to the task constraints (e.g., maintaining contact, not rotating past a limit). End-
effector constraints originate in industrial control with Cartesian constraints between interact-
ing objects (10), which was later developed into general end-effector constraints (11, 12). There
are many modern incarnations of end-effector constraints (28), such as the Task-Space Region
(Tsrs) formulation (29). TSRs are a general representation for many Cartesian end-effector
constraints, but not all (such as a screwing motion). End-effector constraints can also be ex-
tended to closed-chain systems, by decomposing the loop into two manipulators that must
maintain contact throughout the entire motion, closing the chain (30). Task-space regions
have also been extended to Task-Space Region Chains (TSRCs) (29), which can model articu-
lated kinematic structures such as doors and drawers in a scene as virtual kinematic chains.
TSRCs form a closed-chain system with the robot’s manipulator.

More abstractly, many approaches have been taken in the literature to specify motion
constraints in the form of a constraint function F(g). The most general approach is to not
assume any properties of the constraint function in relation to the kinematic structure of the
robot, and assume that the function encodes “distance” to the surface of the constraint mani-
fold (31). This general representation comes at the price of the ability to exploit features of
the constraint that might be employed by a system utilizing end-effector constraints. Solver
speed can be improved and satisfying configurations can be generated faster if constraints can
be cast as functions that can be automatically differentiated or have analytic derivatives (32).

2.3. Constraint Composition

The representation of a constraint function and its derivative is critical to efficiently solving
an instance of a constraint motion planning problem. Composing constraints that all need
to be simultaneously satisfied into one constraint function is non-trivial. For example, given
a humanoid robot, what is the best way to combine and encode balance, the task objective,
and a visibility region that must be maintained? This “and”-ing of constraints together into
one function can be thought of as computing the intersection of sets of configurations that
satisfy each constraint. If the constraint is phrased as a constraint function F(g), multiple con-
straints are composed as additional equality constraints, increasing the dimension k (shown
in Figure 3). However, addition of new equality constraints can potentially introduce singu-
larities in the constraint function. When the structure of the constraints is known and their
importance and dependence can be deduced, it is possible to order the constraints and use
nullspace projection to attempt to solve for satisfying configurations hierarchically (33) (e.g.,
(26)). Another approach is to use more advanced gradient descent techniques or cyclic pro-
jection as discussed in (29). How multiple constraints are encoded has dramatic effects on the
performance of a constrained motion planning method. Care must be taken when selecting
an encoding, otherwise planner completeness or efficiency is sacrificed.

What if the composition of tasks we wish to achieve has more than one modality? Inter-
mittent contact, an essential component of manipulation and legged locomotion, requires the
constant addition and removal of constraints (34, 35). Combining constraints where only a
subset need to be satisfied at any given time is an “or”-ing of the constraints together: creating
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GRAPHPLANNER(Gstart, ggoal) TREEPLANNER(Gstart, 9goal)

G.init ((Istartv CIgoal)? T. init(%tart)?

while no path from gstart to ggoa1 do while no path from ggtart to dgoal do
rand < Sample(); 9rand < Sample();
Q « SelectNghbrs(J, grand) Gnear < Select(T, grand)
for all gnear € Q do Gnew < Extend(gnears Grand);

if Connect(¢gnears ¢rand) then if Connect(gnew, gnear) then
G.Add(¢@near; grand) T .Add(¢nears Gnew)
Figure 4

Prototypical examples of graph- and tree-based sampling-based planners.

a union of constraint manifolds that potentially intersect and overlap. This creates singularity
points, changes in dimension, and other problematic changes that most constraint methodolo-
gies cannot handle. One approach is to use a higher-level discrete representation of a “graph”
to handle mode switching between different constraints, which might have different numbers
of equality constraints imposed on the system (32). This problem can also be thought of as
a special instance of hierarchical planning, with a discrete selection of constraint modality
followed by geometric constrained planning. Foot-step planning and other task and motion
planning problems can all be thought of within this framework (36—40). Each of these planners
employs domain specific knowledge to solve the problem efficiently, but no general purpose
solutions have been proposed to the best of our knowledge.

3. SAMPLING-BASED MOTION PLANNING

It is helpful to first describe the general structure of (unconstrained) sampling-based planning
algorithms and the common primitives they rely on. For a more in-depth review of sampling-
based planning see (7, 8, 41). The general idea behind sampling-based planning is to avoid
computing the free space exactly, and to instead sample free configurations and connect them
to construct a tree/graph that approximates the connectivity of the underlying free space. Most
sampling-based algorithms provide probabilistic completeness guarantees (42): if a solution
exists, the probability of finding a path goes to 1 with the number of samples generated by
the algorithm. If no solution exists, most sampling-based algorithms cannot recognize this
(although it is possible in some cases (43)).

Figure 4 shows in pseudo-code the two main varieties of sampling-based planners. On the
left is shown a basic version of the first sampling-based planner, the Probabilistic Roadmap
Method (PrRM) (44). It incrementally constructs a roadmap embedded in Qg by repeatedly
sampling collision-free configurations via rejection sampling. For each sampled configura-
tion, it computes “nearby” configurations sampled during previous iterations. If there exists
a collision-free motion between the new sample and a neighbor, a new edge is added to the
roadmap. This process continues until the start and goal configuration are in the same con-
nected component of the graph, at which point the shortest path in the roadmap can be ex-
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tracted via, e.g., A*. The PRM algorithm grows a roadmap that can be reused for solving many
motion planning problems in the same environment.

In many cases, however, we are only interested in solving one particular problem (e.g.,
when the environment is changing, is very large, or has many different connected compo-
nents). In such cases, a tree planner as shown on the right of Figure 4 might be more appro-
priate. The most well-known variant of this type of planner is the Rapidly-exploring Random
Tree (RRT) algorithm (45, 46), but several other tree-based planners have been proposed (e.g.,
EST (47), (48, 49)). RRT grows a tree of configurations from the start to the goal. At each iter-
ation a random sample is generated (which may be in collision). The existing tree is extended
towards the random sample from the existing configuration nearest to the sample. If the new
tree branch can be connected to the goal, the algorithm terminates. A popular variant of tree
planners is to grow two trees simultaneously, one from the start and one from the goal (45).
Connection between the two nearest states in the two trees is tested after every tree extension.
The bidirectional tree search terminates once a connection between the two trees is found.

Despite their differences, many sampling-based planners have similar requirements from
the robot’s configuration space. Below are some of the components that are commonly used
in sampling-based algorithms. Note that this list is not a complete listing of all sampling-based
planner components, but a listing of important components for constrained sampling-based
planning.

Samplers Typically, uniform sampling is used, but various heuristics have been proposed to
sample (approximately) in lower dimensional spaces to improve the odds of sampling in
narrow passages, which is key to solving the motion planning problem. Sampling near
the surface of configuration space obstacles, a co-dimension 1 manifold, can be justified
by the fact that configurations in narrow passages tend to be close to this surface. Al-
though this surface is not computed analytically, various techniques have been proposed
to sample near the surface (50, 51). Alternatively, one could sample near the medial axis,
a one-dimensional structure formed by all configurations that have more than one clos-
est point on the boundary of Qfee, i.€., exactly between two obstacles. Configurations
on the medial axis tend to “see” more of Qf.e than other configurations (52, 53). There
also has been work in sampling entire lower-dimensional manifolds of the configuration
space (54), which can better capture the connectivity of the free space in some problems.
Finally, deterministic quasi-random samples have been shown to improve the spread of
samples (dispersion) compared to uniformly random sampling (55).

Metrics & nearest-neighbor data structures The choice of distance measure is often critical
to the performance of sampling-based planners. Intuitively, a good distance measure
reflects the difficulty of connecting configurations. If the measure is a proper metric,
various data structures can be used to efficiently find nearest neighbors. In many cases,
approximate neighbors are sufficient, which can be computed much more efficiently in
high-dimensional spaces than exact nearest neighbors (56).

Local planner A local planner is a fast, not necessarily complete method for finding paths
between nearby configurations. In many cases interpolation is used (or SLERP for rota-
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tions (57)). Tree-based planners can also be easily extended for kinodynamic motion
planning, where the dynamics can often be written as ¢ = f(q,u). During the exten-
sion, a steering function that drives the system towards a randomly sampled state is
used as a local planner. Randomly sampling a control input u is generally sufficient for
probabilistic completeness (46).

Coverage estimates Several sampling-based planners use the density of samples in a grid de-
fined in a low-dimensional projection of the configuration space as way to measure cov-
erage and guide the exploration (49, 58). Although random projections often work well
in practice (59), for constrained planning it may be difficult to define a projection over
Q that approximates the density of sampling in the implicit configuration space X.

The Open Motion Planning Library (60) provides various implementations of these core com-
ponents as well as implementations of all the sampling-based planning algorithms cited in this
section.

The paths produced by sampling-based planning are feasible, but sometimes far from opti-
mal. There are various techniques that post-process paths to optimize them locally (61). This
tends to work well in practice. However, with some small modifications, planners like PRM and
RRT can be proven to be asymptotically optimal: the solution path will converge to the globally
optimal solution over time (62). Subsequent work has improved the convergence rate (see, e.g.,
(63)), but in practice repeatedly running a non-optimizing planner, smoothing the solution
path and keeping the best one seems to work surprisingly well in comparison (64, 65). Asymp-
totically optimality can be extended to kinodynamic planning planning (66—68). It is also pos-
sible to create sparse roadmaps or trees that guarantee asymptotic near-optimality (68, 69).
That is, the solution paths converge to paths whose length is within a small constant factor
approximation of the shortest path. There are complex trade-offs between the time to first fea-
sible solution, convergence rate and degree of optimality that are highly problem-dependent.
Systematic benchmarking is needed to determine a good algorithm for a given problem do-
main (70).

Finally, an idea that can be combined with many of the planning algorithms above is lazy
evaluation of the validity of configurations and the motions that connect them (58, 71). Colli-
sion checking is the most expensive operation in sampling-based planning. By postponing this
step until a candidate solution is found, collision checking can be avoided for all configurations
and motions that are never considered to be part of a candidate solution.

4. SAMPLING-BASED MOTION PLANNING WITH CONSTRAINTS
4.1. Challenges

Constraints introduce anther element of difficulty to the problem: the need to find configu-
rations that satisfy the constraint function. The core concepts that enable a sampling-based
planner to perform effectively require adaptation to appropriately handle the constraint func-
tion and generate a satisfying path. Let us reconsider each of the concepts introduced in the
previous section in the light of the need to satisfy the constraint function:
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Samplers Sampling valid configurations is crucial to guiding the exploration of a planner
through a robot’s free space. The structure of the implicit region defined by a constraint
function is not known a priori, and is thus hard to sample from without careful consid-
eration or pre-processing. A planner needs to be able to either sample configurations
that satisfy the constraint function (solutions to F(g) = 0) or guide the search towards
valid regions of the space.

Metrics & nearest-neighbor data structures Normally, the distance metric utilized by a
sampling-based planner is defined by the configuration space, such as the Euclidean
metric for R”. However, the constraint function defines a subset of the configuration
space that can be curved and twisted relative to the ambient configuration space. In this
case, the configuration space distance metric bears very little resemblance to distance
on the manifold, as is the case in the “swiss roll” function (72). A more appropriate
metric for this space would be something like the Riemannian metric, as the constraint
function usually defines a Riemannian manifold (27). However, implicitly defined met-
rics such as the Riemannian metric are expensive to compute as they require compu-
tation of the shortest geodesic on the manifold between two points. Computing the
Riemannian metric is infeasible for any motion planning application that is concerned
with speed of execution. However, if we already had a roadmap constructed on the
constraint manifold then shortest path length within the roadmap could be used as an
approximation of the Riemannian metric, as is done in (72). A sampling-based planner
needs to consider its choice of metric to effectively plan with constraints. Additionally,
for nearest-neighbor computation, there are also approximate methods that have been
employed for curved data (73). Unfortunately, these methods require pre-computation
and are not suited for the rapidly updating structures employed in planning, and the
adaptation of approximate methods is an open problem.

Local planner Normally, the local planner is a fast procedure to generate the intermediate
configurations between two configurations. This, in the case of interpolation, corre-
sponds to computing the geodesic between the configurations. However, within im-
plicit spaces defined by constraint functions, interpolation becomes very difficult as the
curvature and structure of the space is unknown a priori. On manifolds, there are many
existing approaches within the literature to compute the minimum length geodesic (74—
77). How a planner employs a local planner that respects constraints is crucial to its
success in the constrained planning problem.

Coverage estimates To the best of the authors’ knowledge, no constrained sampling-based
planner has employed a planning methodology that utilizes a coverage estimate in its
planning process. An interesting direction for future research is to gather knowledge of
the structure of the constraint manifold to direct the planning process.

For a sampling-based planner to plan with constraints, sampling and local planning must
be augmented to satisfy constraints, as these both directly affect whether the planning gen-
erates a valid path. As such, most methods focus on these two elements. In existing work,
the metric from the ambient configuration space is typically used, which works well in practi-
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cal applications. The ambient configuration space’s metric defines a semi-metric (78) for the
constrained space, as the triangle inequality may not hold given sufficient curvature of the im-
plicit space. However, semi-metrics are “good enough” for most sampling-based planners as
this discrepancy only affects the effectiveness of exploration. In this case, some theoretical
guarantees may not hold.

4.2. Methodology Overview

The approaches to handling constraints within a sampling-based framework can be organized
into a spectrum which organizes them in order of the complexity of the algorithmic machinery
necessary to compute satisfying samples and connect them to the motion graph. The families
of methods lie upon the spectrum as follows, from least complex to most complex:

Relaxation As the critical limitation of sampling-based planners to solving constrained prob-
lems is their inability to find satisfying configurations (due to the lower dimension of
X), a simple idea is to relax the surface of the constraint manifold by increasing the al-
lowed tolerance of the constraint function, changing F(g) = 0to ||F(q)| < €. With this
relaxation, sampling-based planners that have no additional machinery to handle the
constraint can plan and generate a path.

Projection Finding satisfying configurations of the constraint function F (g) = 0 requires find-
ing solutions to the constraint’s system of equations. A projection operator takes a config-
uration and projects it onto the surface of the implicit manifold, iteratively retracting the
point to a minimum of the constraint function and solving a linear system of equations
at each iteration. The projection operator is a heavy hammer available to the planner to
use for both sampling and local planning.

Tangent space From a known satisfying configuration, a tangent space of the constraint func-
tion can be generated. The tangent space is constructed by finding the basis for the
nullspace of the derivative of the constraint function. Satisfying configurations and valid
local motions can be generated within the tangent space.

Atlas Instead of recomputing tangent spaces at all points when an expansion is needed, the
tangent spaces can be kept and composed together to create a piece-wise linear approx-
imation of the manifold, which can then be readily used for sampling satisfying config-
urations or computing geodesics for local planning. This is called an atlas, in a slight
abuse of terminology from differential geometry.

Reparameterization For certain constraints, it is possible to compute a new parameterization
of the robot’s configuration, allowing direct sampling of constraint-satisfying configura-
tions. Using the reparameterized space, a new configuration space can be generated or
alocal motion computed and then mapped back into the robot’s previous configuration
space.

Each methodology will be discussed in detail in Section 4.3. Notably, most techniques
for constrained sampling-based motion planning do not alter the core mechanics used by
sampling-based planners. Generally, constrained sampling-based algorithms are adaptations
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Figure 5

Sampling and local planning with relaxation-based constraint handling. The constraint manifold
(orange) is given non-zero volume by relaxing the constraint according to some tolerance
(boundaries are shown by faded extensions of the manifold). a) Standard rejection sampling is done
to find close-to-satisfying configurations. Invalid samples are in grey, valid samples in black. b)
Standard local planning is done (dashed line).

of existing algorithms that incorporate a methodology for constraint satisfaction. RrRT-based
planners are often used as the basis for a constrained planner, perhaps in part due to the
straightforward steps in the algorithm. Note that RRT-based planners rely on uniform sam-
pling, which is typically not possible with implicit manifolds. It is an open question whether
other sampling-based planners that do not depend on uniform sampling (e.g., (47—49)) might
have an advantage, assuming they can be adapted to deal with constraints. Some recent
work (79) described in Section 4.3.5 suggests that this is the case for some systems, but fur-
ther study is needed.

4.3. Methodologies

4.3.1. Relaxation. The primary challenge facing sampling-based planning approaches with
constraints is generating configurations that satisfy the constraint equation F(g) = 0.
Sampling-based planners generally sample within configuration space in which the constraint
function, a set of equality relations, defines a zero volume subset. Hence there is zero prob-
ability that an uninformed random sample will satisfy the constraint. To resolve this issue,
relaxation-based approaches to solving constrained problems relax the constraint function,
growing the subset of satisfying configurations by introducing an allowable tolerance to the
constraint, ||F(q)|| < €. The set of satisfying configurations has non-zero probability of being
sampled within the relaxed constraint, albeit with chances similar to narrow passages in the
unconstrained instance of the motion planning problem. Sampling with relaxation based ap-
proaches is depicted in Figure 5a. This technique is applied by (80, 81) for bi-manual manipula-
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tion problems. These works leverage execution-level controllers with compliant, closed-chain
control to ensure successful execution despite using configurations not within the zero-set of
the constraint function. As the subset of constraint-satisfying configurations defines a narrow
band around the manifold, techniques well suited to motion planning problems in difficult do-
mains can be adapted to improve performance, such as (82, 83). Local planning is also very
simple within a relaxation-based method, shown in Figure sb. The local planner of the am-
bient configuration space is used. Since connections made to the planner’s motion graph are
generally local, the curvature of the manifold is respected as motions do not go far enough to
invalidate themselves.

Relaxation-based approaches to constrained planning bridge unconstrained instances of
the motion planning problem to the constrained incarnation. The sampling strategies em-
ployed by a relaxation-based planner can use algorithmic techniques meant to exploit lower-
dimensional structures within planning such as obstacle-based sampling and medial axis sam-
pling. As relaxation-based approaches do not fundamentally change the planning problem
from the perspective of the motion planner (as they encode the constraint as a narrow pas-
sage), the constraint methodology is already decoupled from the planning approach taken. As
such, very little adaptation of any sampling-based planner is needed to handle the inflated con-
straint. Sampling-based planning methodologies that better suit the planning problem could
be used to solve relaxed constrained planning problems. Sampling-based planners also retain
their probabilistic completeness when using the relaxed constraint. However, execution suc-
cess is no longer a given, as execution success is now determined by the controller’s capability
to handle plans that deviate from the geometrically-defined constraint. Much of the complex-
ity of handling the constraint is pushed onto the controller, rather than the planner. Despite
these bonuses, this approach is not usually taken as it is inefficient given complex constraints.
Sampling narrow passages is still inefficient compared to other approaches such as projection-
or approximation-based methods. Additionally, these methods are reliant on properties of the
robot and its controller, and whether the compliance of the mechanism is sufficient to retain
the constraint in the face of geometric inaccuracy.

Note that in general each of the constraint solving techniques has a tolerance on constraint
satisfaction, but generally this number is tuned to achievable numerical precision to obtain
accurate results. In this technique the constraint is purposefully relaxed far more than other
techniques.

4.3.2. Projection. In a constrained motion planning problem, a satisfying path only contains
configurations that satisfy the constraint function, F(g) = 0. One method to find satisfying
configurations is with a projection operator. Projection takes a configuration and projects it
into the set of satisfying configurations, retracting the point to a minimum of the constraint
function. Formally, a projection operator is an idempotent mapping P(g) : O — X, where if
q € X,P(q) = q. Projection is typically an iterative optimization-based procedure that finds
solutions to the constraint equation, F(g) ~ 0. A common implementation of projection is a
Newton procedure with Jacobian (pseudo-)inverse gradient descent, using the Jacobian of the
constraint function J(g) (15, 84). This is shown in Algorithm 1.
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Projection Through Iteration

PROJECTION(g) . ) . .
x+ F(g) Algorithm 1. An iterative procedure that uses the Jacobian
_8 + . .

while %] > € do pseudo i (J(q)™) of the constrfunt flhmct‘lon F (q) Note
b= e that the Jacobian does not need a full inversion if solutions Ag to
4 qg—Aq J(q)Aq = F(q) can be found. QR factorization (85) and other ma-
2 F(g) trix decompositions might be more efficient with equivalent per-

formance for certain problems.
return g

The constraint function must encode the distance of the configuration from the solution
of the equation so that the gradient adequately represents progress towards the manifold. As
such, it is actually not strictly necessary that the underlying subspace defined by the constraint
be a manifold, as long as this distance is properly encoded. Projection only requires piece-wise
differentiability of the constraint function so that gradient descent can converge successfully.

Projection-based approaches utilize the projection operator heavily within the sampling
and local planning components of the planner. Sampling with a projection operator is shown in
Figure 6a. Samples are drawn from the ambient configuration space and are projected to solve
the constraint function. As time trends to infinity, the constraint function’s satisfying subset of
configurations will be fully covered by projection sampling, as proved in (29). This property of
projection sampling preserves the probabilistic completeness of RrT-like projection-based al-
gorithms (29). An example of local planning using a projection operator is shown in Figure 6b.
In this method, the curvature of the constraint function is captured by small incremental steps
interleaved with projection. From an initial satisfying configuration to a goal configuration, a
small interpolation is done within the ambient configuration space. The interpolated point is
projected to generate a satisfying configuration. The process is repeated from each successive
point until the goal is reached. This is the core of the mechanism introduced by (30), which
considers constrained motion planning for closed-chain planar chains. Many modern meth-
ods (e.g., (29, 32)) adopted this approach for local planning. Recently, work has gone into
investigating continuous local planning using projection (77, 86), avoiding issues of disconti-
nuity found with naive discretization of the geodesic.

Historically, projection-based methods saw early adoption in solving loop-closure prob-
lems for parallel manipulators, an intrinsic constraint. Planning with loop-closures was (and
continues to be) very relevant in structural biology with analytical protein analysis (87), and
complex loop-closure problems in robotics were solved with PRM variants using active/passive
chain methods (30, 88). In active/passive chain methods, the projection operator uses IK to
join the passive chain to the active chain, closing the loop and creating a satisfying configura-
tion. Projection operators were also used to solve curve tracking problems in early industrial
applications (89).
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Figure 6

Sampling and local planning with projection-based constraint handling. The constraint manifold
(orange) is projected to (black arrows) using a projection operator. a) After drawing a sample from
configuration space (grey), it is retracted to the surface of the constraint manifold (black) using the
projection operator. Local planning is shown in b). From a starting configuration (bottom left), a new
unsatisfying configuration (grey) closer to the goal is generated by interpolation (grey arrow). That
configuration is then projected to the manifold (black arrow), and the process continues till the goal
is reached or another termination condition is met.

The idea of projection to satisfy constraints was applied to general end-effector constraints
in (90). Task Constrained RRT (28) further generalized the idea of constraints and utilized
Jacobian gradient descent (15) for projection. Recently, CBIRRT2 (29), the motion planner
implemented for the Humanoid Path Planner System (32), and other planners such as one for
the HRP2 humanoid (91) utilize projection with general constraints.

A special application of projection-based approaches to sampling-based motion planning
with constraints is the domain of regrasping problems. In regrasping problems, a manipulated
object must be released by a manipulator (due to some obstacle within the current homotopy
group of the path) and regrasped to continue progress. These problems generally define a con-
straint manifold which can be described as a foliated manifold, where the constraint manifold
is divvied into slices for each pose the end-effector of the robot can take (34). In a foliation, a
manifold X is decomposed into a disjoint union of connected submanifolds called leaves. Each
of these leafs corresponds to the self-motion manifold of the robot at a particular end-effector
pose, of which there are infinitely many. The self-motion manifold is the set of all configura-
tions where the end-effector remains in the same pose. Its tangent space is the nullspace of the
manipulator Jacobian. This property has been exploited for manipulation planning (34) and by
a few constrained planners (92, 93) to achieve manipulation tasks with regrasping. Note that
regrasping problems are not the exclusive domain of projection-based approaches, but have
not been attempted by other types of sampling-based planners with constraints.

Projection-based planners have a number of notable advantages that contribute to their
success as one of the most widely implemented methodologies. Primarily, the projection op-
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Figure 7

Tangent space-based constraint handling. Given an initial satisfying configuration, a tangent space to
that point can be computed which is the nullspace of the constraint function’s Jacobian (blue blobs),
and new satisfying configurations can be generated by local perturbations (black arrows). a) samples
are generated by creating a tangent space at a known configuration and projecting random vectors.
Local planning is shown in b). From a starting configuration (bottom left), a tangent space is
computed, and the vector from the current configuration to the goal is computed v (grey arrow) and
projected (blue arrow) into the tangent space (black arrowhead). The projected vector is added to the
current configuration to generate a novel configuration close to satisfying the constraint.

erator is easy to implement and captures the structure of the constraint function within the
planning process. Historically, this has been implemented with randomized gradient descent
in (30), but modern solvers typically implement a form of Jacobian gradient descent (28). More
advanced solvers can be used, such as hierarchical inverse kinematic solvers or cyclical pro-
jection for systems under multiple constraints (26, 29). Particularly important from an imple-
mentation perspective is the implementation of the gradient descent routine, as it requires
solving a potentially complex system of equations described by the constraint at each step of
the iteration. Matrix decompositions can be expensive, and the constraint Jacobian is typically
not guaranteed to be invertible.

4.3.3. Tangent Spaces. If constraint functions define a manifold or if the Jacobian of the con-
straint function is of full-rank, it is possible to locally approximate the manifold using a tangent
space of a satisfying configuration. The tangent space defines a locally linear approximation of
the constraint manifold to a Euclidean space, which extends until the curvature of the manifold
bends sufficiently away. The tangent space is constructed by finding the basis for the nullspace
of J(g), which can be computed through a matrix decomposition. The tangent space T, is
a (n — k)-dimensional space with its origin at a configuration ¢ € X, with an n x (n — k) or-
thonormal basis ®,. A vector v can also be projected through the tangent space to remove the
components orthogonal to the Jacobian, leaving only components that are within the nullspace
of the Jacobian, T;v. This capability is primary used by techniques based upon tangent spaces
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to generate new configurations. Given a satisfying configuration, the tangent space is calcu-
lated, and some random vector within the tangent space is generated (a tangent vector). The
tangent vector is added to the configuration from which the tangent space was created to gen-
erate a new, local configuration that is close to the manifold. The process is depicted within
Figure 7a. As the co-dimension of the constraint manifold approximation increases, sampling
in the tangent space becomes more accurate at the price of increased computational cost per
sample. Local planning utilizing tangent spaces is depicted in Figure 7b. From an initial con-
figuration, a vector to the goal configuration is computed. This vector is projected into the
tangent space and decomposed into its components tangent to the manifold. The tangent vec-
tor is then added to the initial configuration to generate the next configuration in the local plan,
similar to how sampling is done above. From the new configuration, the process is repeated
until the goal is reached.

Projection from tangent spaces was utilized within the work of (30) to generate nearby
samples, which are then fixed up with projection. Tangent spaces have been used by (28, 94)
for manipulators under general end-effector constraints. The technique has also seen many
applications in curve tracking constraints for redundant manipulators (95—97) and structural
biology to generate valid motions of proteins with loop closures (98—100).

In tangent space-based techniques, new satisfying configurations are created by perturb-
ing known satisfying configurations with vectors tangent to the constraint. The small pertur-
bations create configurations that are close to satisfying the constraint, and typically can be
projected into the satisfying set with few iterations. This works well for heavily constrained
systems where the set of valid motions is limited. With tuning of tolerances, it is also possi-
ble to not even require reprojection of the constraint onto the manifold. Tangent space-based
methods work particularly well for constraints that are closer to “linear” than curved and are
well approximated by Euclidean spaces. End-effector constraints in particular have been the
target of tangent space-based methods for exploration (28, 94).

However, tangent space-based methods are not without their drawbacks. Computing the
kernel of the constraint Jacobian is expensive and requires multiple matrix decompositions
to solve numerically. The method also breaks down near singularity points, due to the Jaco-
bian losing rank and no longer maintaining a surjective mapping to the ambient configuration
space. Additionally, as stated above, tangent space-based methods break down when the mani-
fold becomes highly curved, as tangent movement rapidly drifts away from the surface of the
manifold.

4.3.4. Atlas. Furthering the idea of utilizing tangent spaces to approximate the constraint lo-
cally is the idea of building an at/as of the manifold, a concept borrowed from the definition of
differentiable manifolds (27). Such methods also require that the constraint function defines
a manifold. Unlike methods described in Section 4.3.3, atlas-based methods store generated
tangent spaces to avoid re-computation. The tangent spaces are organized within a data struc-
ture called an atlas. The atlas is defined as a piece-wise linear approximation of the constraint
manifold using tangent spaces, which fully cover and approximate the manifold (101). The key
difference between the method described in (101) and atlas-based planners is the incremental
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Figure 8

Atlas-based sampling and local planning, akin to AtlasrrT. The atlas is a set of tangent polytopes
covers the constraint manifold (blue blobs). In this figure, the atlas has already been computed and
covers the space. During planning, the atlas is constructed in tandem with sampling and local
planning. a) sampling of the manifold is done by drawing samples from the tangent polytopes by
randomly sampling within (grey). These points are then orthogonally projected from polytopes to the
surface of the manifold (black arrow to black), y,. Local planning is shown in b). Roughly,
interpolation is done with the tangent space (grey arrows) from a configuration g to another ¢;, and
new configurations are projected to the manifold for validation (black arrows). This continues until
the goal is reached. See (31) for details.

construction of the atlas interleaved with space exploration. These tangent spaces are gener-
ated and utilized exactly as described above in Section 4.3.3, and allow sampling and mapping
to and from the manifold and the tangent space. Atlas-based approaches utilize the tangent
spaces to project configurations to the manifold and to lift configurations into the basis defined
by the tangent space. A point ¢ € T; can be mapped into ¢, € Q by g; = g+ ®,4. To map the
configuration ¢g; onto the manifold (an exponential map y,), an orthonormal projection can
be computed by solving the system of equations:

F(g)=0 and @) (q—q)=0

The opposite mapping from the manifold to 7, is much simpler: y~ Yg) =1t = CIDg (g—qr)
These procedures are described in detail in (102), along with other operations on implicit man-
ifolds.

Sampling from an atlas is done as follows. A tangent space is chosen at random from the
atlas, and a sample is drawn and projected from the tangent space as described in Section 4.3.3.
This is shown in Figure 8a. Planners that implement variants of the atlas-based methodology
are derived from the procedure described in (101). AtlasrRRT (31) implements the methodol-
ogy faithfully, computing the tangent spaces and the hyperplanes to separate them (creating
tangent polytopes) to guarantee uniform coverage of the part of the manifold covered by the
tangent spaces. When traversing the manifold to compute connecting geodesics, AtlasRrT
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fully evaluates each point, projecting to the manifold orthogonally and checking feasibility. In-
terpolation is done within the tangent spaces of the atlas, projecting the interpolated tangent
space configuration at each step to validate the motion. This is shown in Figure 8b. Tangent
Bundle RRT, or TB-RRT (103) is another method that utilizes atlas-based methodology. As
opposed to AtlasrRT, TB-RRT performs a “lazy” evaluation and does not compute the separat-
ing halfspaces, simply collecting a set of tangent spaces that cover the manifold. TB-RRT only
projects to the manifold when it needs to switch between tangent spaces, interpolating within
the tangent space exclusively. Together, these features make TB-RRT more computationally ef-
ficient than AtlasrRT at exploring the constrained space. TB-RRT comes at cost of overlapping
tangent spaces which leads to less uniform sampling. Futhermore, TB-RRT’s lazy interpolation
causes potential problems with invalid points such as failing to check collisions with narrow
configuration space obstacles.

AtlasrRT has been the focus of multiple extensions, improving its capability and augment-
ing its guarantees. As mentioned above, one of the critical problems with generating a tangent
space around a point is handling singularities, as the Jacobian of the constraint function loses
rank and a tangent space can no longer be computed. In (104) a method was introduced on top
of the AtlasrRrT planner to plan for singularity-free paths. AtlasrrT has also been extended to
be asymptotically optimal in the vein of RRT* (105) with AtlasRRT* (106). AtlasRRT* provides
the same theoretical guarantees of asymptotic optimality, while also respecting the geometric
constraints imposed on the system. There has also been an extension to kinodynamic plan-
ning, or planning with non-holonomic constraints, utilizing the basic framework of AtlasRrT
in (107). Additionally, the methodology behind building an atlas incrementally has been ex-
tended to general sampling-based motion planning in (108), which enables any sampling-based
planner to build an atlas approximation while planning with constraints. The extensions made
to AtlasrrT underline the importance of using sampling-based methods for planning with con-
straints, as the methods are modular, easily adapted to new problem instances, and extended
with features such as asymptotic optimality.

Atlas-based approaches make a trade-off between representational complexity and com-
putational efficiency that pays off in many problem instances. For constraint manifolds that
have complex structure and high curvature, maintaining the atlas approximation enables effi-
cient planning regardless of the relative structure of the manifold and configuration space. For
example, a constraint manifold with a toroidal topology with a narrow inner ring would be hard
for a projection-based approach to sample and explore due to the relatively small volume of
configuration space that will end up projecting to that portion of the manifold. Atlas-based ap-
proaches would not even notice the difficulty, as they work off the constructed approximation
which is invariant (given appropriate parameters) to the constraint and configuration space.
Atlas-based approaches are also probabilistically complete (31).

The primary downside to atlas-based approaches is the difficulty of implementation, as
the atlas data-structure needs to be efficient and correct. Beyond this, there are also issues
of diminishing returns with respect to the co-dimension of the constraint manifold relative
to the ambient configuration space (108). Maintaining an approximation of the manifold is
computationally inefficient for constraints that only have a few equality constraints relative to
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the configuration space. The tangent space does not buy much over doing projection sampling
in this case, as there is little difference between the constraint manifold and the ambient space.

4.3.5. Implicit Space Representation. The tech-
niques discussed above cover part of the spec- S
trum of methods to compute satisfying configura- ==
tions for constrained motion planning. Each of
these methodologies necessarily makes trade-offs
between space and time efficiency, performing well
in some environments but potentially failing in oth-
ers. None of the constrained sampling-based plan-
ners in the literature make dramatic changes to
the structure of the underlying augmented motion
planning algorithm. Instead, these methods aug-
ment primitive operations (e.g., samplers and lo-

cal planners, as discussed) to generate feasible mo-
tion. Additionally, just as trade-offs are made in con-
strained planners with constraint methodologies, Figure 9

there are many unconstrained sampling-based plan- A parallel manipulator with 168 degrees
ners, each with their own heuristics or exploration  of freedom. The unified approach allows
strategies to perform well in certain environments. use of almost any sampling-based planner
Developing a constrained sampling-based planner ~ for this high-dimensional system (7).
with a choice of constraint methodology well-suited

to the constraint and an exploration strategy well-suited to the planning problem requires de-
sign of a bespoke planner that integrates the two. A recent work (79) proposes a general frame-
work for constrained sampling-based planning, which approaches augmenting primitive oper-
ations not from within the planner, but from within the representation of the configuration
space, leveraging the modularity of sampling-based planners. This has the benefit of enabling
composition of any emulated constraint methodology with a broad class of sampling-based
planners, allowing choice of the combination best suited to a problem at the cost of losing po-
tential benefits that coupled implementation can bring (e.g., speed, leveraging planner proper-
ties). The benefits of this unified approach can be considerable in some cases. Figure 9 shows
a system described in more detail in (79). Here, the combination of the KpIECE planner (49)
planner and the projection-based constraint methodology was shown to be orders of magni-
tude faster than using RRT-Connect (45), which was the planner modified in prior works to
accomodate constraints (29, 31, 103).

4.3.6. Reparameterization. In some cases, the constraint function and manipulator topol-
ogy lend themselves to reparameterization, where another configuration space is generated
for the robot and constraint. Configurations within this newly generated space fully describe
the robot’s state and satisfy the constraint. This allows for any traditional planner to be utilized
on top of a new configuration space, enabling the machinery of the planner to function unaf-
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fected while satisfying constraints. Tangent space- and atlas-based approaches can be thought
of as reparameterization-based approaches, but a distinction made with our organization as
presented here is the idea of pre-computation versus online exploration and constructions.
The reparameterization-based approaches presented in this subsection are usually computed
before planning, while tangent space-based approaches are generally generated online for com-
putational efficiency. Additionally, reparameterization is distinct from the tangent space and
atlas approaches. Reparameterization creates a global, non-linearly-related space while tan-
gent space- and atlas-based methods create local, linear approximations.

Reparameterization-based methods utilize the constraint and properties of the manipula-
tor to generate a new, reparameterized configuration space, which is then mapped back into
the original configuration space. Examples of this are the deformation space for planar closed-
chain systems (109) and reachable volume space (110) for general kinematic chains. Gener-
ally, these methods have their own methods for sampling within their reparameterized space
(shown in Figure 10a), and their own methods of stepping within the reparameterized space
(shown in Figure 10b). Deformation space reparameterizes closed-chain planar systems by
encoding the “deformation” of the closed-chain within the reparameterized space. The defor-
mation space encodes the configuration as a decomposition of triangles that form the polygon
formed by the manipulator. Reachable volume space exploits properties of the joints within
a kinematic chain (prismatic, revolute, and spherical) to generate reachable volumes of each
frame of the manipulator. These are akin to Minkowski sums (7), but describe the subset of
the workspace a manipulator can reach. The planner requires computing the volumes before
planning, but is efficient and can scale to very large problem instances (around 70 degrees of
freedom) (110).

Reparameterization-based approaches are appealing from a sampling-based planning per-
spective. If it was possible to simply plan within a space that contained only satisfying configu-
rations, the constrained planning problem can be reduced to the unconstrained instance. For
the unconstrained problem, this would be akin to planning only within the free configuration
space. However, each of the reparameterization-based approaches requires a phase of pre-
computation to generate the reparameterized space. Reparameterization-based approaches
heavily rely on geometrical properties of the manipulator, and use knowledge of the constraint
and manipulator’s shape to efficiently encode the problem. They are also generally limited to a
specific problem domain (e.g., planar chains, closed loop systems) and are generally complex
to implement, which prevents wide-spread applicability to many different robotic systems.

4.3.7. Offline Sampling. Offline sampling to solve constrained planning problems intro-
duces a methodology orthogonal to those aforementioned. In offline sampling methods, the
underlying constraint manifold is sampled before planning takes place, generating a precom-
puted database of constraint-satisfying samples. The way these samples are generated is gen-
erally unimportant to the remainder of the planning approach, and one can utilize any of the
methodologies that have been described above. Normally, projection-based approaches are
used due to their ease of implementation and guarantee to cover the manifold within the limit
of sampling (29). First, samples are drawn to cover the area of interest in the satisfying sub-
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Figure 10

Reparameterization-based constrained handling. A new configuration space is computed from the
manipulator and constraint, reparameterizing the space (white square). a) samples can be draw from
the reparameterized space and mapped back into the original configuration space (black arrows).
Local planning is shown in b). Interpolation is done within the reparameterized space and mapped
back into the original configuration space.

set defined by the constraint and placed within a database. Planning then takes place using
standard sampling-based planning techniques, but with the planner taking its samples from
the precomputed set of configurations. This approach of precomputing a set of constraint-
satisfying configurations was employed by (111, 112) to satisfy balancing constraints on a hu-
manoid robot. Additionally, more structure can be imbued to the set of samples to generate a
“roadmap” of valid motions on the surface of the manifold (113, 114), akin to experience-based
planners for the unconstrained instance of the planning problem (115). The self-motion mani-
fold of a robot’s end-effector can also be precomputed utilizing “roadmap”-based methods,
describing a database of inverse kinematic solutions (116).

Offline sampling-based methods have the benefit of leveraging existing techniques within
the sampling-based planning literature, as they generally require minimal adaptation of a plan-
ning algorithm after the precomputed set of samples is generated. Planning is also decoupled
from database generation, so the constraint sampling methodology best suited towards the
particular constrained planning problem can be used. These techniques come with the obvi-
ous drawback of the need for pre-computation, and the inflexibility that comes with generating
a database offline. However, for intrinsic constraints of the robot, such as dynamic stability for
humanoids or satisfying configurations of closed chain systems, pre-computation might be the
correct answer to avoid repeating computation online. Additionally, pre-computation-based
approaches that apply to changing environments require an element of online planning to han-
dle changing obstacle configurations and potentially invalidated edges in an offline-computed
roadmap.

www.annualreviews.org o Sampling-Based Methods for Motion Planning with Constraints

23



24

5. DISCUSSION

This survey has covered the large variety of methods that have been proposed to allow
sampling-based planning algorithms to incorporate geometric motion constraints. These
methods have been shown to be effective on many real-world scenarios. However, as of yet
there is no consensus about which approach is best suited for which types of constraints.
This likely depends on several factors: the dimensionality of the configuration space, the
(co-)dimension of the constraint manifold, the degree of clutter in the environment, and
so on. One factor that has not been considered in previous work is whether new explo-
ration/exploitation strategies for planning on implicit constraint manifold are needed. As men-
tioned in this review, uniform sampling on implicit spaces and measuring distance along man-
ifolds is either impossible or computationally very expensive. This raises the question whether
a planner that depends less on uniform sampling and distance could be designed for planning
with constraints. Additionally, future works should further investigate primitive operations
that better represent the underlying constraint manifold, such as using distance metrics that
capture the curvature of the manifold, local planners that generate continuous paths, and sam-
plers that can approach uniform sampling of the manifold.

Another avenue for future work is addressing forces while planning with constraints. In-
trinsic to many constraints is the application of force in a specific way. For example, writing
on a whiteboard is a planar geometric constraint, but also requires steady application of force
to the board. The direction of force applied is orthogonal to the constraint. For the approaches
presented in this work, the constraint is translated into a geometric constraint, because in gen-
eral kinodynamic planning (i.e., with forces and dynamics) is much more complicated than
planning quasi-statically. A constrained sampling-based approach that leverages information
from its constraint methodology could be potentially helpful and make force computations fea-
sible. Finally, there is interesting future research into the development of a general approach
to manipulation and locomotion planning that automatically identifies transitions from one
set of constraints to another without requiring an hierarchical decomposition. This would re-
quire new techniques to simultaneously explore different constraint manifolds as well as ways
to transition between them.

1. Several different methods have been proposed to extend sampling-based algorithms
to incorporate geometric constraints on robot motion.

2. These methods are focused primarily on sampling and interpolation on constraint
manifolds.

3. Five categories of constraint methodologies were identified: 1) relaxation, 2) projec-
tion, 3) tangent space sampling, 4) incremental atlas construction, and 5) reparame-
terization.

4. Unification of methodologies 2—4 is possible by using a representation of the implicit
space.
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. Further study is needed to evaluate the relative merits of each of the constraint

methodologies for sampling-based motion planning algorithms.

. A general method is needed to handle multi-modal constrained planning (such as

locomotion and manipulation planning), where a planning algorithm needs to explore
several different constraint manifolds and possible transitions between them.

. Application of force is intrinsic to constraints: future methods should leverage infor-

mation about constraints to consider the forces that will be applied by a robot while
planning.

. More work needs to be done creating primitive operations that better represent con-

straint spaces (e.g., local planners that are continuous, metrics for implicit spaces,
manifold sampling).
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