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Decoupling Constraints from
Sampling-Based Planners

Zachary Kingston, Mark Moll, and Lydia E. Kavraki

Abstract We present a general unifying framework for sampling-based motion

planning under kinematic task constraints which enables a broad class of planners

to compute plans that satisfy a given constraint function that encodes, e.g., loop

closure, balance, and end-effector constraints. The framework decouples a planner’s

method for exploration from constraint satisfaction by representing the implicit

configuration space defined by a constraint function. We emulate three constraint

satisfaction methodologies from the literature, and demonstrate the framework with a

range of planners utilizing these constraint methodologies. Our results show that the

appropriate choice of constrained satisfaction methodology depends on many factors,

e.g., the dimension of the configuration space and implicit constraint manifold, and

number of obstacles. Furthermore, we show that novel combinations of planners and

constraint satisfaction methodologies can be more effective than previous approaches.

The framework is also easily extended for novel planners and constraint spaces.

Key words: Sampling-Based Motion Planning, Constrained Motion Planning

1 Introduction

Motion planning is an essential tool for a robotic system with any level of autonomy.

With planning, a robot’s movements can be specified with start and goal configura-

tions, rather than a full prescription of intermediate states [7]. Task constraints are an

important mechanism to concisely specify complex motions for a robot. For example,

a robot tasked with transferring a glass of water may have to be constrained to keep

the glass level. Another example of common task constraints are loop-closure con-

straints, such as in parallel manipulators or a bi-manual system carrying a tray [25]

(shown in Figure 1). Recently, there has been rapid development in creating robotic
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Fig. 1: An plan in the “implicit parallel manipulator” environment. The goal is to

move from a flat, rotated configuration to upright. This path was computed using

KPIECE in a projection-based constrained space in a median time of 14.5 seconds.

systems that are high-dimensional such as humanoid robots, mobile manipulators,

and redundant arms, but planning for these high-dimensional systems is hard due

to the inherent difficulty of the motion planning problem [25]. Planning for these

systems with constraints is even more important and relevant as complex systems are

tasked with more complex objectives.

In general, sampling-based planners have been effective at planning motions

for high-dimensional systems [7]. These planners randomly explore the robot’s

configuration space and build a discrete representation of valid motions. Many

sampling-based planners have been developed with different methods to explore and

exploit the valid motions of a robot. However, incorporating constraints in planning

is still difficult, as finding configurations that satisfy constraints is a challenging

task. Recently, several algorithms have been developed for planning with constraints

that are effective for realistic problems [2, 18, 23]. These algorithms are somewhat

limited in the sense that they adapt a specific sampling-based algorithm to also satisfy

task constraints, convolving constraint satisfaction with planning methodology.

This paper presents a solution to the design of constrained sampling-based algo-

rithms for more complex systems by means of a framework that decouples constraint

satisfaction from space exploration in the planner. With this framework, a broad

class of sampling-based planners can utilize many previously proposed constraint

satisfaction methods and leverage the tools developed by the community, such as

asymptotically optimal planners [20], path optimization [12], or domain specific

planners for high-dimensional problems [37]. The conceptual framework encapsu-

lates and extends previous approaches in the literature. We show that within our

framework different constraint satisfaction methodologies can all use the same un-

derlying constraint representation. Furthermore, we show that different problems can

be solved more successfully using novel combinations of planning algorithms and

implicitly defined constrained spaces.

This paper is organized as follows. Section 2 contains a survey of related work

for constrained motion planning. Section 3 defines constraints and the constrained
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planning problem. Our framework which decouples constraints from sampling-based

algorithms is presented in Section 4. Empirical results are shown and discussed in

Section 5. Section 6 contains concluding remarks and directions for future work.

2 Related Work

In this work we are studying sampling-based planning with geometric task con-

straints [25], which has a wide breadth of literature concerning both techniques to

plan motions and represent constraints. Using task constraints to specify the mo-

tion of a robotic system is not a new problem, and has its roots within industrial

control [27, 22]. Task constraints on robot motion can be used to specify many

useful manipulation tasks [34], parallel manipulators and closed chains [41, 25] and

even structural biology [46]. Most early work with task constraints did not focus

on geometric constraints, and was directed at non-holonomic constraints, such as

differential drive cars [1]. However, as planners were applied to more complex,

high-dimensional systems, geometric constraints were revisited as a difficult addition

to the motion planning problem.

Non-Sampling Methods While not the focus of this paper, a short survey of

non-sampling-based methods for planning with constraints is given for completeness.

One approach is to plan in the robot’s workspace, so geometric constraints can

be directly evaluated and satisfying poses can be sampled. Post-planning a path in

the robot’s configuration space is generated using inverse kinematics (IK) [33, 19].

However, these methods may not be efficient as re-planning is required if a found

path cannot be mapped into the configuration space of the robot. Completeness is also

not guaranteed unless all feasible IK solutions can be generated given the constraints.

Another approach that operates within the robot’s workspace is reactive control,

which uses convex optimization to find local satisfying motions, such as those used at

the DARPA Robotics Challenge (e.g., [10]). While effective with operator supervision,

these controllers are usually incomplete and risk local minima. As local controllers

are optimization-based methods, hard constraints are relaxed into soft constraints, and

invalid motions can be generated. Trajectory optimization approaches (e.g., [47, 32])

optimize within trajectory space and are effective for everyday manipulation tasks,

but suffer from many of the same shortfalls as reactive control. Comprehensive

comparison of constrained non-sampling-based methods to sampling-based planners

has not been done, and a thorough analysis is left as future work.

Sampling-Based Planning Sampling-based planners fall broadly into two cat-

egories: graph-based methods such as PRM [21] and tree-based methods such as

RRT [26]. Graph-based methods construct a “roadmap” within the configuration

space that can be queried multiple times.Tree-based methods build a tree of motions

rooted from the start or goal. Many techniques perform a bidirectional search for effi-

ciency (e.g., [24]) or use coverage estimates to bias search towards unexplored space

(e.g., [37]). While sampling-based planners have been shown to be very efficient in

finding feasible paths, paths are often far from optimal. One approach to improve path
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quality is to post-process and locally optimize paths [12]. Sampling-based algorithms

can also provide asymptotic optimality guarantees [20] such that the solution path

converges to a globally optimal path for a cost function, or “soft” constraint.

The first methods capable of solving constrained problems dealt with specialized

cases of constraints, specifically loop closures in parallel manipulators. Planning

with loop closures is very relevant in structural biology [43], and complex loop

closure problems in robotics were solved with PRM variants using active/passive

chain methods [13, 44, 8]. Key to loop closure methods is a projection operator,

which maps an unsatisfying configuration into a satisfying one. Active/passive chain

methods use IK as a projection operator to join the passive chain to the active

chain, closing the loop and creating a satisfying configuration. Cyclic-Coordinate

Descent [5] is another loop closure method that, unlike numerical IK, does not require

the computation of Jacobian (pseudo-)inverses.

The idea of projection to satisfy constraints was applied to general end-effector

constraints in [45]. Task Constrained RRT [36] further generalized the idea of con-

straints and utilized Jacobian gradient descent [4] for projection. More recently,

CBIRRT2 [2] and the motion planner implemented for the Humanoid Path Planner

System [29] utilize projection with general constraints and can solve complex combi-

nations of constraints. Additionally, the projection methodology has been extended

to handle “soft” constraints with GradienT-RRT [2]. We show our framework can

emulate CBIRRT2 and other previous approaches in Section 4.2.

Projection, while effective at satisfying constraints, utilizes very little information

from the constraint. A constraint function defines an implicit manifold within the

robot’s configuration space composed of all constraint satisfying configurations. This

manifold is typically of lower dimension than the configuration space. The projection

operator described above projects a point from the ambient space to this manifold. As

the constraint defines a manifold, it is possible to locally approximate the manifold

using a tangent space of a satisfying configuration. The tangent space can be used to

generate new configurations that are close to the manifold. As the complexity of the

constraint manifold approximation increases, sampling in the tangent space becomes

more accurate at the price of increased computational cost per sample. [36, 6, 30]

use local tangent space approximations to generate new samples.

Furthering the idea of local parameterization with tangent spaces is the concept

of building an atlas of the manifold, a concept borrowed from the definition of

differentiable manifolds [35]. Here, the atlas is defined as a piece-wise linear approx-

imation of the manifold using tangent spaces, which fully cover and approximate the

manifold [15]. TB-RRT [23] and AtlasRRT [18] both construct an atlas, incrementally

building a set of tangent spaces that approximate the manifold. TB-RRT evaluates

the manifold lazily and does not separate tangent spaces, leading to overlap and

potential problems with invalid points. AtlasRRT computes halfspaces to separate

tangent spaces into tangent polytopes to guarantee uniform coverage in the limit at

additional computational cost. AtlasRRT has been extended to asymptotically optimal

(AtlasRRT
∗ [17]) and kinodynamic planning [3]. Like CBIRRT2, both TB-RRT and

AtlasRRT are emulated within our framework, as shown in Section 4.3.
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Carrying the concept of approximation even farther, recent works delve into

complete parameterizations of the manifold. The constraint function is used to build

a representation that only contains configurations that satisfy or very nearly satisfy

the constraint. “Deformation space” [14] and “Reachable volume space” [28] are

both reparameterization-based approaches.

The techniques discussed above cover a spectrum of methods to compute satis-

fying configurations for constrained motion planning. The spectrum describes the

amount of effort the constraint methodology is using to more closely plan using the

true implicit manifold. On one end of the spectrum are projection-based methods,

which use little information about the constraint. On the other end lie approaches

such as atlas-based methods, which compute considerable information about the

constraint in order to approximate the implicit manifold.

3 Constrained Sampling-Based Planning

A configuration of the robot is denoted by q ∈Q, whereQ is the configuration space,

a metric space. The number of degrees of freedom of a robot, i.e., the dimensionality

of its configuration space, is denoted by n. The motion planning problem is defined

as finding a continuous, collision-free path from qstart to qgoal in configuration space

τ : [0,1]→Q, τ(0) = qstart , τ(1) = qgoal . In many cases, avoiding collisions is the

only concern for computing a valid path. For constrained motion planning, we also

want to satisfy a constraint function F(q) : Q→ R
k over the configuration space,

which evaluates F(q) = 0 when q satisfies the constraint. Here, k is the number of

equality constraints imposed. The constraint function defines an (n− k)-dimensional

implicit constrained configuration space within the ambient configuration space:

X = { q ∈ Q | F(q) = 0 }

For this work, we assume F is continuous and differentiable everywhere, and there-

fore X is a manifold. This assumption is stronger than strictly necessary for much of

this work, but is imposed for ease of presentation. The constrained motion planning

problem, with a constraint function F and configuration space Q, is a problem of

finding τ : [0,1]→ X . For example, consider a point robot with a configuration

space Q ⊂ R
3. Given F(q) = ‖q‖− 1, the robot is constrained to the surface of a

unit sphere, a two-dimensional manifold in R
3. Operations on X are described in

Sections 4.2 and 4.3, which require additional definitions to be understood.

A projection operator is a continuous idempotent mapping P(q) :Q→X , where

if q ∈ X ,P(q) = q. Projection takes a configuration and projects it onto the surface

of the implicit manifold, solving for a root of the constraint function. Typically this

is implemented using Jacobian gradient descent, using the Jacobian of the constraint

function J(q). The descent stops when F(q) = 0. A more comprehensive look at

projection for constrained motion planning is found in [2].
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Local parameterization of the implicit manifold can be accomplished by a tangent

space (alternatively, a chart from [18]). The tangent space is constructed by finding

the basis for the nullspace of J(q), which can be computed through a matrix decom-

position. The tangent space Tq is a (n− k)-dimensional space with its origin at a

configuration q ∈ X , with an n× (n−k) orthonormal basis Φq. A point t ∈ Tq can be

mapped into qt ∈ Q by qt = q+Φqt. To map the configuration qt onto the manifold

(an exponential map), an orthonormal projection can be computed by solving the

system of equations:

F(q) = 0 and Φ
T
q (q−qt) = 0

The opposite mapping from the manifold to Tq is much simpler: t = Φ
T
q (q−qt). Tan-

gent spaces are composed into an approximation of the manifold by the AtlasRRT and

TB-RRT constrained spaces within the framework, and are discussed in Section 4.3.

A more comprehensive look at manifold approximation for planning can be found

in [18], with many operations on implicit manifold discussed in [31]. The concepts

of differential manifolds outlined here are covered in depth in [35].

4 Representing Implicit Spaces

Despite their differences, sampling-based planners have similar requirements from

the robot’s configuration space [25]. The primary capabilities we are concerned with

are the following:

• Computation of distance between states, to select nearby states in the motion

graph to either extend from or connect to.

• “Projection” for estimating configuration space coverage in relation to a task,

so that the planner can measure progress and sampling can be directed towards

uncovered regions (Note this is not a projection operator as described before).

• Linear interpolation on a geodesic, or moving between two states, so that new

states can be created or validated through extension or connection.

• Sampling “uniformly” over the space or nearby known states to generate new

configurations, which can be grown towards or connected to the motion graph.

These can be defined as operations on the space itself and need not be specific

to any planner. The contribution of this paper is a conceptual framework, outlined

within Section 4.1, that enables a broad class of motion planners to plan in many

constrained spaces by exploiting the commonality of the spaces’ primitive operations.

This decouples constraints from a planner by augmenting the space with primitives

that automatically satisfy imposed constraints.

This section is organized as follows. First we discuss the framework at an abstract

level in Section 4.1 and describe how each of the space primitives utilized by a

sampling-based planner are conceptualized. Then, we show our emulations of three
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Fig. 2: A depiction of the framework and its relation to sampling-based planners. a)

A box configuration space Q is shown in black. A sampling-based planner (purple)

plans in Q using primitives afforded by the space. b) A constraint function F(q) = 0

defines a implicit manifold X (green). c) An augmented constrained sampling-based

planner (yellow) (e.g., CBIRRT2, etc.) plans on X , using its constraint methodology.

d) The framework enables any sampling-based planner (such as the unaugmented

planner) to plan on X by incorporating Q and the constraint function F(q) = 0.

successful and widely known methodologies within our framework: CBIRRT2 [2] in

Section 4.2, and Tangent Bundle RRT [23] and AtlasRRT [18] in Section 4.3.

4.1 Conceptual Framework

A sampling-based planning algorithm plans within a configuration space Q, and

generates a collision-free path by using a validity checker along with properties of

the configuration space, shown in Figure 2a. Prior works augmented the planning

algorithm with a means to find constraint satisfying motions, shown in Figure 2c. In

contrast, our framework is a layer of abstraction that lies between the representation

of the robot’s configuration space and the sampling-based planner used to find valid

motions, shown in Figure 2d. The framework can be thought of as a representation

of the implicit manifold X defined by the constraint function F , and a means for a

sampling-based planner to plan within this space.

Normally, the distance metric utilized by a sampling-based planner is defined by

the configuration space. This metric is primarily for nearest-neighbor computation, by

which states nearby novel states can be found (e.g., Select and SelectNghbrs

in Figure 3). For example, a point robot in R
3 and a manipulator arm with Q⊆ R

n
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1: procedure TREE PLANNER(qstart , qgoal)

2: T .init(qstart );

3: while no path from qstart to qgoal do

4: qrand ← Sample();

5: qnear ← Select(T , qrand)

6: qnew← Extend(qnear , qrand);

7: if Connect(qnew, qnear) then

8: T .Add(qnear , qnew)

1: procedure GRAPH PLANNER(qstart , qgoal)

2: G.init(qstart , qgoal);

3: while no path from qstart to qgoal do

4: qrand ← Sample();

5: Q← SelectNghbrs(G, qrand)

6: for all qnear ∈ Q do

7: if Connect(qnear , qrand) then

8: G.Add(qnear , qrand)

Fig. 3: Prototypical examples of tree- and graph-based sampling-based planners.

Many sampling-based planners can be cast into this mold, such as RRT for the tree-

based planner, and PRM for the graph-based planner. This illustrates the underlying

similarities in sampling-based planners, as they use the same primitive operations.

Note that both Connect and Extend interpolate a geodesic.

commonly use the Euclidean norm. However, the notion of distance in the ambient

space has little meaning on the implicit manifold, as the manifold can twist and curve

relative to the ambient space [40]. As the framework represents the implicit manifold

of a constraint, a natural metric to use would be the Riemannian metric, or the

length of the geodesic between points. However, this is computationally infeasible, as

nearest-neighbor computations would require many geodesic computations. As such,

the metric from the configuration space is used unless otherwise specified, defining a

semi-metric on the manifold, as the triangle inequality may not hold given sufficient

curvature. This is still “good enough” for most motion planning algorithms in practice,

but some theoretical guarantees may not hold, such as asymptotic optimality.

Similarly, “projection” for coverage estimates is left unaffected by the framework.

As they are heuristics to bias sampling, projections are problem specific and are

typically hard to devise. Random linear projections perform well in many cases, but

do not incorporate constraint information [39]. Interesting future work would be to

utilize information about the implicit manifold as a projection for coverage estimates.

Computing geodesics from configuration qa to qb normally has an analytic form,

such as linear interpolation in R
n. In sampling-based planners, geodesic movement

underlies Extend and Connect, as shown in Figure 3. For implicit manifolds,

traversing geodesics is one of the biggest hurdles to cross. Traversing a geodesic

in configuration space and attempting to “fix-up” the new configuration ignores the

manifold’s curvature and can generate invalid motions. Thus, geodesic interpolation

within the framework is akin to a local motion planner, computing a discretized

geodesic by growing from one state to another, taking small enough steps to accu-

rately traverse the manifold’s curvature. The way this traversal is accomplished is

up to the instantiation of the methodology behind the framework, and is one of the

defining traits of a constrained space. Figure 4 shows three local planning method-

ologies to compute discretized geodesics used by the three spaces in the framework.

Once the discretized geodesic is computed, an interpolated state can be computed

along the found geodesic, by doing piece-wise interpolation.

Critical to sampling-based planners is the ability to sample new configurations in

the configuration space (Sample in Figure 3). This is normally as simple as drawing



Appeared in Int. Symp. Robotics Research 2017

Decoupling Constraints from Sampling-Based Planners 9

a) c)b)

Fig. 4: Projection-, tangent bundle-, and atlas-based geodesic interpolation. Between

points (large black) on the implicit manifold (green), the discretized geodesic is

computed (black). a) Projection-based (CBIRRT2). Small extensions are taken (grey)

and projected using a projection operator (arrow). b) Tangent bundle-based (TB-

RRT). The manifold is lazily evaluated with tangent spaces (grey), projecting when

necessary. c) Atlas-based (AtlasRRT). Tangent spaces are traversed, projecting at

every step.

uniformly random values from Q. However, with an implicit manifold, the structure

of the manifold is not known a priori, and is thus hard to sample uniformly without

careful consideration or pre-processing. How this sampling is done is contingent on

the specific constrained space, but we do not guarantee that it will produce uniform

samples. Instead, we simply guarantee that any instantiation of the framework will

almost-surely sample any volume of non-zero measure within the manifold.

In summary, the key idea of our framework is to imbue the implicit constraint

manifold with primitives that closely approximate those that exist for regular con-

figuration spaces. This allows any sampling-based planner to plan with constraints

without any special consideration. The next two sections describe two approaches

to sampling and interpolation that are on opposite ends of the spectrum in terms of

amount of information they maintain about the constraint manifold.

4.2 Projection-Based Space

One of the simplest methods to sample the constraint manifold is to sample from

the configuration space and use the projection operator to retract samples onto the

manifold. It was shown in [2] that sampling with projection will eventually cover

the manifold, albeit with no guarantees on uniformity. Interpolation on the manifold

using projection is achieved using a method similar to the extension method of the

CBIRRT2 algorithm [2] (shown in Figure 4a). We emulate the projection-based space

within our framework using the aforementioned methodology. We conjecture the

framework retains the probabilistic completeness of the overlying planners, following

the proof of probabilistic completeness of projection-based RRT-like planners in [2].
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4.3 Tangent Space-Based Spaces

As discussed in Section 3, an implicit manifold X can be approximated by a set of

tangent spaces. A few recent planners use tangent space approximations for efficient

sampling nearby the manifold, such as TB-RRT [23] and AtlasRRT [18]. The planners

both sample new points by sampling within tangent spaces and projecting these points

onto the manifold. Although at first biased towards explored areas, in the limit once

the manifold has been fully explored sampling can approach uniform sampling [18].

These methods can sample within hard to project areas, such as the interior surface

of a highly curved manifold. Geodesic interpolation is accomplished by walking

along the tangent spaces of the approximation, switching tangent spaces once certain

criteria are met. TB-RRT takes a lazy approach to interpolation, projecting to the

manifold only when necessary to switch tangent spaces (shown in Figure 4b). This

has the benefit of performing less work computing projections, but it is harder to

do correctly. Extra consideration is needed when performing collision checking as

lazy evaluation generates a relaxed geodesic, which might miss obstacles. AtlasRRT

projects at every step along the approximation, and generates separating half-spaces

to create polytopes of the tangent space for more accurate sampling and interpolation,

at the cost of additional computation (shown in Figure 4c). Both of these methods

are emulated within our framework.

5 Empirical Results

The framework was implemented within the Open Motion Planning Library [38]

(OMPL), which has implementations of many popular sampling-based planning

algorithms. Our framework fits neatly within OMPL’s notion of a state space, and no

modification was necessary to the implementation of any of the planning algorithms

for them to work with the constrained planning framework. Moreover, all benchmarks

were done with a single set of parameters for each constrained space and planning

algorithm, to preserve fairness across multiple environments. More performance

could have been gained by tuning these for each problem, but a set of reasonable

defaults is desirable especially from a naı̈ve user’s perspective. All benchmarks

were performed on workstations with an Intel R© Core
TM

i7-6700K processor and

32GB of DDR4 RAM at 2400MHz. The experiments shown here are meant to both

demonstrate the effectiveness of the planning system as well as illustrate concepts

that help put the work in context.

Within the literature of constrained motion planning, most planners are adaptations

of sampling-based planners augmented with a constraint methodology. CBIRRT2 [2],

TB-RRT [23], and AtlasRRT [18], the planners that we have chosen to emulate within

the framework, all are augmentations of RRT-Connect [24]. Figure 5 shows the

“sphere” environment, a two-dimensional manifold embedded within R
3, defined by

the constraint function F(q) = ‖q‖−1. The planner must traverse three longitudinal

obstacles each with a narrow passage to move from the south to the north pole.
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Fig. 5: The “sphere” environment. a) The sphere constraint manifold (grey) with

obstacles (black). The solution path (yellow) runs from the south to north pole. b)

Projection-based RRT
∗ [20] motion graph (green) (Section 4.2). c) Tangent bundle-

based BIT
∗ [11] motion graph and tangent spaces (grey) (Section 4.3). d) Atlas-based

SPARS [9] motion graph and tangent polytopes (Section 4.3).
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Fig. 6: Timing results from 100 runs of each planner in the “sphere” environment

(Figure 5) using the three constrained spaces in the framework. Planners tested are

EST, KPIECE , their bidirectional variants BIEST and BKPIECE [16, 37], RRT [26] and

RRT-Connect [24], and PRM [21]. CBIRRT2, TB-RRT, and AtlasRRT are emulated by

RRT-Connect in their respective constrained space, and perform the worst overall.
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Fig. 7: The “torus” environment (grey) with obstacles (black) and timing results from

100 runs of PRM using the atlas- and projection-based constrained space versus the

size of the x- and y- axes of the configuration space. On the left is a PRM motion graph

(green) using the atlas-based space (tangent polytopes in grey). Projection-based

PRM performs orders of magnitude worse than its atlas-based counterpart.

We show the results of 100 runs of various motion planners within the framework

in Figure 6. As shown in the figure, combinations of planners and constrained

spaces within the framework have dramatically different outcomes on planning

time. Previous approaches in the literature are emulated by RRT-Connect within

the framework, which is shown to have the poorest performance overall within the

“sphere” environment. For this problem, any of the other tested planners would be a

better selection of planner if speed was the primary concern.

More so, it is not just the planner that matters when approaching a constrained

problem, the ambient configuration space can dramatically effect performance. Con-

sider a “torus” environment (Figure 7), which is a two-dimensional manifold em-

bedded within R
3, with a constraint function F(q) = (3−

√

x2 + y2)2 + z2−2. The

planning problem is to traverse from one end of the torus to the other. There are

obstacles bound around the outer surface of the torus, allowing passage only through

the inner hole to traverse from one end to the other. Timing results for the PRM

planner using the projection- and atlas-based methodologies is also shown in Fig-

ure 7, where the total volume of the configuration space is varied while the size

of the torus remains constant. As shown by the results, projection-based planning

performs orders of magnitude worse than its atlas-based counterpart and worsens as

the volume of the space expands, due to the inefficiency of sampling configurations

that mostly project to the outer surface of the torus. The atlas-based methodology,

which samples directly off of an approximation of the manifold, is unaffected by

changes in the ambient configuration space. Projection to the inner surface of the

torus requires sampling inside of the hole of the torus, which becomes less likely

as ambient space expands. The torus example is illustrative of a problem that might

arise on real robotic manipulators, as configuration spaces with revolute joints are

toroidal in topology. It is unknown a priori how obstacles in the environment will

interact with constraints, and no one constraint methodology is equipped to handle



Appeared in Int. Symp. Robotics Research 2017

Decoupling Constraints from Sampling-Based Planners 13

0.0 0.5 1.0 1.5

0.00

0.25

0.50

0.75

1.00

P
ro
b
.
of

S
u
cc
es
s

Zero Obstacles

0 2 4 6 8

Time (s)

One Obstacle

0 10 20 30

Two Obstacles

Projection

Tangent Bundle

Atlas

Fig. 8: A sample solution path with one obstacle is shown in the top figure. The

bottom graphs show the cumulative probability of finding a path versus time for

KPIECE using each constrained space with no surface obstacles, one obstacle, and two

obstacles with antipodal narrow passages. 100 runs were used for each cumulative

probability curve. Qualitatively similar results were obtained for RRT-Connect and

PRM. Note that the X-axis on each plot is different.

every case. Therefore, the ability to combine and change constraint methodology

with a planner is essential to efficiently planning within different environments.

A general trend observed by the authors is that as a planning problem becomes

more constrained and the implicit manifold more curved with respect to the ambient

space, atlas- and tangent-bundle-based methods perform better as the extra computa-

tion to maintain the approximation pays off. However, as the dimensionality of the

problem grows, the approximation is less helpful and requires a similar, amortized

amount of work as projection does, and projection-based methods do well. These are

not rules written in stone, and there are many problems which belie their guidance.

Take for example the problem of an “implicit chain”, shown in Figure 8. Here, the

kinematics are modeled as distance constraints, one for each link, on a chain with 5

spherical joints. The configuration space is thus R3×5. To further increase problem

complexity, we impose the additional constraints: (a) end-effector is constrained to

the surface of a sphere of radius three, (b) joint 1 and 2 must have the same z-value,

(c) joint 2 and 3 must have the same x-value, and (d) joint 3 and 4 must have the same

z-value. This gives an implicit manifold dimension of six. Timing results for this

problem are shown in Figure 8. When there are no obstacles in this scene, tangent

bundle-based methods perform the best, while projection- and atlas-based methods

perform equally less. Lazy evaluation of states works in favor of this problem, as the

planner can quickly traverse the constraint manifold. However, as obstacles are added

to the surface of the outer sphere, tangent-bundle performs worse, as the projection

and atlas methods improve relative performance drastically.
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One motivating factor of this work was extending constrained planning to high-

dimensional spaces, taking advantage of previous approaches in high-dimensional

planning without any additional cost. In Figure 1, we show the “implicit parallel

manipulator” environment, a parallel manipulator defined with a set of the “implicit

chains,” defined analogously to the previous example. The end-effectors of the chains

are constrained to remain attached to a shared disk, creating dependencies in their

motion. The environment shown has eight chains with seven links each, for a total

ambient space dimensionality of 168. The constraint manifold is of dimension 99.

Emulated prior works (with RRT-Connect) were unable to successfully solve this

system given 10 minutes of planning time. Using the KPIECE planner designed for

high-dimensional spaces, we can quickly solve (median 14.5 seconds over 100 runs)

this problem while satisfying constraints.

There is little work in the literature on satisfying “soft” constraints in tandem

with kinematic constraints. AtlasRRT
∗ [17] and GradienT-RRT [2] both respect “soft”

constraints, but require specialized implementation and integration with the constraint

methodology to work. Within our framework, no additional overhead is necessary

for asymptotically optimal planning, as shown in Figure 5, which shows motion

graphs for three asymptotically optimal and near-optimal planners. Additionally,

path smoothing, shortening, and interpolation algorithms work with no knowledge of

constraints, as all operations are handled by the framework.

6 Conclusion

We have introduced a novel framework for constrained sampling-based planning that

decouples constraint satisfaction from a motion planner’s exploration of a config-

uration space. We have demonstrated the framework’s capability by showing our

emulations of the constraint satisfaction methodology employed by three constrained

planners, CBIRRT2, TB-RRT, and AtlasRRT. Additionally, we have tested a broad

range of sampling-based planners within the framework for a set of constrained

problems and shown that each planner can operate within the framework’s constraint

spaces. The framework is easily extended to new planners, and new constraint spaces

can be adapted to the framework as its concepts are general to constrained plan-

ning. Although there are rough guidelines on when different constrained planning

approaches tend to work better than others, for specific problems it is difficult to

predict which combination of constraint space and planner will work the best. This

further highlights the benefit of decoupling constraints from planning. Future work

for the framework is the implementation of other constraint spaces, such as local

tangent space sampling, adapting the framework for kinodynamic planning with

constraints, and addressing proofs of completeness in light of the framework. Finally,

we are in the process of integrating the framework with real robotic platforms.
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