
Planning Feasible and Safe Paths Online for Autonomous
Underwater Vehicles in Unknown Environments

Juan David Hernández, Mark Moll, Eduard Vidal, Marc Carreras, and Lydia E. Kavraki

Abstract— We present a framework for planning collision-
free and safe paths online for autonomous underwater vehicles
(AUVs) in unknown environments. We build up on our previous
work and propose an improved approach. While preserving its
main modules (mapping, planning and mission handler), the
framework now considers motion constraints to plan feasible
paths, i.e., those that meet vehicle’s motion capabilities. The
new framework also incorporates a risk function to avoid
navigating close to nearby obstacles, and reuses the last best
known solution to eliminate time-consuming pruning routines.
To evaluate this approach, we use the Sparus II AUV, a
torpedo-shaped vehicle performing autonomous missions in a
2-dimensional workspace. We validate the framework’s new
features by solving tasks in both simulation and real-world in-
water trials and comparing results with our previous approach.

I. INTRODUCTION

Most common and potential applications of autonomous
underwater vehicles (AUVs) include imaging and inspecting
different kinds of structures such as confined natural environ-
ments [1], in-water ship hulls [2], natural structures on the
sea floor [3], as well as collecting oceanographic information
as biological, chemical, and even archaeological data. Albeit
these applications share some common requirements with
others in the domain of mobile robots (e.g., localization,
mapping, vision, etc.), navigating autonomously while con-
ducting such type of tasks in an underwater milieu differs in
certain factors, such as the presence of external disturbances
(currents), low-range visibility and limited navigation accu-
racy.

One option to deal with such constraints is to use a planner
capable to plan collision-free paths online, thus allowing
to adapt and replan in order to overcome global position
inaccuracy, especially when navigating in close proximity to
nearby obstacles. In this respect, Petillot et al. [4] proposed
a first approach for underwater vehicles to plan paths while
avoiding obstacles online, which used real-world multibeam
sonar datasets of acoustic images obtained by a remotely
operated vehicle (ROV). However, they validated their ap-
proach by guiding a simulated model. Moreover capability

Work on this paper by J.D. Hernández, E. Vidal, and M. Carreras has
been supported by the EXCELLABUST and ARCHROV Projects under the
Grant agreements H2020-TWINN-2015, CSA, ID: 691980 and DPI2014-
57746-C3-3-R, respectively, and the Colombian Government through its
Predoctoral Grant Program offered by Colciencias. Work on this paper by
M. Moll and L.E. Kavraki has been supported in part by NSF IIS 1317849.

J.D. Hernández, E. Vidal, and M. Carreras are with the Underwater
Vision and Robotics Research Center (CIRS), University of Girona,
Spain. juandhv@eia.udg.edu, rc4559@gmail.com,
marc.carreras@udg.edu. M. Moll and L.E. Kavraki are with the
Department of Computer Science at Rice University, Houston, TX, USA.
{mmoll, kavraki}@rice.edu

Fig. 1: Sparus II, a torpedo-shaped AUV.

for mapping and planning online and simultaneously was
not proven. Along this line, Maki et al. [5] presented a
method to plan paths online, which used landmarks to guide
an AUV. However, their approach did not permit replanning
maneuvers and results were obtained in a water tank, i.e., in
a highly controlled environment.

To cope with some of the aforementioned limitations,
we presented a framework for solving start-to-goal queries
in unknown environments for AUVs [6]. In doing so, the
framework establishes an online mapping and path planning
architecture that leads the AUV to navigate while building,
simultaneously, a 2-dimensional (2D) representation of vehi-
cle surroundings. The framework has a mapping module that
uses Octomaps [7] to represent the environment, a planning
module that calculates online collision-free paths, and a
mission handler that coordinates the planner and the AUV
controllers.

Although the framework succeeded in navigating to a
specified goal position in an unknown environment, simu-
lation and real-world results also outlined different aspects
that could be enhanced such as decreasing computation time
and reducing the number of replanning maneuvers. With
these aspects in mind, in this paper we extend, improve
and validate our framework for planning collision-free and
feasible (doable) paths for a torpedo-shaped AUV. The new
framework can be used not only for AUVs, but also for
ground or aerial vehicles that deal with online computation
constraints in unknown environments.

While preserving characteristics from our previous
work [6], the main contributions of this paper are 1) the
incorporation of motion constraints as a mechanism to avoid
generating unfeasible paths, thus reducing the number of
potentially expensive replanning maneuvers, 2) a path op-
timization function that combines collision risk and path
length, for which we have defined different formulations to
trade off its computational speed and accuracy, 3) the reuse
of the last best known solution as a starting point for an

To appear in the Proc. of the 2016 IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems.

anytime tree-based path planning approach, which permits
to eliminate time-consuming pruning procedures previously
used, and 4) the experimental evaluation of the new planning
framework using the Sparus II AUV (see Fig. 1) in a real-
world setting. Results demonstrate the suitability of our
approach for the aforementioned applications.

II. FRAMEWORK FOR PLANNING FEASIBLE AND
SAFE PATHS ONLINE FOR AUVS

Figure 2 shows the path planning framework pipeline
whose structure remains as originally proposed in [6]. While
the mission handler uses the same communication protocol
to coordinate the other two functional modules, and the
mapping module continues representing the environment
with Octomaps [7], the planning module, on the other
hand, contains major novelties. This section details on such
changes, which seek to obtain a better quality solution as far
as path length and vehicle safety are concerned.

Fig. 2: Main modules of the online planning framework.

A. Planning Under Motion Constraints

In this work, we consider an AUV that navigates at a
constant depth and has two back thrusters for motion on
the horizontal plane, but no thruster for lateral motion. This
means that the vehicle is subject to motion constraints or
differential constraints. Planning under such restrictions is
commonly known as kinodynamic motion planning, a term
introduced by Donald et al. [8], which refers to planning
collision-free motions by considering the limits of feasible
system maneuvers expressed by differential equations. In the
particular case of an AUV, this corresponds to a second-order
differential equation of an underactuated system. However,
for online path planning purposes, we represent the non-
holonomic torpedo-shaped AUV as a simple car-like vehicle
with dynamics defined by:ẋẏ

ψ̇

 =

v.cos (ψ)v.sin (ψ)
r

 , (1)

where q = [x, y, ψ]
T is the state of the vehicle that

includes its 2D position and orientation with respect to an

inertial reference frame, and q̇ =
[
ẋ, ẏ, ψ̇

]T
is the first time

derivative that depends on the state itself and the control
inputs, linear/surge speed (v) and rate of turn (r). From

Eq. (1), it can be concluded that the configuration space
(C-Space) of a torpedo-shaped AUV performing tasks in a
plane is 3-dimensional, i.e., each q ∈ SE(2) = R2 × S .

Sampling-based approaches, such as the rapidly-exploring
random tree (RRT) [9], have been demonstrated efficient for
solving path planning problems for this type of systems [10].
The RRT is mainly composed of two procedures, sample and
extend. The first of them randomly samples configurations
to explore the C-Space, while the second expands the tree
towards those configurations. In the case of expanding an
RRT under differential constraints, new states (tree nodes)
are obtained by integrating differential equations such as
Eq. (1). Different variants of this approach have been pro-
posed for aerial and terrestrial vehicles in order to generate
smooth and feasible paths. An example of them is one in
which a standard RRT is used to find a series of collision-
free waypoints, which are then interpolated by using a cubic
Bézier spiral to generate a smooth path to be followed by
an unmanned aerial vehicle (UAV) [11]. Another alternative
uses an RRT that is expanded by considering not only the
vehicle dynamic model, but also the controller behavior [12].
Nonetheless, their major drawback is the lack of optimality
in any possible metric.

(a) (b)

Fig. 3: (a) an Octomap represents a 3D environment that is
composed of a series of equidistant blocks. (b) a top view
shows a collision-free path that connects a start and goal
configurations. The path was obtained by expanding an RRT
using Eq. (1).

The solution path presented in Fig. 3b is an example of
solving a start-to-goal query for an AUV, in which Eq. (1)
has been used to expand an RRT, thus calculating a collision-
free path that connects an initial and final configuration
(position and orientation). Furthermore, given that Eq. (1)
describes the vehicle’s motion capabilities while navigating
at constant depths, the solution paths are more likely to be
feasible for a non-holonomic AUV, such as the Sparus II.
However, as occurs with similar approaches mentioned be-
fore, their major drawback is the lack of optimality, a
characteristic of most sampling-based approaches, at least in
their original form. This aspect could become into a critical
requirement for real-world missions that require optimization
criteria, such as visibility for gathering information, vehicle
autonomy, or even vehicle safety when navigating in close-
proximity to nearby obstacles.

Karaman and Frazzoli presented the RRT* [13], a vari-
ant that includes the asymptotic optimality property. Its

main difference is a routine that checks if reconnecting
new state’s nearest nodes improves their associated cost,
thus implying that the probability of obtaining an optimal
path increases over time (see Fig. 4a). For doing this,
the RRT* requires a steering function which permits such
states (nodes) reconnection, which in the case of systems
under differential constraints calculates the required input
to dynamically evolve the system from a given state to a
desired one. However, defining such function may become
an intractable nonlinear control problem, especially when
considering online computation constraints.

As an alternative to define a steering function, in this paper
we adopt the Dubins vehicle model [14], whose dynamics
has the general form presented in Eq. (1). Using three
possible maneuvers as input, left, straight or right, Dubins
curves define six possible paths that characterize the optimal
trajectory between two states for a Dubins vehicle. This
approach permits us to include motion constraints and use
the RRT* (see Fig. 4b).

(a) (b)

Fig. 4: (a) RRT* expansion without using differential con-
straints, solution and intermediate states, for a start-to-goal
query. (b) resulting path for the same query (including ori-
entation) using an RRT* and Dubins maneuvers as steering
function.

B. Planning Safe Paths Using Risk Functions

Conducting underwater missions with AUVs is a chal-
lenging task, especially when the vehicle is kinematically
constrained as occurs with a non-holonomic AUV. However,
including differential constraints to the path/motion planner
may not suffice to minimize the risk of colliding with nearby
obstacles, especially if the vehicle is exposed to external
perturbations that do not permit to accurately follow the
calculated path. Figure 5a, for instance, shows a feasible
path, i.e., one that considers the vehicle motion constraints,
but leads the vehicle close to nearby obstacles, especially
in turning maneuvers. Bearing this in mind, we now extend
our problem to not only plan feasible paths, but to attempt
to minimize the risk of colliding with the surroundings. To
accomplish it, we propose an optimization objective that
combines the length and the safety of the path. In this section,
we present different approaches to establish the safety of the
path, which are evaluated and compared in Sec. III.

1) Path Length + Clearance: a straightforward option is
to maintain a minimum safe distance, or clearance, to the
obstacles. For doing so, it is necessary to define a weighted
metric that combines path length and clearance in order to

minimize detrimental effects in the path quality, thus defining
the associated cost of each configuration when planning with
an RRT*. However, this approach has two main drawbacks,
its high computational cost and the need to correctly specify
weights to obtain a balanced metric, which is a non-trivial
problem [15].

2) Risk Zones: including clearance calculation is espe-
cially expensive for sampling-based path planning methods,
since it has to be performed for each sampled configuration
and its intermediate steps when connecting to the others
(e.g., RRT* expansion). As an alternative, we propose to
heuristically establish risk zones around the vehicle, as
shown in Fig. 6a. The red and blue zones represent the
collision and the non-risk zones, respectively, while the
others (orange, yellow and green) have associated decreasing
risk values as collisions move away from the vehicle position,
as presented in Eq. (2) where n is the number of zones,
zonei−1 is closer than zonei to the collision zone, riski−1 >
riski > . . . > riskn > 1.

Risk(q) =



risk1, if Collision(zone1)

risk2, if Collision(zone2)

. . . , . . .

riskn, if Collision(zonen)

1, if not Collision(any zone)

q = [x, y, ψ]T (2)

In order to combine this function with the path length, the
total accumulated cost associated with each configuration is
calculated as the integral of risk with respect to distance,
as presented in Eq. (3). Such a cost function not only
combines the risk and the length associated to a path, but
also establishes the optimization criterion required in order
to plan feasible and safe paths. A visual comparison between
paths calculated using only the path length and the risk zones
can be observed in Fig. 5.

Cost(q) =

∫ q

0

Risk(q) dq (3)

Finally, it is important to highlight that checking for
collision from the inner to the outer zone, for a limited
number of zones, is computationally more efficient than cal-
culating position clearance. This is especially true when the
environment is not described with a simplified representation
(e.g., convex obstacles), where distance to obstacles can be
rapidly calculated, but instead a more detailed representation
is used (e.g., Octomaps).

3) Direction Vectors Risk: the previous approach attempts
to penalize those configurations close to nearby obstacles
by specifying a risk value depending on the affected zone.
However, another alternative is to limit such evaluation to the
directions defined by the possible maneuvers of the vehicle
at the considered time. We call this approach direction
vectors risk. We now define three (3) vectors in the straight
and lateral motion directions and, instead of checking for
complete zones, we check points for collision along the

vectors and assign risk values with the same principle as
done with risk zones, i.e., moving away from the vehicle
decreases the risk (see Fig. 6b). Given that we are using
Octomaps to represent the environment, checking collision
for single points is more efficient than doing the check for
zones (multiple points).

(a) (b)

Fig. 5: (a) RRT* expansion for a start-to-goal query using
Dubins curves with path length as cost criterion. (b) RRT*
expansion with risk zones cost criterion. It is worth noting
that the resulting path is far from corners in turning maneu-
vers and attempts to stay in the middle of the corridor when
navigating between two obstacles.

(a) (b)

Fig. 6: Sparus II AUV navigating between two obstacles, (a)
an example of risk zones around the vehicle and (b) direction
vectors risks, where it is observed how the risk decreases as
moves away from the vehicle (red means high risk, while
blue low risk).

C. Planning Feasible and Safe Paths Online

In the previous two sections, we presented our approaches
to plan collision-free paths that are intended to be feasible
(doable) and safe for a torpedo-shaped AUV. However, and
as initially stated, our main goal is to provide the AUV
the capability to navigate autonomously in an unknown
environment, which means to map and plan paths simul-
taneously and online. In this section, we present two new
characteristics with respect to our previous work [6] that
contribute to satisfy online computation constraints while
planning feasible and safe paths. Furthermore, we summarize
the planning framework pipeline.

1) Opportunistic Risk Checking: without initial informa-
tion of surroundings, the AUV is required to incrementally
map and continuously (re)plan collision-free paths according
to its partial knowledge of the environment. Under this
situation, it is unnecessary to attempt to calculate the risk
associated to configurations that lie in undiscovered areas.

With this in mind, we propose to use what we call Oppor-
tunistic Risk Checking. With this strategy, we assume that any
configuration (sampled or resulting from a tree expansion)
that belongs to unexplored areas is safe (i.e., maximum
clearance or minimum risk), thus avoiding unnecessary risk
checking routines. This is possible within our framework
since it uses Octomaps to represent the environment, which
permit to establish in advance if a configuration lies in an
explored area or not. Section III shows different tests that
demonstrate the advantages of using this strategy.

2) Reusing the Last Best Known Solution: in our previous
work [6], we presented a framework that used a tree-based
path planning method to solve start-to-goal queries, in which
a tree of configurations was periodically traversed, checked
and pruned as the vehicle moved and explored the environ-
ment. The main objective was to preserve the information
about collision-free areas and known paths, while discarding
those that become invalid. We now present a similar iterative
scheme, but instead of conserving the whole tree, we propose
to use the last best known solution as the remainder of the
path calculated in the previous planning cycle, which starts
at the point that the vehicle will reach at the next execution
cycle. Furthermore, using last solution to start a new planning
cycle implies not only a new valid solution according to
an updated map, but also one that is at least as optimal as
the previous one. Finally, this alternative approach avoids
checking a subtree in which many of its configurations have
probably become invalid because of the Opportunistic Risk
Checking previously explained.

3) Framework for Online Planning Feasible and Safe
Paths: throughout the previous sections, we have pre-
sented different characteristics that, together, endow a non-
holonomic AUV with the capability to simultaneously map
and plan feasible and safe paths online through an unknown
environment. These characteristics extend our previous plan-
ning framework [6]. Algorithm 1 presents the execution
pipeline to incrementally solve a start-to-goal query. It also
summarizes the main contributions to the planning module
presented in this paper (see [6] for further details concerning
to mapping and mission handler modules).

In Algorithm 1, the main input parameters to solve a
query are the start and goal configurations (position and
orientation). To initialize the incremental solving routine, we
select the RRT* as the planner that computes paths for a
Dubins vehicle, set an empty list as the Last Best Known
Solution, and define qnew start as the starting configuration
that will change as the vehicle conduct the mission (lines 2-
4). To incrementally find a path to the goal (line 5), a main
loop requests an updated version of the map (Octomap,
lines 6-7), informs the planner to start from Last Best Known
Solution (line 8), uses the planner to find a path (line 9),
and gets the solution (line 10). At this point, the planner has
provided a valid path that must be as optimal as the previous
one, except that it has produced a longer but safer path.
Before concluding a planning cycle, the incremental solving
routine checks if a replanning maneuver has been requested.
This would imply that the mission handler has detected that

the path from the current configuration to the last waypoint
(WP) sent to the AUV controllers is not feasible and might
lead the vehicle to a collision, thus implying that a new path
should be found from current configuration (see lines 11-13).
Finally, if a new WP is required, the last qnew start will be
sent to the mission handler (lines 14-15).

It is important to note that even if the previous (Last Best
Known) solution is not in collision with an updated version
of the map, the planning module will use it as a starting
point (line 8) in order to attempt to improve such existing
solution during a new planning cycle (lines 9 and 10).

Algorithm 1: incSolveStart2Goal(qstart, qgoal)
Input:
qstart: Start configuration.
qgoal: Goal configuration.
begin1

planner ← RRT*(DubinsStateSpace)2

last best known solution← {}3

qnew start ← qstart4

while not stop condition do5

map←reqUpdatedMap()6

planner.updateMap(map)7

planner.startFrom(last best known solution)8

planner.solve(qnew start, qgoal)9

last best known solution←10

planner.getSolution()
if replanning requested then11

qnew start ← getCurrentConf()12

last best known solution← {}13

else if new waypoint requested then14

sendWP(last best known solution.pop())15

end16

III. RESULTS

In order to assess the new planning framework capabilities,
we used the Sparus II (see Fig. 1), an AUV rated for depths
up to 200m with hovering capabilities, which has two back
thrusters for motion on the horizontal plane and one vertical
thruster, i.e., it can be actuated in surge, heave and yaw
degrees of freedom (DOF). The AUV is equipped with a
navigation sensor suite that includes a pressure sensor, a
doppler velocity log (DVL), an inertial measurement unit
(IMU) and a GPS to receive position fixes while at surface.
To perceive and detect the surroundings, a mechanically-
scanning profiler is located to cover a scan sector in the
horizontal plane in the vehicle’s direction of motion.

Sparus II AUV uses the component oriented layer-based
architecture for autonomy (COLA2) [16], a control archi-
tecture integrated with the robot operating system (ROS).
COLA2 not only operates aboard the real vehicle, but also
interacts with the underwater simulator (UWSim) [17], which
permits importing 3D environment models and simulating
the vehicle’s sensors and dynamics. We also make use

of the open motion planning library (OMPL) that offers
a convenient framework that can be adapted to specific
planning problems [18].

To validate our approach, we have selected different sce-
narios for simulation and in-water real-world experiments.
Before presenting such results, we first assess and establish
the best alternative to estimate the risk of the path for
both known and unknown environments. Then, we compare
the framework performance solving different start-to-goal
queries with respect the initial version [6] and the modified
one resulting from the changes introduced in this work.

A. Comparison of Risk Functions
As a first test scenario, we selected the external and

open area of the harbour of Sant Feliu de Guı́xols (Spain),
specifically a breakwater structure that is composed of a
series of concrete blocks of 14.5m long and 12m width,
separated by a four-meter gap with an average depth of 7m
(see Fig. 7). In this scenario, start and goal configurations
were located in opposite sides of the breakwater structure,
thus the Sparus II AUV has to move amidst the concrete
blocks. All queries have been defined to conduct missions at
a constant depth, thus the motion is restricted to a 2D task.

Fig. 7: Breakwater structure composed of a series of concrete
blocks in Sant Feliu de Guı́xols in Catalonia (Spain).

1) Planning Safe Paths in Known Environments: assum-
ing the environment as explored, which in our case implies
that we previously built an Octomap, we solved different
start-to-goal queries to obtain feasible and safe paths. Using
aforementioned alternatives (Section II-B) to estimate the
risk of the path, we generated paths as those presented in
Fig. 8, in which can be observed how the path maintains
a safe distance from nearby obstacles (zones in red), in
contrast to what occurs when only path length criterion is
considered (see Fig. 5a). Even though all approaches gen-
erate similar results, computation time differs considerably.
Figure 9 presents the average computation time required to
solve Task1 and Task2 by each approach (see Fig. 8),
where using only Path Length is clearly the least expensive
method, while Path Length + Clearance and Direction
Vectors Risk are the most and least expensive, respectively,
when including the risk of the path.

2) Planning Safe Paths in Unknown Environments: from
the last section, it can be concluded that the best computa-
tional alternative to include the risk associated to a path when
the environment is completely mapped is the Direction Vec-
tors Risk approach. However, when dealing with unknown

(a) (b)

Fig. 8: Start-to-goal queries solutions include risk functions
to obtain safe paths for (a) Task1 and (b) Task2.

Fig. 9: Average computation time, over 20 runs, required to
solve Task1 and Task2 (Fig. 8) using different approaches
to include risk of the path as the optimization criterion.

environments, i.e., exploring while mapping incrementally,
this approach may cope with situations in which partial
information of the environment does not permit to estimate
correctly the risk. In turning maneuvers, for instance, if
an obstacle is located in the lateral motion direction, and
it is not completely represented in the map so that the
direction vector risk does not coincide with the available
partial information, the Direction Vectors Risk approach will
indicate the configuration as safe, while the Risk Zones will
estimate correctly the risk. For this reason, we use the latter
approach when dealing with unknown environments.

Although planning feasible and safe paths using Risk
Zones is considerably faster than calculating clearance ex-
plicitly (see Fig. 9), having calculation times in the order
of seconds may become into a limitation when coping with
online computation constraints. In Section II-C we proposed
Reusing the Last Best Known Solution and Opportunistic
Risk Checking as mechanisms to overcome this situation. To
validate their efficiency, we solved and simulated the execu-
tion of a start-to-goal query in the virtual scenario of concrete
blocks, but without assuming any previous information of the
environment (see Fig. 10).

In assessing the utility of using Opportunistic Risk Check-
ing, we have solved the query presented in Fig. 10 with and
without using this approach. Albeit in both cases the frame-
work succeeded in conducting the task, Fig. 11a demon-
strates that without it almost 80% of the total computation
time is dedicated to risk checking routines over the whole

(a) (b)

(c) (d)

Fig. 10: (a) Sparus II initial position for different start-to-goal
queries in an equivalent virtual scenario of the breakwater
structure in UWSim [17]. (b) Sparus II starts a mission by
submerging to a specified depth, while it maps and solves
a start-to-goal query simultaneously. (c) Equipped with a
scanning profiler, it incrementally builds a 3D representation
of the environment and corrects the path, (d) to finally
approach to the specified goal configuration.

mission. In the opposite scenario, i.e., using Opportunistic
Risk Checking, its associated computation time increases as
the environment is progressively explored, but even so, it
does not consume such a percentage of computation time,
not even at the end of the mission. This is especially
noticeable when a mission does not require exploring and
mapping completely the environment. Therefore, the use of
the proposed mechanism affects not only the time required
to find a solution, since it permits a better tree expansion
(more states, see Fig. 11b), but also improves the workspace
exploration and the path quality given by the asymptotic
optimal algorithm.

B. Solving Start-to-goal Queries in Unknown Environments

Finally, to sum up the overall improvement of the proposed
framework, we have run several tests, including simulations
and real-world in-water trials. Results of these tests are
reported next.

1) Simulation Results: using simulated environments per-
mits to easily evaluate and estimate the expected system
behavior before conducting a task in a real-world scenario.
We defined two different virtual scenarios and attempted to
solve different start-to-goal queries to compare our previous
work [6] with the one presented in this paper. The first
of them is the breakwater structure mentioned throughout
previous sections (see Figs. 7, 8). In such scenario, we
attempted to solve two different queries (see Fig. 12). After
executing 10 times the same mission, we observed that the
number of successful attempts increased and the mean of
replanning maneuvers (over the total successful missions)
decreased considerably by using the new framework (see
Table I).

Virtual Scenario1: Breakwater Structure (Fig. 12) Virtual Scenario2: Sea Rocks (Fig. 13)
Task1 (10 attempts) Task 2 (10 attempts) Task 3 (10 attempts)

Succ. attempts Mean of replan. man. # Succ. attempts Mean of replan. man. # Succ. attempts Mean of replan. man.
Prev. Fram. 7 8.85 7 6.42 6 6.6
New Fram. 10 0.3 9 0.1 7 1.14

TABLE I: Comparison of solving the tasks shown in Figs. 12 and 13 using our previous work [6] and the new planning
framework presented in this paper. Effects of proposed improvements are reflected in: 1) the increase in the number of
successful attempts, 2) the decrease of the mean of replanning maneuvers over the total successful missions. This latter
implies that the vehicle has to deal with less risky situations, since a replanning maneuver supposes that the vehicle was
being led to a possible collision.

(a) (b)

Fig. 11: Incidence of Opportunistic Risk Checking approach
when solving query presented in Fig. 10. (a) if configurations
located in undiscovered areas are not assumed as safe, risk
checking routines require almost 80% of computation time
during the whole mission. Otherwise, it will increase pro-
gressively as the environment is explored. (b) consequently,
if a high percentage of computing power is dedicated to risk
checking, the number of tree nodes (states) will remain low
during the whole mission, thus limiting the tree expansion
and path quality.

The second virtual scenario resembles a natural environ-
ment composed of a series of sea rocks with a canyon
between them (see Figs. 13a, 13b). Over it, we attempted to
solve a start-to-goal query (see Figs. 13c, 13d). Again, we
observed that the number of successful attempts increased
and the mean of replanning maneuvers decreased consider-
ably (see Table I).

2) Real-world Results: after validating our new frame-
work in simulation, we conducted in-water trials in the real-
world breakwater structure scenario (see Fig. 7). For safety
reasons, the vehicle was connected to surface with a wireless
access point buoy that allowed us to monitor the mission and
abort it in case of detecting an unexpected behavior. The
Sparus II performed different autonomous missions with a
constant surge speed u = 0.5m/s and a maximum turning
rate rmax = 0.3rad/s.

Figure 14 presents the Sparus II AUV conducting one
of such missions, which consisted of solving a start-to-
goal query that required the vehicle to navigate between
two concrete blocks of the breakwater structure. Both the
previous and the new proposed frameworks were used to
solve the task. Figs. 14a and 14b not only present a similar
reconstruction of the environment (since this work does not

(a) Task1, previous framework (b) Task2, previous framework

(c) Task1, new framework (d) Task2, new framework

Fig. 12: Solving start-to-goal queries in a virtual scenario of
concrete blocks. Our previous work [6] and the new planning
framework have been used to solve the tasks. The number
of replanning maneuvers are equivalent to the number of
cancelled WPs.

(a) Sea rocks scenario (b) Sparus II navigating a
canyon

(c) Previous framework (d) New framework

Fig. 13: Solving start-to-goal query in a virtual scenario of
sea rocks. Our previous work [6] and the new framework
have been used to solve the task. The number of replanning
maneuvers are equivalent to the number of cancelled WPs.

introduce any relevant change in the mapping module), but
also proves how replanning maneuvers decreased, just as
expected from simulation results. Apart from visual results,
it is also worth to mention that number of successful attempts
were considerably higher with our new approach, 7 over 13,
while experiments with the old framework only succeeded
2 times of 5. However, these results are not presented in a
Table, since experiments were conducted in different days,
i.e., with different weather conditions. Trials with our new
approach dealt with worse conditions indeed.

(a) Previous framework (b) New framework

(c) New framework solves successive start-
to-goal queries

Fig. 14: Results from the real-world experiments. (a), (b)
Sparus II navigates amongst two concrete blocks to move
from one side to the other of the breakwater structure. (c)
Sparus II traverses the breakwater structure multiple times
by solving successive start-to-goal queries.

IV. CONCLUSIONS AND FURTHER WORK

In this paper, we extended our previous work and proposed
an improved framework for planning feasible and safe paths
online for an AUV. To guarantee these characteristics, we
considered motion constraints to ensure planning paths that
are feasible (doable) according to the vehicle’s motion capa-
bilities. Furthermore, we presented and assessed multiple al-
ternatives to evaluate the risk associated to a solution path. As
a result, we established a function that combines the length
and safety of the path into a single optimization objective.
Finally, we proposed Reusing the Last Best Known Solution
to avoid the need of pruning the tree of configurations, as it
was done previously, and also introduced the Opportunistic
Risk Checking strategy, both of them as mechanisms to
meet online computation constraints. This latter serves as
an alternative to fully considering the sensing and motion
uncertainty that could be prohibitively expensive, especially
in the proposed application that requires planning paths while
exploring the unknown environment, thus implying limited
computational resources.

To validate our new approach and its characteristics, we
presented the execution of missions in both simulated and
real-world scenarios and compared the results with those
obtained with our previous approach. Results showed the
increase in the number of successful missions and the de-
crease of replanning maneuvers, which permitted conducting
longer tasks composed of successive start-to-goal queries.
We also presented preliminary simulation results on a virtual
scenario that resembles a natural environment. However to
be able to successfully deal with such type of scenarios, we
plan to extend our framework to consider 3D workspaces.
Furthermore, while in future work we plan to model ocean
currents, especially for long missions where the induced
error can be significant, Fig. 14c shows that incremental
(re)planning can be effective at navigating around obstacles
subject to currents over long time horizons. Finally, it is also
important to point out that the heuristic used to define the risk
zones and their respective values works well, however further
work is needed to generalize its use for different scenarios.

REFERENCES

[1] A. Mallios, P. Ridao, D. Ribas, et al., “Toward autonomous exploration
in confined underwater environments,” J Field Robot, vol. 7, nov 2015.

[2] F. S. Hover, R. M. Eustice, A. Kim, et al., “Advanced perception,
navigation and planning for autonomous in-water ship hull inspection,”
Int J Robot Res, vol. 31, pp. 1445–1464, nov 2012.

[3] E. Galceran, R. Campos, N. Palomeras, et al., “Coverage Path Planning
with Real-time Replanning and Surface Reconstruction for Inspection
of Three-dimensional Underwater Structures using Autonomous Un-
derwater Vehicles,” J Field Robot, 2014.

[4] Y. Petillot, I. T. Ruiz, and D. M. Lane, “Underwater vehicle obstacle
avoidance and path planning using a multi-beam forward looking
sonar,” IEEE J Ocean Eng, vol. 26, no. 2, pp. 240–251, 2001.

[5] T. Maki, H. Mizushima, H. Kondo, et al., “Real time path-planning
of an AUV based on characteristics of passive acoustic landmarks for
visual mapping of shallow vent fields,” in MTS/IEEE OCEANS, 2007.

[6] J. D. Hernández, E. Vidal, G. Vallicrosa, et al., “Online path planning
for autonomous underwater vehicles in unknown environments,” in
IEEE Int Conf Robot Autom, (Seattle), pp. 1152–1157, may 2015.

[7] A. Hornung, K. M. Wurm, M. Bennewitz, et al., “OctoMap: an
efficient probabilistic 3D mapping framework based on octrees,”
Autonomous Robots, vol. 34, pp. 189–206, feb 2013.

[8] B. Donald, P. Xavier, J. Canny, and J. Reif, “Kinodynamic Motion
Planning,” Journal of the ACM, vol. 40, pp. 1048–1066, nov 1993.

[9] S. M. LaValle and J. J. Kuffner, “Randomized Kinodynamic Planning,”
Int J Robot Res, vol. 20, pp. 378–400, may 2001.

[10] S. M. LaValle, Planning Algorithms. Cambridge Univers. Press, 2006.
[11] K. Yang and S. Sukkarieh, “3D smooth path planning for a UAV in

cluttered natural environments,” in IEEE/RSJ Int Conf Intel Rob Syst,
pp. 794–800, 2008.

[12] Y. Kuwata, S. Karaman, J. Teo, et al., “Real-Time Motion Planning
With Applications to Autonomous Urban Driving,” IEEE Trans Con-
trol Syst Technol, vol. 17, pp. 1105–1118, sep 2009.

[13] S. Karaman and E. Frazzoli, “Sampling-based Algorithms for Optimal
Motion Planning,” Int J Robot Res, vol. 30, pp. 846–894, jun 2011.

[14] L. Dubins, “On curves of minimal length with a constraint on average
curvature, and with prescribed initial and terminal positions and
tangents,” Amer J Math, vol. 79, no. 3, pp. 497–516, 1957.

[15] K. I. Tsianos, I. A. Sucan, and L. E. Kavraki, “Sampling-based robot
motion planning: Towards realistic applications,” Computer Science
Review, vol. 1, pp. 2–11, aug 2007.

[16] N. Palomeras, A. El-Fakdi, M. Carreras, et al., “COLA2: A Control
Architecture for AUVs,” IEEE J Ocean Eng, vol. 37, pp. 695–716,
oct 2012.

[17] M. Prats, J. Perez, J. J. Fernandez, et al., “An open source tool for
simulation and supervision of underwater intervention missions,” in
IEEE/RSJ Int Conf Intel Rob Syst, pp. 2577–2582, oct 2012.

[18] I. A. Sucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning
Library,” IEEE Robot Autom Mag, vol. 19, pp. 72–82, dec 2012.

