
Increasing Robot Autonomy
via Motion Planning and an Augmented Reality Interface

Juan David Hernández∗, Shlok Sobti∗, Anthony Sciola, Mark Moll, and Lydia E. Kavraki

Abstract— Recently, there has been a growing interest in
robotic systems that are able to share workspaces and collabo-
rate with humans. Such collaborative scenarios require efficient
mechanisms to communicate human requests to a robot, as
well as to transmit robot interpretations and intents to humans.
Recent advances in augmented reality (AR) technologies have
provided an alternative for such communication. Nonetheless,
most of the existing work in human-robot interaction with
AR devices is still limited to robot motion programming or
teleoperation. In this paper, we present an alternative approach
to command and collaborate with robots. Our approach uses
an AR interface that allows a user to specify high-level requests
to a robot, to preview, approve or modify the computed robot
motions. The proposed approach exploits the robot’s decision-
making capabilities instead of requiring low-level motion spec-
ifications provided by the user. The latter is achieved by
using a motion planner that can deal with high-level goals
corresponding to regions in the robot configuration space. We
present a proof of concept to validate our approach in different
test scenarios, and we present a discussion of its applicability
in collaborative environments.

I. INTRODUCTION

Commanding a robot to perform a certain task can be time
consuming. For many industrial robots it is common that
operators explicitly need to define waypoint configurations
for a desired trajectory. Since in many industrial settings
the same task needs to be executed the exact same way
many times, the time spent on programming the robot can be
amortized. However, increasingly robots and humans operate
in the same space (which may not be a fully structured
environment), and each task is executed only a few times.
As a result, there has been significant interest in exploring
different modes of human-robot cooperation. For low-level
specification of a desired trajectory physical interaction can be
used (see, e.g., [1]), whereas for high-level task specification
speech and gestures have been explored (see, e.g., [2]).

Early on, the potential of virtual, augmented, and mixed
reality (VR, AR, and MR, respectively) as other modalities
for human-robot cooperation was recognized [3], [4]. The
focus in this paper is on AR, but many of the same ideas
could also be applied in a VR/MR setting. AR has been
shown to be useful in allowing people to command robots
and to visualize a robot’s planned actions [5], [4]. In contrast
to VR, AR uses the real world as a context for understanding

∗The authors contributed equally to this paper.
This work has been supported in part by NSF 1830549, NSF 1514372

and Rice University Funds.
J.D. Hernández, S. Sobti, M. Moll and L.E. Kavraki are with the

Department of Computer Science, and A. Sciola is with Department of
Physics and Astronomy at Rice University, Houston, TX, USA. {juandhv,
sobti, ams16, mmoll, kavraki}@rice.edu

Fig. 1: A user placing virtual cans in desired locations. Inset figure
shows the user’s point of view. The robot takes this input and
computes a plan to place real cans in those locations.

and interacting with virtual objects. AR allows a user to
seamlessly integrate coordination of a robot’s actions with
her own world interactions with the world. This enables a
more direct interaction with the world without having to use
a symbolic representation (such as natural language or code).

Most of the work on the use of AR in robotics has focused
on robot motion programming [5], [6] and teleoperation [7],
[8]. In this paper, we take a robot-agnostic and object-centric
approach. By this we mean that the AR interface emphasizes
the desired outcomes of robot actions rather than the specific
motions of a robot needed to achieve these outcomes. When
commanding highly dexterous robots it is often difficult for a
human collaborator to reason about their reachable workspace,
or kinematic/dynamic feasibility of a task. In our approach,
the user can focus on specifying a sequence of high-level
goals and let the robot itself determine a sequence of feasible
motions that achieve these goals. This latter not only endows
the robot with capability to cope with a wider range of
scenarios, but it also increases the robot’s autonomy. We call
this use of AR High-level Augmented Reality Specifications
(HARS), to distinguish this work both from other uses of
AR and other work on commanding robots via high-level
specifications.

An example that encapsulates the capabilities of a HARS
is shown in Fig. 1, where a user places two virtual cans on a
real table. By placing these virtual cans, a user is requesting
a robot to get real cans and to place them as indicated by
the virtual counterparts. However, there may be different
valid alternative selections that will accomplish the intended
task. For example, there could be more available real cans
than the ones required by the provided HARS. Also, the user,
through the proposed AR interface, can provide a range of
possibilities of where to place the objects. We propose to
exploit the robot’s decision-making capabilities of its motion
planner to make a final decision from the given alternatives.

 
To appear in: IEEE Robotics & Automation Letters, 2020.



The robot then computes motion plans to put each of the
real cans, shows a virtual execution of the plan, and—after
approval by the user—executes it in the real world.

The contributions of this paper are a new high-level AR
interface, which focuses the user on what it wants from a
robot rather than the how. The approach relies heavily on
motion planning techniques, which use high-level goals that
do not correspond to a single state, but, rather, implicitly
describe regions in configuration space that achieve a desired
task. The work presented is a prototype interface, which
combines a head-mounted AR device with a motion capture
system and a mobile manipulator to solve a certain type
of HARS. We introduce the notion of a virtual inventory
of types of objects that a user can use to specify object
arrangements. We demonstrate the application of HARS in
pick and place operations; the scenarios that can be considered
are as follows. The user places a virtual object in some region
of the workspace (via the augmented reality (AR) interface),
after which our motion planner takes over. Each HARS request
of such a type requires four robot actions that the planner
needs to solve: (1) to move close to the object(s) that are to be
manipulated; (2) to pick up the specified object; (3) to move
close to a specified placement location; and (4) to place the
real world object according to the user specified parameters.
Examples of such pick-and-place tasks include complex block
stacking arrangements and assembly operations.

The rest of the paper is organized as follows. The next
section provides an overview of related work. Section III
describes in detail how a HARS can be decomposed into
motion planning problems. Section IV describes the complete
AR-robot system. Section V describes results obtained with
our prototype system on some motivating examples. Finally, in
Section VI we discuss the results so far and outline directions
for future work.

II. RELATED WORK

Effective collaboration between humans and robots relies
on two-way communication, which in the past has been
explored via multimodal interfaces (e.g., [9], [10], [11], [12]).
Recent advances in AR technologies have allowed for an
alternative mode of communication [3]. We focus on the AR
work close to the concept of HARS.

AR research in robotics can be primarily classified as
belonging to either visual feedback and/or robotic instruction.
Visual feedback can used to graphically represent task-
plans [4], disambiguate user and robot references [13], or even
effectively reduce the skill-barrier to efficient operation [14].
Robotic instruction via AR has mostly been directed towards
low-level motion specification. Such frameworks might allow
the user to explicitly specify via-points, preview the planned
path prior to execution and consequently modify the via-points
to address any discrepancies [15], [5], [16], [17], [18]. These
types of interfaces, along with visual feedback, have been
validated in industrial settings to enhance operator experience
particularly in 3-D printing and fabrication [19], [20], [6].
Variations in low-level motion specification might instead
rely on the manual definition of collision-free volumes for

the generation/optimization of valid trajectories [21], [15],
[22], or teleoperation by the user [7], [8], [23]. Low-level
motion specification frameworks greatly reduce the hurdles
to robot programming; however, they rely heavily on user
actions. We instead propose a prototype which further shifts
the work load from the user to the robot using AR coupled
with motion planning techniques.

The work in [24] introduces the idea of an object-based
programming scheme using AR. A context-based multimodal
framework that allows the user to interact with the robot is
presented based on which the user is able to convey objects
of interest and drop locations. Visual feedback including
planned paths, selected objects and planned gripper actions
are displayed on a 2D monitor for reference. These high-level
queries are completed by stitching together preprogrammed
low-level actions. The ideas developed, particularly those
pertaining to the use of AR and automating low-level actions
are very relevant and we build upon them. The interface
used in the paper restricts the user to a 2D perspective of a
limited virtual environment. Interacting with a 3D world via
a 2D interface is limiting and can lead to loss in fluency. As
described in Section I HARS uses motion planning techniques
and an AR headset to enable an environment/robot agnostic
implementation that is physically intuitive.

Another relevant idea is explored in [25] in the context
of industrial assembly programming. The paper presents a
framework in which the user demonstrates the assembly
with virtual objects while the start and end states are
recorded. The robot controller then executes a predefined
pick-place sequence. The paper acknowledges the limitations
of such a predefined planning methodology which inhibits the
implementation from working in more complex environments.
HARS uses ideas such as an always accessible virtual inventory
and motion planning to maintain generalization.

The work in [26] explores intention projection to facilitate
effective human-robot collaboration by proposing a task-
planning paradigm that trades-off cost with the ability to
project robot intentions. Similar ideas have been explored
by [27]. We acknowledge that intention projection can be
very useful in task-planning applications so that the user can
plan his actions accordingly. Our paper explores a different
yet complementary aspect—that of conveying high-level
requests via AR—and deriving geometric constraints from
the user-defined high-level goals (e.g., object type, acceptable
place regions). A combination of [26] for task-planning and
projections [27], and our work for handling individual requests
could be considered as a further extension of work presented
in this paper.

III. MOTION PLANNING FOR SOLVING HIGH-LEVEL
AUGMENTED REALITY SPECIFICATIONS (HARS)

In this paper, we propose a novel approach for collaborating
with robots, which allows a user to command a robot by
giving a HARS, while letting the robot determine the specific
details on how to accomplish the desired task. In order to
do so, a user, through an AR interface, manipulates virtual
objects that are used to specify the desired state of their



real counterparts. The user can also provide position and
orientation ranges around the specific pose that is defined by
the virtual object. Such ranges may induce a large number of
valid robot motions, which cannot be expressed by a set of
preprogrammed robot behaviors. To endow a robot with the
capabilities to deal with a HARS in an automated way, we
propose to integrate the aforementioned AR interface with a
motion planner. Such a motion planner deals with high-level
goals that represent regions in the workspace, and hence in
the robot configuration space.

A. Translating User Requests into Goal Regions

A HARS for pick-and-place tasks requires four consecutive
robot actions (which in the case of a mobile manipulator
alternate between moving the robot’s base and moving the
robot’s arm): to get close to some object(s) of the desired type,
to grasp one of them, to get close to a placement location,
and to place the object as specified by the user. Each of these
actions can be translated into a robot motion query. However,
such motion queries do not necessarily have a unique robot
goal configuration, instead they may have an admissible robot
goal region. Therefore, a goal region represents all the valid
alternatives that a robot has for completing a desired action.

In this work, the aforementioned robot actions are specified
through workspace constraints, which implicitly generate
goal regions in the configuration space. Hence, workspace
constraints are associated with the specific robot action in
consideration. For example, when the robot needs to get close
for picking up or placing an object, a workspace constraint is
specified by the distance at which the robot is considered to
be close enough to the placement location or to the object. For
example, in the case of a mobile manipulator, such a distance
can correspond to the radius of a sphere of reachable end
effector poses. Then, the workspace constraint is “translated”
into a navigation goal region, which contains all the valid
robot base poses (positions and orientations) at which the
robot will be within the reachable sphere.

Another example of robot goal regions can be when the
robot has to pick up an object—assuming the robot has
already used a navigation goal region to get close enough to
the object, a set of workspace constraints contains the different
valid ways to pick up the object, e.g., the set of different end
effector poses to grasp the object. This information can be
available through different entities, such as pose detectors that
can predict different ways to manipulate available objects [28].
Then, this set of workspace constraints is “translated” into
a grasping goal region, which contains all the valid robot
configurations that take the robot (arm and end effector)
to grasp the object. The goal regions concept can also be
extended to situations in which a user request has multiple
valid options, e.g., when the robot needs to pick up one object
of a given type and there are several objects of that type
available. In this latter case, and also assuming the robot has
already moved close enough to the available objects, multiple
goal regions that contain the robot’s alternatives to pick up
one of the objects are obtained from the sets of different end
effector poses to grasp each of the available objects.

Fig. 2: Start-to-goal-region motion planning problem consists in
finding a continuous path from a given start configuration qs, to
any goal configuration qg j (green circles) that must be contained in
any of the provided goal regions GR1−3. The goal configuration qg j

must be not only valid, but also reachable. Possible solution paths
to this problem are p1, and p2. In other cases such as p1∗ the path
appears to be valid, but it actually collides with initially unknown
obstacles.

Once the robot has grasped a real object and has moved
close enough to the placement location, in our type of HARS,
the user explicitly defines, through the AR interface (examples
are given in Figs. 1, 4), a set of workspace constraints with
respect to a virtual object, which is used to indicate the
preferences for placing a real object. Such constraints can be
translated into a placement goal region, which contains all
the valid robot configurations that take the robot (arm and
end effector) to place the object as specified by the user.

Each of the four robot actions that we need for our type
of HARS can be formulated as the solution of a start-to-goal-
region motion query. Solving such a motion query consists in
finding a continuous path to any of the goal regions. However,
we typically do not have an analytic description of the goal
regions. We can approximate the goal regions by sampling
goal configurations (using, e.g., rejection sampling or an
inverse kinematics solver). We can then construct a coarse
approximation of the goal regions by generating a set of valid
goal samples. As an example, imagine a grasping goal region
that contains all the end effector poses to grasp an object from
either the top or the side. A valid goal sample corresponds
to one specific pose in which the robot, including its end
effector, does not collide with any nearby obstacle. Such an
approach allows us to reformulate the start-to-goal-region
motion query to find a continuous path to any of the goal
samples, which approximate a goal region (see Fig. 2).

In order to solve such start-to-goal-region motion queries,
we propose to use a tree sampling-based motion planner, since
this kind of planner is rooted at a given start configuration,
while the branches can be used to attempt connecting to
any of the goal samples. Such a behavior is consistent with
the formulated planning problem. But more specifically, we
propose to use a planner that keeps track of its progress in
expanding toward each of the goal samples. If a tree expansion
toward a goal sample succeeds, the priority of that state is
increased. If it fails, its priority is decreased. Whenever the
tree planner is biasing towards a goal region it picks the goal
sample with the highest priority, thus prioritizing those goal
samples that are more likely to get connected to the tree.



(a) (b) (c)

Fig. 3: Online replanning in a partially known environment. (a) The
planner must find a solution path to any of the goal regions (in green),
while avoiding the obstacles (in orange). Some of the obstacles are
initially unknown (dashed line). (b) As the robot follows the path,
onboard sensors can detect initially unreported obstacles (sensor’s
field of view shown in grey), thus discarding part of the previous
solution path. (c) Once the robot approaches the goal destination, it
discovers that the goal region is partially occluded, thus requiring
to find a solution path to an alternative goal sample. The traveled
path is shown in blue.

Such a planner was originally presented in our previous work,
and we refer the reader to [29] for more detailed information.

B. Online Replanning in Partially Known Environments

In our previous work [29], we assumed the robot has a
complete model of the world. However, missing information
(e.g., due to occlusion) or changing information (obstacles
may change location) require constant replanning. Hence
in this paper, we extend our start-to-goal-region planning
approach of [29] by using a strategy, which enables fast
replanning with minimal computational overhead [30]. At the
beginning of each planning cycle, the planner starts from the
remainder of the plan of the previous cycle that has not been
executed yet. That remainder is rechecked for validity and
the valid parts are added to the search tree that the planner
maintains. This tree is then grown until a new valid plan is
found (which may be instantaneous if nothing the robot’s
world model has changed).

This strategy encourages the robot to keep using a given
goal sample as new information about the environment is
sensed. If previously unseen obstacles make the considered
goal sample unfeasible (or just very difficult), the planner
can automatically discover an alternative valid goal sample
without the need for a higher-level reasoning strategy. This
last part is important, because it avoids having the robot make
arbitrary decisions about how much time needs to be spent at
different levels of abstraction. Let us consider, for example,
that a user request requires a robot to bring an object that is
on a table. Even if the robot knows the location of both the
object and the table, an initially unknown object that is in the
middle of the straight path to the table, e.g., a chair, would
require the robot to find an alternative path to get close to the
the object. The behavior of this online replanning approach
is presented in Fig. 3.

IV. SYSTEM OVERVIEW

The collaboration approach presented in the previous
section can implemented in different ways. This section

presents one particular implementation, which was used for
validation purposes. The following sections will discuss some
aspects of such a configuration.

A. Hardware Configuration

In our setup, a Fetch mobile manipulator [31] can move
around, while it is tracked by a set of Vicon cameras [32].
Some static elements in the surroundings that are used in ma-
nipulation requests, such as manipulation objects (e.g., cans,
blocks and cubes) and placement locations (e.g., tables and
cabinets), are also tracked and reported to the Fetch. Other
elements in the scene can be detected by the robot’s onboard
perception sensors. A human user who interacts with the
robot is equipped with a Magic Leap [33], which is a head-
mounted AR device that also includes a portable computer and
a remote control. The Fetch, the Magic Leap and the Vicon
tracking system are all connected through a WiFi network.

B. HARS Specification and Preview via AR

As it was explained before, in this paper our approach
deals with a specific case of HARS, in which virtual objects
are used to specify the desired state of their real counterparts.
In our AR interface, a user can fetch a virtual object from an
inventory (see Fig. 4a), and simply manipulate and place the
virtual object in the desired location. Furthermore, our AR
interface allows the user to define an admissible placement
region where the object can be placed. Such a region is
visualized as a cuboid that is built according to the ranges in
the x, y and z axes, which are modified by interacting with the
Magic Leap’s remote control (see Fig. 4b). The user can also
indicate orientation preferences, which is done by selecting if
a rotation axis is fixed according to the virtual object’s pose,
or if it can take any value from [0,2π) (see Fig. 4b). All this
functionality is intuitive and supported by the Magic Leap.
With our proposed work, all user preferences are captured
through the notion of goal regions.

Furthermore, the proposed AR interface allows the user
to manipulate multiple objects. This is done by sequencing
the solution of multiple HARS (see Fig. 4c). In this case, our
approach proposes to keep track of the order in which each
virtual object was placed by the user, so that the robot can
follow the same order. Finally, the AR interface also shows
the user a preview of the expected robot motion before its
execution. Such a motion preview is superimposed on the
real robot, thus giving the user the opportunity of approving
or requesting an alternative solution (see Fig. 4d).

C. Coordinate Systems Consistency

To be able to convey information, such as goal queries
and robot pose, back and forth between the AR device and
the robot they need to share a common frame of reference.
This is particularly crucial since the Magic Leap, running
Unity [34], assigns itself an arbitrary frame of reference upon
boot, while the reference frame of the robot (Fetch) depends
on the localization system used (Vicon, in our setup). For this
reason the user needs to step through a calibration step each
session to align the virtual and real worlds. This requires the



(a) (b) (c) (d)

Fig. 4: Proposed AR interface. (a) Inventory of virtual objects. (b) A virtual cylinder is placed over a real table in order to command a
robot to place a real wooden cylinder. The preferences in position are given by a cuboid, whose size can be modified through the Magic
Leap’s controller. The orientation preferences are indicated in the rotation axes. (c) A sequence of HARS can be defined by placing multiple
virtual objects, thus commanding the robot to arrange multiple objects. (d) A virtual robot is superimposed on the real robot in order to
visualize the computed motions.

Fig. 5: Calibration to align the virtual Magic Leap (ML) world
and real world. This is done via a real object (RO) and a virtual
counterpart (VO).

user to manipulate a virtual object and overlay it on its real
Vicon tracked counterpart. Once satisfied with the overlay, the
user can request to calculate and save the transform that maps
the difference in frames. Onwards, all information pertaining
to poses is pumped through this transform or its inverse.
Figure 5 explains this calibration setup. We are interested in
computing T ML

V ICON and we can assume knowledge of T ML
VO

and TV ICON
RO . Once the real object is overlaid with the virtual

object, we can perform basic matrix operations to calculate
T ML

V ICON according to the equation, T ML
V ICON = T ML

VO (TV ICON
RO )−1.

V. TEST SCENARIOS

This section presents different test scenarios, which seek
to demonstrate the capabilities of our approach in cases that
are relevant for common human–robot collaboration tasks.

A. Single-object Request

Let us consider a collaborative scenario, which includes
manipulation objects such as wooden cylinders and wooden
blocks initially placed on a shelf. In this first test scenario, a
HARS allows a user to command a robot to fetch an object
from its initial position on the shelf (see Fig. 6), then and
place the object in a desired location, which in this particular

example corresponds to a table (see Fig. 7). In order to do so,
the user, through the AR interface explained in Section IV,
retrieves a virtual object (a cylinder or a block) and places it
over the table, while also defining an admissible placement
goal region (see Fig. 4b). Such interaction with the virtual
object allows the user to provide the robot with a high-level
specification for placing a real-world object, without providing
low-level motion details on how to accomplish this task.

In order to solve this HARS, the robot first navigates close
to were the wooden cylinders are, then the robot grasps
one from the shelf. The location to navigate to is chosen
heuristically to maximize the odds of being able to grasp
several objects of the same type.

After getting close to the objects, the Fetch uses its sensors
to inspect the available objects and their surroundings, so that
the robot can detect any unreported obstacle (see Fig. 6c).
The robot creates a grasping goal region that includes the
gripper poses for grasping each object. In some cases, some
of the gripper poses to grasp the available objects can be
difficult to reach due to other nearby objects, which can create
occlusions and narrow passages. Nonetheless, the approach
presented in Section III provides a mechanism to prioritize
those objects that are easier to reach. It should be noted that
our framework allows maximum flexibility to the user, and
rids the user from the burden to specify exactly which object
will be picked up.However, if the user wants a specific object,
this is also allowed by our approach (e.g., the user can specify
and require an object-type which includes only the object of
interest).

Once the Fetch has picked up an object (see Figs. 6d),
another motion query is required to move close enough to
the table. Such a motion query is similar to the initial one
to approach the objects on the shelf, and since the robot
must deal with a partially known environment. After getting
close to the table, the robot needs to inspect the table while
looking for unreported objects (see Figs. 7a, 7b). Then, the
manipulator of the Fetch robot must place the object on
any available spot in its placement goal region. For this last
motion query, the placement goal region corresponds to the
position and orientation constraints specified by the user via
the AR interface (see Fig. 6a). Fig. 7c depicts the Fetch after



(a)

(b)

(c) (d)

Fig. 6: (a) A user specifies a HARS by placing a virtual cylinder and
defining a placement goal region. (b) A navigation goal region is
established to approach the shelf where the real cylinders are. The
shelf and cylinders are tracked and reported by the Vicon cameras.
(c) The Fetch inspects the available cylinders in order to detect other
unreported obstacles. (d) The Fetch grasps one of the cylinders in
order to continue solving the HARS as shown in Fig 7.

solving and executing this latter start-to-goal-region motion
query to place a wooden cylinder on the table.

In summary, upon receiving the initial high-level specifica-
tion, the Fetch generates each of the described motion queries
without additional input from the user. Once the Fetch finds
a valid motion plan for a given query, an animated preview
of that motion is displayed to the user. The user then has the
option to approve the current motion plan, tell the Fetch to
recalculate the motion in order to find an alternative solution,
or to abort the current action entirely. While this level of
interactivity can take place for each individual motion query,
the option also exists to allow the Fetch to complete the
entire high-level task without interruption. This gives the user
the ability to provide various levels of supervision over the
Fetch’s completion of the high-level task, which is especially
useful when the Fetch is given a sequence of HARS to perform,
as described below.

B. Multi-object Requests

Let us now consider a second scenario, which also includes
wooden cylinders and wooden blocks that are initially placed
over a cabinet. This time, however, the user wants to command
the robot to arrange a set of objects (e.g., to stack them). This
particular task can be specified by sequencing multiple HARS.
Similar as in our previous test scenario, the user retrieves
and places virtual objects through the AR interface, which
also keeps track of the specific order in which the virtual
objects are manipulated and placed. Although in this case
the user decides the placement order for each object, the
HARS provides no constraints on how to get and place the
real objects.

To attend this user request, the robot follows the strategy
explained in the previous example, i.e., the robot approaches

(a)

(b) (c)

Fig. 7: In order to complete the HARS specified by the user (as shown
in Fig. 6a), a navigation goal region is established to approach the
placement location. (a), (b) The robot Fetch uses its onboard cameras
to inspect the table to detect any initially unknown object. (c) The
robot places the wooden cylinder on the table. In this particular
case, a bag has been placed on the table, partially occluding the
placement goal region.

Fig. 8: The Fetch received a HARS to stack three wooden cylinders
on a table. The arrange of virtual cylinders can be observed
superimposed the real cylinders.

the objects, picks up one of the objects, then the robot moves
close to the placement region, and finally the Fetch places the
object. These consecutive motion queries are repeated n times,
where n corresponds to the number of virtual objects set via
the AR interface. Fig. 8 depicts the Fetch after solving and
executing the start-to-goal-region motion queries to arrange
a group of objects on the table.

VI. DISCUSSION AND FUTURE WORK

We have presented a new high-level AR interface to
command and collaborate with robots. This new interface
allows the user to specify high-level goals, which we have
called High-level Augmented Reality Specifications (HARS),
while letting the robot determine the feasible motions that
achieve these goals. We have also proposed to use motion
planning techniques, which can solve robot motion queries
with high-level goals that correspond to regions in the
configuration space. This latter characteristic increases the
autonomy and autonomous decision making capabilities of
a robot, thus allowing the user to provide more general and
open requests.

To evaluate the proposed approach, we presented a proof
of concept for attending one case of HARS, in which a user
can manipulate a virtual object in order to command a robot
to fetch and place a real object. We also demonstrated that



such a type of HARS can be sequenced, thus allowing the
user to give robots more complicated tasks such as arranging
and stacking multiple objects.

This paper lays the foundation for further investigations
of ways that AR and planning can be integrated in human-
robot collaboration applications. One direction that will be
investigated in future work is the perceived utility of our
approach through user studies. Besides considering potential
efficiency improvements in collaborative tasks, it would also
be interesting, for example, to assess the combination of the
proposed approach with other interaction modalities, such as
speech and gestures.

ACKNOWLEDGMENT

This work would have not been possible without the
support of Zachary Kingston in extending MoveIt [35] and
OMPL [36] for the presented motion planning strategies. The
authors would like to thank Samantha Gilmore for her initial
exploration and development over the Magic Leap as part of
the COMP 650 (Physical Computing) class at Rice University.
The authors would also like to thank Vladimir Vincan for his
insight and discussion in the coordinate systems consistency.

REFERENCES

[1] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey
of robot learning from demonstration,” Robotics and Autonomous
Systems, vol. 57, no. 5, pp. 469–483, 2009.

[2] B. Burger, I. Ferrané, F. Lerasle, and G. Infantes, “Two-handed gesture
recognition and fusion with speech to command a robot,” Autonomous
Robots, vol. 32, no. 2, pp. 129–147, Feb. 2012.

[3] S. A. Green, M. Billinghurst, X. Chen, and J. G. Chase, “Human-Robot
Collaboration: A Literature Review and Augmented Reality Approach
in Design,” Intl. J. of Advanced Robotic Systems, vol. 5, no. 1, 2008.

[4] S. Charoenseang and T. Tonggoed, “Human–Robot Collaboration with
Augmented Reality,” in C. Stephanidis (ed) HCI 2011 – Posters’
Extended Abstracts. Springer-Verlag, 2011, vol. 174, pp. 93–97.

[5] C. Perez Quintero, S. Li, M. K. Pan, W. P. Chan, H. Machiel Van
der Loos, and E. Croft, “Robot Programming Through Augmented
Trajectories in Augmented Reality,” in IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems. IEEE, Oct 2018, pp. 1838–1844.

[6] S. Ong, A. Yew, N. Thanigaivel, and A. Nee, “Augmented
reality-assisted robot programming system for industrial applications,”
Robotics and Computer-Integrated Manufacturing, vol. 61, 2020.

[7] D. Whitney, E. Rosen, E. Phillips, G. Konidaris, and S. Tellex,
“Comparing Robot Grasping Teleoperation across Desktop and Virtual
Reality with ROS Reality,” in Intl. Symp. on Robotics Research, 2017,
pp. 1–16.

[8] D. Whitney, E. Rosen, D. Ullman, E. Phillips, and S. Tellex, “ROS
Reality: A Virtual Reality Framework Using Consumer-Grade Hardware
for ROS-Enabled Robots,” in IEEE/RSJ Intl. Conf. on Intelligent Robots
and Systems, 2018, pp. 5018–5025.

[9] S. Tellex, P. Thaker, R. Deits, T. Kollar, and N. Roy, “Toward
Information Theoretic Human-Robot Dialog,” in Robotics: Science
and Systems (RSS). 2012.

[10] R. A. Knepper, S. Tellex, A. Li, N. Roy, and D. Rus, “Recovering
from failure by asking for help,” Autonomous Robots, vol. 39, no. 3,
pp. 347–362, Oct 2015.

[11] D. Whitney, E. Rosen, J. MacGlashan, L. L. S. Wong, and
S. Tellex, “Reducing errors in object-fetching interactions through
social feedback,” in IEEE Intl. Conf. on Robotics and Automation.
IEEE, May 2017, pp. 1006–1013.

[13] E. Sibirtseva, D. Kontogiorgos, O. Nykvist, H. Karaoguz, I. Leite,
J. Gustafson, and D. Kragic, “A Comparison of Visualisation Methods
for Disambiguating Verbal Requests in Human-Robot Interaction,” in
IEEE Intl. Symp. on Robot and Human Interactive Communication.
2018, pp. 43–50.

[12] V. Villani, F. Pini, F. Leali, and C. Secchi, “Survey on human–robot
collaboration in industrial settings: Safety, intuitive interfaces and
applications,” Mechatronics, vol. 55, pp. 248–266, Nov 2018.

[14] H. Hedayati, M. Walker, and D. Szafir, “Improving Collocated Robot
Teleoperation with Augmented Reality,” in ACM/IEEE Intl. Conf. on
Human-Robot Interaction. 2018, pp. 78–86.

[15] H. Fang, S. Ong, and A. Nee, “Interactive robot trajectory
planning and simulation using Augmented Reality,” Robotics and
Computer-Integrated Manufacturing, vol. 28, pp. 227–237, 2012.

[16] A. Gaschler, M. Springer, M. Rickert, and A. Knoll, “Intuitive robot
tasks with augmented reality and virtual obstacles,” in IEEE Intl. Conf.
on Robotics and Automation. IEEE, May 2014, pp. 6026–6031.

[17] M. Ostanin and A. Klimchik, “Interactive Robot Programing Using
Mixed Reality,” IFAC-PapersOnLine, vol. 51, no. 22, pp. 50–55, 2018.

[18] M. E. Walker, H. Hedayati, and D. Szafir, “Robot Teleoperation with
Augmented Reality Virtual Surrogates,” in ACM/IEEE Intl. Conf. on
Human-Robot Interaction, 2019, pp. 202–210.

[19] H. Peng, J. Briggs, C.-Y. Wang, K. Guo, J. Kider, S. Mueller,
P. Baudisch, and F. Guimbretière, “RoMA: Interactive Fabrication
with Augmented Reality and a Robotic 3D Printer,” in CHI Conf. on
Human Factors in Computing Systems. 2018.

[20] J. Neves, D. Serrario, and J. N. Pires, “Application of mixed reality in
robot manipulator programming,” Industrial Robot, vol. 45, no. 6, pp.
784–793, 2018.

[21] J. Chong, S. Ong, A. Nee, and K. Youcef-Youmi, “Robot programming
using augmented reality: An interactive method for planning collision-
free paths,” Robotics and Computer-Integrated Manufacturing, vol. 25,
no. 3, pp. 689–701, 2009.

[22] Y. Sarai and Y. Maeda, “Robot programming for manipulators
through volume sweeping and augmented reality,” in IEEE Conf. on
Automation Science and Engineering. 2017, pp. 302–307.

[23] P. M. Grice and C. C. Kemp, “In-home and remote use of robotic
body surrogates by people with profound motor deficits,” PLOS ONE,
vol. 14, no. 3, p. e0212904, Mar 2019.

[24] B. Akan, A. Ameri, B. Cürüklü, and L. Asplund, “Intuitive industrial
robot programming through incremental multimodal language and
augmented reality,” in IEEE Intl. Conf. on Robotics and Automation,
May 2011, pp. 3934–3939.

[25] S. Blankemeyer, R. Wiemann, L. Posniak, C. Pregizer, and A. Raatz,
“Intuitive robot programming using augmented reality,” Procedia CIRP,
vol. 76, pp. 155–160, 2018.

[26] T. Chakraborti, S. Sreedharan, A. Kulkarni, and S. Kambhampati,
“Projection-Aware Task Planning and Execution for Human-in-the-Loop
Operation of Robots in a Mixed-Reality Workspace,” in IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems. 2018, pp. 4476–4482.

[27] E. Rosen, D. Whitney, E. Phillips, G. Chien, J. Tompkin, G. Konidaris,
and S. Tellex, “Communicating Robot Arm Motion Intent Through
Mixed Reality Head-mounted Displays,” in Intl. Symp. on Robotics
Research, Aug 2017, pp. 1–16.

[28] A. ten Pas, M. Gualtieri, K. Saenko, and R. Platt, “Grasp Pose
Detection in Point Clouds,” The Intl. J. of Robotics Research, vol. 36,
no. 13-14, pp. 1455–1473, Dec 2017.

[29] J. D. Hernández, M. Moll, and L. E. Kavraki, “Lazy Evaluation of
Goal Specifications Guided by Motion Planning,” in IEEE Intl. Conf.
on Robotics and Automation. May 2019, pp. 944–950.

[30] J. D. Hernández, M. Moll, E. Vidal, M. Carreras, and L. E. Kavraki,
“Planning feasible and safe paths online for autonomous underwater
vehicles in unknown environments,” in IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems. 2016, pp. 1313–1320.

[31] M. Wise, M. Ferguson, D. King, E. Diehr, and D. Dymesich, “Fetch
& Freight: Standard Platforms for Service Robot Applications,” in
Workshop on Autonomous Mobile Service Robots, held at the 2016
Intl. Joint Conf. on Artificial Intelligence, 2016.

[32] Vicon. Vicon Motion Capture System. [Online]. Available: https:
//www.vicon.com

[33] Magic Leap, Inc. Magic Leap One. [Online]. Available: https:
//www.magicleap.com/

[34] Unity Technologies. Unity. [Online]. Available: https://unity.com/
[35] I. A. Şucan and S. Chitta, “MoveIt!” [Online]. Available:

http://moveit.ros.org
[36] I. A. Şucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning

Library,” IEEE Robotics & Automation Magazine, vol. 19, pp. 72–82,
2012.


