
International Conference on Humanoid Robotics (HUMANOIDS), 2015

Kinematically Constrained Workspace Control

via Linear Optimization*

Zachary K. Kingston1, Neil T. Dantam1, and Lydia E. Kavraki1

Abstract— We present a method for Cartesian workspace
control of a robot manipulator that enforces joint-level accelera-
tion, velocity, and position constraints using linear optimization.
This method is robust to kinematic singularities. On redundant
manipulators, we avoid poor configurations near joint limits
by including a maximum permissible velocity term to center
each joint within its limits. Compared to the baseline Jacobian
damped least-squares method of workspace control, this new
approach honors kinematic limits, ensuring physically realiz-
able control inputs and providing smoother motion of the robot.
We demonstrate our method on simulated redundant and non-
redundant manipulators and implement it on the physical 7-
degree-of-freedom Baxter manipulator. We provide our control
software under a permissive license.

I. INTRODUCTION

Many manipulation tasks require direct motion in the

robot’s Cartesian workspace. Examples of such tasks include

servoing an end-effector towards a target object, maintain-

ing a workspace constraint such as the rotation axis of a

valve, or tracking a trajectory though workspace waypoints.

The conventional solution for direct workspace motion uses

the manipulator Jacobian to map from desired workspace

motions to joint-level commands for the robot. Jacobian

inverse kinematics (IK) is efficient, effective, and widely

implemented. However, Jacobian IK does not directly ac-

count for joint-level constraints on the kinematics of the arm,

such as position limits, maximum achievable velocities, or

desired acceleration limits for smooth motion. Additionally,

it is common to execute lower-priority tasks by projecting

the desired task velocity into the nullspace of the higher-

priority manipulator Jacobian; if not treated carefully this can

cause large accelerations at the start of motion. To address

these challenges of classic Jacobian IK, we present a new

workspace control method that uses linear programming to

find an optimal, achievable solution to tracking a workspace

reference while respecting the kinematic constraints of the

robot.

The proposed linearly-constrained Cartesian control

(LC3) method uses linear programming to compute locally

optimal, achievable workspace motions that satisfy joint-

level constraints. The linear program computes the achiev-

able, instantaneous workspace acceleration that will best

track the desired velocity for the current time step (see

section II). The linear constraints on the system are found

* This work has been supported in part by NSF IIS 1317849 and funds
by Rice University.

1 Z. K. Kingston, N. T. Dantam, and L. E. Kavraki are with the
Department of Computer Science at Rice University, Houston TX 77005,
USA. Email: {zkk1, ntd, kavraki}@rice.edu.

Fig. 1. Baxter executing workspace control via LC
3. The end-effector

servos to a target frame in workspace (the yellow dotted line), with computed
joint-velocities (blue arrows around joints) subject to kinematic constraints,
e.g., position, velocity, and acceleration limits (orange bars over joints).

in terms of the change in joint velocity, incorporating the

Jacobian pseudo-inverse into the constraint matrix to map

from workspace to joint-space values (see subsection II-B).

In addition, a scaled nullspace velocity is also included. The

solution to the linear program is a workspace acceleration

which respects the kinematic constraints on the system and

is singularity robust by way of using the damped pseudo-

inverse of the Jacobian. We implement LC3 and demon-

strate results in simulation and on physical hardware (see

section III). We provide our software under a permissive

license. 2

A. Related Work

Jacobian IK for robotics is a well studied approach [6],

[21]. Jacobian least-squares methods compute to numerical

precision the joint velocities to match a workspace reference.

Singularity-robust Jacobian damped least squares methods

operate reliably near singular configurations of the manipula-

tor [18], [5]. Jacobian-based methods are also used to execute

hierarchies of workspaces tasks [19]. Jacobian methods,

however, do not directly account for joint-level constraints

of the manipulator, e.g., acceleration limits, thus requiring

additional considerations – or assumptions on initial state

– to produce feasible motion of the manipulator. The LC3

method proposed in this paper builds on Jacobian inverse

2 Software available at http://github.com/golems/reflex

1

http://github.com/golems/reflex

International Conference on Humanoid Robotics (HUMANOIDS), 2015

kinematics to directly address joint-level constraints through

linear programming.

Position-based IK methods are distinct from Jacobian-

based derivative methods, though one can solve position

IK via gradient descent using the Jacobian. Analytical in-

verse kinematic solutions have been found for certain ma-

nipulator topologies, e.g., for anthropomorphic limbs [24].

Cyclic coordinate descent (CCD) effectively finds position

IK solutions for arbitrary manipulators [25]. The FABRIK

method by Aristidou and Lasenby uses a heuristic approach

to find efficient IK solutions for chains of rotational joints

[1]. Position IK methods find a joint-space position that

achieves a desired workspace position. Respecting velocity

and acceleration constraints while servoing to the computed

joint-space position requires additional considerations or

assumptions. In contrast, LC3 finds a feasible joint-space

velocity that best achieves a desired workspace velocity,

directly accounting for joint-level constraints.

Quadratic optimization has also been applied to methods

of robot control. Hierarchical quadratic programs can be

used to satisfy multiple workspace tasks [9], [11]. Kim and

Oh present a quadratic programming framework for posi-

tion control that respects position, velocity, and acceleration

limits [16]. Team MIT used sequential quadratic programs

to find constrained IK solutions for an Atlas humanoid robot

[10]. [12] uses quadratic programming to find optimal control

of a teleoperated robot that respects kinematic constraints,

workspace constraints, and task objectives. In contrast to

these approaches which require solving quadratic programs,

the presented LC3 method requires solving only a linear

program. The key difference between quadratic and linear

approaches is the objective function for optimization. The

quadratic program’s objective function allows for minimiza-

tion of Euclidean distance towards a task objective, while a

linear program only permits minimization of the Manhattan

distance. Our experimental results (see section III) show that

the linear objective function minimizing Manhattan distance

performs well in practice. Therefore, we use a linear program

as it is computationally more efficient. The objective function

for LC3 is discussed in subsection II-A.

A related approach is to apply task constraints while

planning a joint-space path [22], [23], [17], [14], [2]. We

are considering a different problem: directly tracking a

workspace reference. By tracking a workspace reference,

tracking errors can be corrected directly in the workspace

of the robot.

There are numerous approaches for computing robot

workspace trajectories [6], [20], [7], [15], [8]. All of these

workspace trajectory methods depend on some underlying

inverse kinematics approach to find the joint-level robot

inputs. The LC3 method presented here is one such approach.

B. Model and Notation

The robot is modeled as an n-degree-of-freedom (DOF)

manipulator operating in a workspace of dimension m. We

represent a manipulator joint configuration with variable q.

Workspace positions are designated with variable X . Time

derivatives of some variable y are represented as ẏ, and

double time derivatives as ÿ.

We denote actual, reference, and constraint variables with

the following subscripts. Actual joint configurations observed

on the robot are designated with subscript a. We assume that

that actual joint position qa and actual joint velocity q̇a are

observable. Desired reference values of a trajectory are given

by subscript r. For a workspace motion, we have the desired

workspace position Xr and desired workspace velocity Ẋr.

Control commands are designated by subscript u, e.g., the

controlled joint velocity q̇u. Constraints on the system are

designated by bounding constants with subscript min and

max for the minimum and maximum values on the system

respectively.

The manipulator Jacobian matrix J and its pseudo-inverse

J∗ relate joint-space and workspace derivatives:

Ẋ = Jq̇

q̇ = J∗Ẋ

The damped Jacobian pseudo-inverse J+ produces ac-

ceptable motion near kinematic singularities, avoiding large

velocities produced by the undamped pseudo-inverse J∗. The

damped pseudo-inverse can be computed as follows [18].

J+ = JT (JJT + λ2I)−1

where λ is the damping constant and I is the identity matrix.

We can also use the singular value decomposition (SVD)

of the Jacobian J to damp the solution only near singulari-

ties, avoiding error from damping when far from singulari-

ties:

J = USV T

J+ =

min(m,n)∑

i=1

si

max (si2, sǫ2)
viui

T

where sǫ is a threshold on the singular values below which

we introduce damping.

The nullspace of the manipulator Jacobian represents joint

velocities which will not change the end-effector velocities.

We project a desired joint space velocity into the Jacobian

nullspace using projection matrix N :

N = I − J+J

q̇n = Nq̇r

where q̇r is a desired joint velocity and q̇n is the projection

into the Jacobian nullspace.

In our case, we project velocities to move joints away

from position limits. This velocity is designated by q̇rn (see

subsection II-B).

The standard form of a Linear Program (LP) is:

Maximize cTx

Subject to Ax ≤ b

and x > 0 (1)

where x is the vector of optimization variables, A and

b encode the linear constraints, and c encodes the linear

objective function. LC3 in standard LP form is discussed

in subsection II-D.

2

International Conference on Humanoid Robotics (HUMANOIDS), 2015

II. METHOD

Our proposed linearly-constrained Cartesian control

(LC3) uses linear optimization to compute the joint-space

commands that best track a workspace reference, subject

to position, acceleration, and velocity constrains. LC3 is

given actual configuration qa and velocity q̇a, manipulator

Jacobian J , desired workspace velocity Ẋr, and desired joint

velocity q̇rn (for nullspace projection). The robot motion

is constrained based on joint-space limits in position qmin

and qmax, velocity q̇min and q̇max, and acceleration q̈min and

q̈max. The output of LC3 is a feasible joint-space velocity

command q̇u that is within the specified constraints and that

optimally matches Ẋr and q̇rn. We assume that the robot

provides joint-level velocity control.

A. Objective Function

The optimization variables for LC3 are achievable

workspace accelerations Ẍu and a nullspace projection gain

k. We optimize over workspace accelerations to enable

feedback correction of position and velocity errors directly

in workspace. By optimizing workspace acceleration Ẍu,

we can define a linear objective function that most closely

matches Ẍu with the necessary acceleration to achieve the

desired velocity Ẋr. The computed optimization variable

Ẍu will accelerate as closely as possible to the desired

velocity Ẋr for the current timestep. We address the signs

of optimization variables in subsection II-C via a sign

transformation.

We compute a desired workspace acceleration Ẍr based on

the desired velocity vector in workspace Ẋr, and the robot’s

actual velocity q̇a:

Ẋa = Jq̇a Ẍr =
Ẋa − Ẋr

∆t

where Ẋa is the actual workspace velocity and ∆t is the

control time step.

The linear objective function to find the optimal accelera-

tion Ẍu is:

Ẍr · Ẍu + Cuk (2)

We use the dot product between the desired and controlled

accelerations, Ẍr · Ẍu, because it relates to the directions

of these vectors. If the acceleration vectors are orthogonal,

then their dot product is 0. As the two vectors point more

closely in the same direction, their dot product increases.

The difference between the quadratic cost and linear reward

functions in QP and LP is illustrated in Figure 2. The dot

product between the desired and computed vectors closely

matches the result of quadratic cost objective function.

The term Cuk relates to the velocity q̇rn that will be

projected into the nullspace of the Jacobian, e.g., in order

to move the arm away from joint limits. The objective

function coefficient Cu is a parameter to LC3 indicating the

relative importance of matching the desired acceleration Ẍr

compared to applying the nullspace projection of q̈rn. The

optimization variable k is the actual gain for the nullspace

0
0.5

1 0
1

2

0

5

x0
x1

R
ew

ar
d

Linear Reward

0
0.5

1 0
1

2

0

5

x0
x1

C
o

st

Quadratic Cost

Fig. 2. Comparison of linear and quadratic objective functions. The linear
reward function is the dot product of the desired and computed vectors while
the quadratic cost is the sum of squared error between the two vectors. The
blue contour lines on the bottom plane show equal reward / cost regions of
the functions. When the solution is unconstrained, both objective functions
are return the optimal value, the reference. When the solution is constrained,
the quadratic cost function may produce a vector that better matches the
direction of the optimal solution; however, solutions for both cases are close.

projection of q̇rn. We additionally limit k to a maximum

value with the constraint k ≤ kmax.

For some robot states (q, q̇) and desired workspace ve-

locities Ẋr, the desired workspace acceleration Ẍr may not

be possible to achieve under the given kinematic constraints.

For these cases, the result of the LP will include an optimal

workspace acceleration Ẍu that respects the constraints of

the robot.

B. Derivation of Constraints

We derive linear constraints for position, velocity, and

acceleration limits of the manipulator. The constraints, as

with any LP, are a set of inequalities (1) based on the op-

timization variables, which for our problem are commanded

acceleration Ẍu and nullspace projection gain k.

We can express all kinematic limits in terms of com-

manded change in velocity at each time step, ∆q̇u. We com-

pute ∆q̇u from commanded acceleration Ẍu and nullspace

projection gain k:

∆q̇u = J+∆tẌu + kN∆q̇rn (3)

Equation (3) uses the Jacobian damped pseudoinverse J+

to transform a workspace velocity into a jointspace velocity

vector so that we can apply joint-space constraints. The

controlled acceleration, Ẍu, is multiplied by the current

change in time ∆t to get an instantaneous velocity change,

i.e., an Euler integration step, resulting in ∆q̇u. The resultant

velocity change is singularity robust because it uses the

Jacobian damped pseudoinverse J+.

The last term in (3) is the projection of the change of

the desired joint velocity ∆q̇rn into the nullspace of the

manipulator Jacobian N . It is scaled by the optimization

variable k. We calculate the change in desired joint velocity

∆q̇rn as the difference between the actual and desired joint

velocities:

∆q̇rn = q̇rn − q̇a

3

International Conference on Humanoid Robotics (HUMANOIDS), 2015

Now, we derive the corresponding commanded joint ve-

locities q̇u and accelerations q̈u.

From (3), the commanded joint velocity q̇u is:

q̇u = q̇a +∆q̇u (4)

Then, the corresponding commanded acceleration computed

via finite difference is:

q̈u =
q̇u − q̇a

∆t
=

∆q̇u

∆t
(5)

Next, we write the constraints in terms of these commanded

joint-space values.

1) Acceleration Constraints: Joint accelerations are lim-

ited by minimum q̈min and maximum q̈max:

q̈min ≤ q̈u ≤ q̈max

Replacing q̈u with the result from (5) and rearranging terms,

we write the inequality in terms of ∆q̇u from (3):

q̈min∆t ≤ ∆q̇u ≤ q̈max∆t (6)

2) Velocity Constraints: Joint velocities are limited by

minimum q̇min and maximum q̇max:

q̇min ≤ q̇u ≤ q̇max

Again, we rearrange terms to write the inequality in terms

of ∆q̇u:

q̇min − q̇a ≤ ∆q̇u ≤ q̇max − q̇a (7)

3) Position Constraints: We derive the position constraint

based on distance traveled, x, for an initial velocity ẋ0 and

constant acceleration ẍ during time step ∆t:

x = x0 + ẋ0∆t+
1

2
ẍ∆t2 (8)

The manipulator’s joint positions are limited by minimum

qmin and maximum qmax. Given the current joint position

qa, the controlled joint velocity q̇u, and acceleration limits

q̈{max,min}, we use (8) to find minimum and maximum

achievable positions, qnmin
and qnmax

, of the joint for the

current control cycle:

qnmax
= qa + q̇a∆t+

1

2
q̈max∆t2

qnmin
= qa + q̇a∆t+

1

2
q̈min∆t2

If these exceed the respective bounding limits qmin or qmax,

then the controlled velocity q̇u is invalid. This gives the

bounds on the position:

qmin ≤ qnmax
qnmin

≤ qmax

Rearranging terms, we state the position limit in terms of

∆q̇u:

qmin − qa

∆t
−
q̈max∆t

2
−q̇a ≤ ∆q̇u ≤

qmax − qa

∆t
−
q̈min∆t

2
−q̇a

(9)

4) Simplified Combined Constraints: By stating all con-

straints in terms of ∆q̇u, we can combine these into a single

inequality, reducing the number of constraints by a factor of

three. We find LP bounds from the most-constrained values

in inequalities (6), (7), and (9).

cmin = max





qmin − qa

∆t
−

q̈max∆t

2
− q̇a

q̇min − q̇a

q̈min∆t

(10)

cmax = min





qmax − qa

∆t
−

q̈min∆t

2
− q̇a

q̇max − q̇a

q̈max∆t

(11)

Then, the resulting LP constraint is:

cmin ≤ ∆q̇u ≤ cmax (12)

C. Sign Transformation of Optimization Variables

The optimization variables in standard LP form must

be positive. However, cases where the robot’s controlled

velocity cannot match the sign of the desired velocity, e.g.,

due to a large initial velocity in the opposing direction,

must also be handled. This restriction is relaxed as we are

operating over accelerations in workspace, and the sign of

the desired acceleration must be matched. To account for

this, we create sign transformation matrix M to convert the

optimization variables to positive values. M is a diagonal

matrix whose entries are the sign of the desired workspace

acceleration Ẍr:

Mij =

{
0 i 6= j

sign(Ẍr) i = j

In the case of the workspace reference acceleration Ẍr

having 0 for an entry, the 0 is treated as a positive variable

so M is always invertible.

We apply M to matrices J+ and Ẍu to ensure positive

optimization variables:

J̃+ = J+M−1 ˜̈
Xu = MẌu

˜̈
Xr = MẌr

As M−1M equals the identity matrix, the result of multipli-

cation is preserved:

J̃+ ˜̈
Xu = J+M−1MẌu = J+Ẍu

Consequently, the LP objective function from Equation 2

is: ˜̈
Xr ·

˜̈
Xu + Cuk (13)

Then, Equation 3 becomes:

∆q̇u = J̃+∆t
˜̈
Xu +N∆q̇rnk (14)

Using the sign transformation matrix M ensures that op-

timization variable vector [˜̈Xu, k] will be positive. We can

then recover the actual value for commanded acceleration

via M−1:

Ẍu = M−1 ˜̈Xu (15)

4

International Conference on Humanoid Robotics (HUMANOIDS), 2015

D. Standard LP Form

We now represent LC3 in the standard LP form given in

(1). Writing our problem in this canonical form enables use

of efficient algorithms [4] and solvers [3].

The objective function for optimization is:

˜̈
Xr ·

˜̈
Xu + Cuk

The constraints are:

cmin ≤ J̃+∆t
˜̈
Xu +N∆q̇rnk ≤ cmax

k ≤ kmax
˜̈
Xu ≤

˜̈
Xr

The manipulator and LP values are of the following dimen-

sions:

• Joint-space vector q ∈ R
n

• Workspace vector X ∈ R
m

• LP optimization variable vector x ∈ R
m+1

• LP objective function vector c ∈ R
m+1

• LP bounding vector b ∈ R
2n+m+1

• LP constraint matrix A ∈ R
(2n+m+1)×(m+1)

The LP vectors x, b, and c in Equation 1 are:

x =

[
˜̈
Xu

k

]
c =

[
˜̈
Xr

Cu

]
b =




cmax

−cmin

kmax

˜̈
Xr




The LP constraint matrix A is:

A =




J̃+∆t N∆q̇rn

−J̃+∆t −N∆q̇rn
0 1
1 0




All together, the LP is as follows:

cTx =
[
˜̈
Xr Cu

] [˜̈
Xu

k

]
= ˜̈

Xr ·
˜̈
Xu + Cuk

Ax ≤ b →




J̃+∆t N∆q̇rn

−J̃+∆t −N∆q̇rn
0 1
1 0




[
˜̈
Xu

k

]
≤




cmax

−cmin

kmax

˜̈
Xr




III. EXPERIMENTAL RESULTS

We implement and demonstrate LC3 on simulated and

physical robot manipulators. Our implementation of LC3 is

written in C using openBLAS [13], [26] for linear algebra

and lp solve [3] for linear programming. We test our

software on an Intel R© i7-4790 CPU under Linux 3.18.16-

rt13+ PREEMPT RT. Figure 3 summarizes the computational

performance of LC3 compared to the baseline Jacobian

damped least-squares methods (DLS).

We compare a baseline Jacobian DLS with LC3 by ser-

voing the manipulator to a desired workspace position. The

desired workspace velocity is the logarithm of error between

actual pose B
Se and desired pose B

Sr:

Ẋr =

[
ωr

v̇r

]
= ln

(
B

Se
∗
⊗ B

Sr

)
(16)

Method Average Time Normalized Value

Jacobian DLS LU 0.0094ms 1.0000

Jacobian DLS SVD 0.0302ms 3.1972

LC3 LU 0.1785ms 18.8980

LC3 SVD 0.2034ms 21.5287

Fig. 3. Computation time results for LC3 compared to baseline Jacobian
Damped Least Squares (DLS) for a 7 DOF arm. We compared the Jacobian
DLS and LC

3 using both the LU decomposition and the SVD to compute
the Jacobian damped pseudo-inverse. The CPU was an Intel i7-4790. All
methods are fast enough to operate at typical control rates of 1 kHz with
LC

3 taking about 20 times as long as the baseline due to solving the linear
program program in addition to computing the damped pseudo-inverse.

−2

0

2

Jo
in

t
P

o
si

ti
o

n
(r

ad
)

DLS LC3

0 5 10 15

−2

0

2

Time (s)

Jo
in

t
V

el
o

ci
ty

(r
ad

/s
)

0 5 10 15

Time (s)

(a) (b)

(c) (d)

Fig. 4. Simulation on the UR10 robot, maneuvering its end-effector to a
point. The beginning joint configuration has all of the robot’s joints at their
zeroed position. The top row shows the joint positions qa, and the bottom
row shows the controlled / actual joint velocities q̇u. Each line represents one
joint on the manipulator. The baseline DLS has a large velocity spike at the
beginning of execution (c), while LC

3has a gradual increase, respecting the
acceleration limits on the system (d). Both converge to the desired position
in approximately the same time.

LC3 JDLS

(a)

LC3 JDLS

(b)

Fig. 5. Images of simulated UR10 robot. The arm on the left is using
LC

3, and the arm on the right is using Jacobian DLS (JDLS). (a) shows the
larger initial displacement of the right manipulator due to the large initial
velocity spike of the Jacobian DLS. (b) shows how both LC

3 and Jacobian
DLS converge to approximately the same configuration at the same time.

5

International Conference on Humanoid Robotics (HUMANOIDS), 2015

−1

0

1

2

Jo
in

t
P

o
si

ti
o

n
(r

ad
)

DLS LC3

0 10 20

−0.4

−0.2

0

0.2

0.4

Time (s)

Jo
in

t
V

el
o

ci
ty

(r
ad

/s
)

0 10 20

Time (s)

(a) (b)

(c) (d)

Fig. 6. Simulation on the Baxter robot, servoing its right and left end-
effectors to mirrored points. The beginning joint configuration is the joint
positions of the Baxter robot when its arms have been untucked. The format
of the plots is the same as Figure 4. Similar profiles as the other simulation
can be seen. As the Baxter’s manipulators are redundant, the velocity q̇rn

is projected into the nullspace of the Jacobian.

LC3 JDLS

(a)

LC3 JDLS

(b)

Fig. 7. Images from the experiment on the Baxter robot. The robot’s right
arm is using LC

3, and its left arm is using Jacobian DLS (JDLS). (a) is from
the beginning of the experiment, showing the larger initial displacement
of the robot’s left manipulator due to the large initial velocity spike of
the Jacobian DLS on the right-hand robot. (b) shows how both LC

3 and
Jacobian DLS converge to approximately the same configuration at the same
time.

where ωr is reference rotational velocity, v̇r is reference

translational velocity, B
Se is the actual end-effector pose dual

quaternion, B
Sr is the reference pose dual quaternion, and ⊗

is the quaternion multiplication operator.

We use kinematic redundancy to center the joints within

the middle of their position ranges, thereby avoiding poor

manipulator configurations which may prevent movement.

We compute the nullspace projection velocity q̇rn to center

each joint as.

(q̇rn)i =
(qc)i − (qa)i

(qmax)i − (qmin)i
(17)

where (q̇rn)i is the ith element of the nullspace projection

−1

0

1

2

Jo
in

t
P

o
si

ti
o

n
(r

ad
)

DLS LC3

−0.4

−0.2

0

0.2

0.4

A
ct

.
Jn

t.
V

el
.

(r
ad

/s
)

0 10 20

−0.4

−0.2

0

0.2

0.4

Time (s)

R
ef

.
Jn

t.
V

el
.

(r
ad

/s
)

0 10 20

Time (s)

(a) (b)

(c) (d)

(e) (f)

Fig. 8. Experimental results on the physical Baxter robot, performing
the same experiment as in Figure 6. Top row shows actual joint positions
qa, middle row shows actual joint velocities q̇a, and bottom row shows
controlled velocity q̇u. As in the simulation, the baseline DLS produces
a large spike in velocity while LC

3 provides a smooth ramp. Compared
to simulation, the physical results have significant noise due to joint
compliance and backlash of the Baxter. Note that commanded velocity
q̇u for LC

3also includes this noise since actual velocity is included in its
feedback whereas the baseline method uses only feedforward velocity.

velocity, (qc)i is the ith joint center position, (qa)i is the

ith actual velocity, and (qmax)i and (qmin)i are the ith joint

position limits.

A. Simulation Results

We present kinematic simulation results on the Universal

Robotics UR10 and Rethink Robotics Baxter robots. The

UR10 is a 6-DOF non-redundant manipulator, while the arms

of the Baxter are 7-DOF redundant, anthropomorphic limbs.

We simulate servoing to a point in workspace from a nominal

starting configuration, comparing LC3 with the baseline

Jacobian damped least-squares approach. The positions and

velocities of the UR10 robot are plotted in Figure 4 and those

of the Baxter in Figure 6. There is a dramatic difference in

the starting velocity ramp of each joint, with the baseline

Jacobian DLS generating a large initial velocity spike, and

LC3 providing a limited velocity ramp bounded by the

maximum possible acceleration limits provided. Despite the

6

International Conference on Humanoid Robotics (HUMANOIDS), 2015

difference in initial velocity, both LC3 and the baseline

converge to the final joint positions at approximately the

same time. These results show that LC3 provides a smooth

velocity ramp for redundant and non-redundant manipulators.

B. Physical Robot Results

We demonstrate LC3 on a physical Baxter robot. As in

the simulation, we compare LC3 and the baseline Jacobian

DLS for servoing to a workspace position. The actual joint

positions and velocities qa and q̇a along with the commanded

velocities q̇u are shown in Figure 8. Note the difference

between the commanded and actual velocities, arising due

to physical limits of the manipulator. Just as in the simu-

lation case, LC3 provides reduced acceleration and velocity

requirements while converging in similar time compared to

the baseline.

IV. DISCUSSION AND CONCLUSION

We presented a new Cartesian workspace controller,

linearly-constrained Cartesian control (LC3). This new

method respects the position, velocity, and acceleration con-

straints in the manipulator’s joint-space. LC3 is singularity-

robust, provides smoother and more gradual motions of the

manipulator, and in the case of redundant manipulators,

maneuvers the arm away from poor configurations near joint

limits that reduce maneuverability. We demonstrated this

controller in simulation and on a physical manipulator.

There are several tuneable parameters within LC3. These

include the damping constant, λ or sǫ, for the Jacobian

damped pseudo-inverse J+, the weighting constant of the

nullspace projection in optimization Cu, the maximum pos-

sible value of the nullspace projection gain kmax, and the

constraints upon the joints themselves. These all can affect

the performance of the controller in terms of achievability

and accuracy. Furthermore, it is possible to modify the

weighting of joints in the nullspace projection velocity to

change the resulting motion. For example, by more-heavily

weighting joints with smaller range of motion, the projection

favors centering these joints instead of those with greater

range of motion. Generally this helps the manipulator remain

in configurations with greater reachability.

A key advantage of LC3 is increased robustness to initial

state compared to the baseline Jacobian damped least-squares

(DLS). The DLS may produce large accelerations from some

initial configurations or require additional velocity ramping

to produce smooth motion, and it does not consider initial

velocity. In contrast, LC3 will produce acceleration-limited

motion regardless of initial configurations or velocities.

REFERENCES

[1] Andreas Aristidou and Joan Lasenby. FABRIK: A fast, iterative solver
for the inverse kinematics problem. Graphical Models, 73(5):243 –
260, 2011.

[2] Dmitry Berenson, Siddhartha Srinivasa, Dave Ferguson, and James
Kuffner. Manipulation planning on constraint manifolds. In Intl. Conf.

on Robotics and Automation, pages 625–632. IEEE, 2009.

[3] Michel Berkelaar, Kjell Eikland, Peter Notebaert, et al. lpsolve: Open
source (mixed-integer) linear programming system, 2004. http://
lpsolve.sourceforge.net/5.5/.

[4] Dimitris Bertsimas and John N Tsitsiklis. Introduction to Linear

Optimization, volume 6. Athena Scientific Belmont, MA, 1997.
[5] Samuel Buss and Jin-Su Kim. Selectively damped least squares for

inverse kinematics. Journal of Graphics, GPU, and Game Tools,
10(3):37–49, 2005.

[6] John Craig. Introduction to Robotics: Mechanics and Control. Pearson,
3rd edition, 2005.

[7] Erik Dam, Martin Koch, and Martin Lillholm. Quaternions, Inter-

polation and Animation. Datalogisk Institut, Københavns Universitet,
1998.

[8] Neil Dantam and Mike Stilman. Spherical parabolic blends for robot
workspace trajectories (presented). In International Conference on

Intelligent Robots and Systems. IEEE, 2014.
[9] Adrien Escande, Nicolas Mansard, and Pierre-Brice Wieber. Hierarchi-

cal quadratic programming: Fast online humanoid-robot motion gen-
eration. The International Journal of Robotics Research, 33(7):1006–
1028, June 2014.

[10] Maurice Fallon, Scott Kuindersma, Sisir Karumanchi, Matthew An-
tone, Toby Schneider, Hongkai Dai, Claudia Pérez D’Arpino, Robin
Deits, Matt DiCicco, Dehann Fourie, et al. An architecture for online
affordance-based perception and whole-body planning. Journal of

Field Robotics, 32(2):229–254, 2015.
[11] Siyuan Feng, Eric Whitman, X Xinjilefu, and Christopher Atkeson.

Optimization-based full body control for the darpa robotics challenge.
Journal of Field Robotics, 32(2):293–312, 2015.

[12] Janez Funda, Russell Taylor, Benjamin Eldridge, Stephen Gomory, and
Kreg Gruben. Constrained cartesian motion control for teleoperated
surgical robots. Robotics and Automation, IEEE Transactions on,
12(3):453–465, 1996.

[13] Kazushige Goto and Robert Van De Geijn. High-performance imple-
mentation of the level-3 BLAS. ACM Transactions on Mathematical

Software (TOMS), 35(1):4, 2008.
[14] Kris Hauser. Fast interpolation and time-optimization on implicit

contact submanifolds. In Robotics: Science and Systems, Berlin,
Germany, June 2013.

[15] Ingyu Kang and Frank Park. Cubic spline algorithms for orientation
interpolation. International journal for numerical methods in engi-

neering, 46(1):45–64, 1999.
[16] Inhyeok Kim and Jun-Ho Oh. Inverse kinematic control of humanoids

under joint constraints. International Journal of Advanced Robotic

Systems, January 2013.
[17] Tobias Kunz and Mike Stilman. Time-optimal trajectory generation for

path following with bounded acceleration and velocity. In Robotics:

Science and Systems, pages 09–13, July 2012.
[18] Yoshihiko Nakamura and Hideo Hanafusa. Inverse kinematics solu-

tions with singularity robustness for robot manipulator control. Journal

of Dynamic Systems, Measurement, and Control, (108):163–171, 1986.
[19] Luis Sentis and Oussama Khatib. Synthesis of whole-body behaviors

through hierarchical control of behavioral primitives. International

Journal of Humanoid Robotics, 2(04):505–518, 2005.
[20] Ken Shoemake. Animating rotation with quaternion curves. ACM

SIGGRAPH computer graphics, 19(3):245–254, 1985.
[21] Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani, and Giuseppe

Oriolo. Robotics: Modelling, Planning and Control. Springer Verlag,
2009.

[22] Mike Stilman. Task constrained motion planning in robot joint space.
In Intl. Conf. on Intelligent Robots and Systems, pages 3074–3081,
October 2007.

[23] Mike Stilman. Global manipulation planing in robot joint space with
task constraints. Trans. on Robotics, 26(3):576–584, 2010.

[24] Deepak Tolani, Ambarish Goswami, and Norman Badler. Real-time
inverse kinematics techniques for anthropomorphic limbs. Graphical

models, 62(5):353–388, 2000.
[25] Li-Chun Tommy Wang and Chih Cheng Chen. A combined op-

timization method for solving the inverse kinematics problems of
mechanical manipulator. Robotics and Automation, IEEE Transactions

on, 7(4):489–499, 1991.
[26] Qian Wang, Xianyi Zhang, Yunquan Zhang, and Qing Yi. AUGEM:

Automatically generate high performance dense linear algebra kernels
on x86 CPUs. In Proceedings of the International Conference on High

Performance Computing, Networking, Storage and Analysis, page 25.
ACM, 2013.

7

http://lpsolve.sourceforge.net/5.5/
http://lpsolve.sourceforge.net/5.5/

	Introduction
	Related Work
	Model and Notation

	Method
	Objective Function
	Derivation of Constraints
	Acceleration Constraints
	Velocity Constraints
	Position Constraints
	Simplified Combined Constraints

	Sign Transformation of Optimization Variables
	Standard LP Form

	Experimental Results
	Simulation Results
	Physical Robot Results

	Discussion and Conclusion
	References

