
Computational Challenges in Systems Biology

Allison P. Heatha, Lydia E. Kavrakia,b,c

aDepartment of Computer Science, Rice University, Houston, TX 77005, USA
bDepartment of Bioengineering, Rice University, Houston, TX 77005, USA

cStructural and Computational Biology and Molecular Biophysics, Baylor College of
Medicine, Houston, TX, 77005, USA

Abstract

Systems biology is a broad field that incorporates both computational and

experimental approaches to provide a system level understanding of biologi-

cal function. Initial forays into computational systems biology have focused

on a variety of biological networks such as protein-protein interaction, sig-

naling, transcription and metabolic networks. In this review we will provide

an overview of available data relevant to systems biology, properties of bio-

logical networks, algorithms to compare and align networks and simulation

and modeling techniques. Looking towards the future, we will discuss work

on integrating additional functional information with biological networks,

such as three dimensional structures and the complex environment of cell.

Combining and understanding this information requires development of novel

algorithms and data integration techniques and solving these difficult compu-

tational problems will advance both computational and biological research.
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1. Introduction

Systems biology is an interdisciplinary field concerned with understand-

ing biological processes on the system level (1; 2; 3; 4). The field is founded

upon taking an integrative approach to understand the functioning of com-

plex biological systems as a whole instead of individual pieces. The recent

and rapid growth of systems biology belies the deep roots of its underlying

concepts. The idea of applying systems theory to biology can be dated back

to at least the early 20th century (5). Over the decades since then, a number

of researchers theorized about biological systems, but it took the success of

modern experimental biology to provide the data that feeds systems biol-

ogy. The wealth of experimental data has been a huge boon by validating

computational approaches and enabling the study of biological systems. At

the same time, this data has created a number of challenges in terms of pro-

cessing and understanding it. The systems biology approach includes both

experimental and computational components working in conjunction in order

to achieve understanding of biological processes. In this review we will focus

on the computational aspects of systems biology.

There is no doubt that computational tools are required to process and

understand the avalanche of available data, but important questions remain

unanswered. Just a few of these questions include: What computational

tools can be used to combine data obtained from different resources and at

different levels of resolution? What computational models could capture the

dynamic behavior of networks? What computational methodologies can be

developed to reduce the available information to coherent hypotheses? This

review will provide the background for answering these questions as well as
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current approaches.

The review is organized as follows: Section 2 focuses on the different types

of biological network data used in systems biology and how and where this

data is stored. The data is the foundation upon which computational ap-

proaches can be built in systems biology. Section 3 discusses research on the

topology of these biological networks. Then algorithms for motif finding in

biological networks are discussed in Section 4 followed by algorithms for net-

work alignment and comparison in Section 5. The modeling and simulation

of the dynamics of biological networks are covered in Section 6. The review

concludes with a discussion of future challenges in computational systems

biology.

2. Availability of Biological Network Data

The quantity and quality of network data has been rapidly increasing in

the last few years. It is important to understand the state of existing data

and methods in order to further what can be done with this data. There

are a large number of databases in existence which contain information on

biological networks. In 2008, Pathguide, a listing of biological pathway re-

sources, contains about 240 biological pathway resources. These resources

vary in their focus, size, curation levels, availability and popularity (6). In-

stead of providing a comprehensive list, this section highlights some of more

widely used resources to provide a flavor of what data is stored and how it

can be accessed. Many of the databases initially limited their scope to one

particular type of network or organism. Therefore, databases are often cat-

egorized based on this criteria. However, as systems biology moves forward
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it is becoming apparent that these categorizations are for convenience and

often do not represent reality because in the cell all of these networks work

together. Therefore, a number of databases have been expanding their focus

to encompass a larger variety of data.

2.1. Metabolic Pathways

Metabolic pathways consist of chemical compounds and the enzymatic

reactions which catalyze the chemical reactions that support life. Two of

the major online databases focusing on metabolic pathway information are

The Kyoto Encyclopedia of Genes and Genomes (KEGG) PATHWAY (7)

database and MetaCyc (8), part of the larger BioCyc Database Collection (9).

MetaCyc and KEGG both contain similar data about metabolic pathways

and their components, but they vary in how this data is organized, curated

and made available. Figure 1 contains a side by side comparison of how

KEGG and MetaCyc display the citric acid cycle, a pathway important for

aerobic cellular respiration. However, the citric acid cycle is just a small part

of an organism’s entire metabolism. In comparison, Figure 2 shows all of the

metabolic reactions in Escherichia coli extracted from KEGG.

The KEGG PATHWAY database was initially released in December 1995

and contained a selected number of metabolic pathways. KEGG PATHWAY

is manually curated and drawn based on the literature. The database in

2008 contains 159 reference pathways under the metabolism category. Each

reference pathway represents a metabolic function (e.g., glycolysis) and con-

tains the enzymatic reactions and chemical compounds which make up the

pathway. The reference pathways can be thought of as a union of the reac-

tions and compounds found across organisms, one can then select a particular
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organism of interest and the reactions and compounds found in that organ-

ism will be highlighted on the pathway. KEGG is continually expanding,

in December 2008, KEGG contained 92,565 pathways generated from 344

reference pathways and information on 104 eukaryotes, 726 bacteria and 53

archaea.

KEGG also hosts databases which provide further information about the

enzymes and compounds, along with cross linking to other databases via

GenomeNet (10). All of the data found in KEGG is free for academic users

and can be downloaded via FTP in different flat file formats or accessed

through web services. The reference metabolic pathways are also provided

in KEGG Markup Language (KGML), an XML-based format created by

KEGG. More recently, KEGG PATHWAY has been expanding to include

other biological pathways such as those involved in genetic information pro-

cessing, environmental information processing, cellular processes, human dis-

eases and drug development. However, the metabolic pathway maps still

remain the most popular feature (7).

MetaCyc is another metabolic pathway database which contains manu-

ally curated information from scientific literature. MetaCyc was first released

in 1999, in conjunction with EcoCyc, a database containing pathway and

genome information about Escherichia coli. MetaCyc uses a more hierar-

chical categorization than KEGG, usually with smaller and more specialized

individual pathways. MetaCyc contains more than 1,100 metabolic path-

ways, across more than 1,500 organisms. It also contains information about

the compounds and enzymes in these pathways. The MetaCyc data is freely

available to all users in different file formats, including BioPAX and SBML.
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There is also a BioCyc software package, free for academic usage, called

Pathway Tools which provides analysis and visualization capabilities.

2.2. Signaling Pathways

Signaling pathways are the physical and chemical processes by which

the cell transmits signals. Often, the signal is initiated by an extra cellular

stimulus which causes a cellular response. This cellular response is usually

mediated by a number of protein-protein and protein-ligand interactions.

Signaling pathways play a key role in the regulation of biochemical systems

in the cell and therefore are an important research area for the study of

disease and drug development.

For the most part, signaling pathways are much smaller and utilize a

higher level of experimental verification than protein-protein interaction (PPI)

networks and therefore there has not been as much of a push for database

services as with PPI data. The smaller size of signaling pathways allows for

them to be published in a single article and so signaling pathways are often

found in the literature. This is demonstrated by the fact that both Science

(12) and Nature, along with the National Cancer Institute (NCI) (13), have

their own databases containing cell signaling pathways.

Several other biological network databases, such as KEGG, have ex-

panded to incorporate signaling pathways, but it is not their main focus.

There have been some newer efforts to provide a resource for signaling path-

ways such as SPIKE (14). Signaling pathways can also be found in databases

which strive to contain a number of different types of pathways as discussed

in Section 2.6.
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Figure 1: Two representations of the citric acid cycle. The top figure is taken from
KEGG’s website. The small circles represent individual chemical compounds and the
rectangles represent enzymes and are labeled with Enzyme Commission (EC) numbers.
The solid directed edges connect the substrate and products to their enzymatic reactions.
The rounded ovals are other metabolic pathways and the dotted edges connect chemical
compounds to other metabolic pathways. The bottom figure is taken from MetaCyc’s
website. MetaCyc offers several levels of detail to display, this one was chosen as being
most similar to the level of detail displayed by KEGG. The chemical compounds are
connected by directed edges which are labeled with the enzyme’s name and EC number
which catalyzes the reactions. On both the KEGG and MetaCyc website each individual
element is clickable and takes the user to a page with more information about that element.
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Figure 2: Visualization of the metabolic network of Escherichia coli obtained from KEGG.
The magenta nodes represent enzymatic reactions and the green nodes are chemical com-
pounds. The network contains 2570 nodes and 5238 edges. The figure was made using
Cytoscape (11).
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2.3. Transcription Regulatory Networks

Transcription regulatory networks consist of the set of transcription fac-

tors and the genes that they regulate. Similar to signaling pathways, the

main source of transcription regulatory networks data is the literature. Re-

search groups will perform a number of experiments to identify transcription

factors and their targets and publish this data in scientific journals, often cre-

ating a website from which this data can be downloaded. For example one

of the first large transcription regulatory networks was for Saccharomyces

cerevisiae (15) and the associated data can be found on the group’s website.

Over time these data sets are built upon and analyzed and new data sets are

published in the literature. However, few centralized sources for transcription

regulatory networks exist. This creates extra difficulty for data cleaning, ver-

ification and integration. Transcription factor information can also be found

in other places, such as databases which contain functional annotation of

genes and proteins. However, extracting this data can be difficult and often

requires expert knowledge.

The transcription regulatory network databases that exist are usually

focused on one particular organism. One such source is RegulonDB (16),

which focuses on the transcriptional regulatory network of Escherichia coli

K12. RegulonDB provides curated data created from experimental data for

download, as well as separate computational predicted interactions. It in-

cludes data on promoters such as sigma factors, transcription factor binding

sites, small RNAs and other molecules and interactions involved in transcrip-

tion. The data is available for download as plain text files. RegulonDB has

also worked to provide cross linking and integration with other Escherichia
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coli databases. Along with the data, RegulonDB also provides a number of

tools for visualization and analysis of the data.

2.4. Protein-Protein Interaction Networks

Out of the many categories of biological networks, PPI network databases

are perhaps the most varied and noisiest. This is partly because PPI is a

very broad term. Interactions can come in the form of tightly bound protein

complexes to fleeting bindings and modifications such as phosphorylation.

There are also a wide variety of experimental techniques used in studying

PPIs (17). Even so, it is often difficult to determine the level of error in

experimentally determined PPI data and understanding the level of error is

an active area of research (18; 19; 20). Despite these difficulties, a number of

databases have arose which contain PPI networks for a number of organisms.

In order to coordinate this effort the International Molecular Exchange Con-

sortium (IMEx) was founded to help prevent duplicate efforts and provide

standards for data storage, exchange and quality (21). The IMEx include a

number of existing PPI databases such as DIP (22), IntAct (23), MINT (24),

MPact (25) and BioGRID (26).

The Database of Interacting Proteins (DIP) was originally founded in

1999 to collect and provide a manually curated source of information on

PPIs found in the literature (22). DIP continues to use literature as the main

source of their data, but have moved towards including other high-quality

sources such as protein complexes found in the Protein Data Bank (PDB)

(27). As of 2008, DIP contains 19935 proteins and 56638 interactions across

204 organisms. DIP provides several different search functions based on

keywords, protein sequences or specific articles. DIP also freely provides its

10



interaction data for download in several different formats. DIP also provides

several different measures of quality and reliability of PPIs in the database.

These measures are available as services on the DIP website so that users

can calculate them for new interactions.

The Molecular INTeration (MINT) database is in many ways similar to

DIP in that it is a hand-curated database of PPIs culled from the scientific

literature (24). However, the actual interaction data contained in the two

different databases are different. MINT has traditionally focused on interac-

tions found in mammals, although in 2008 the organism with the most inter-

actions in their database is Saccharomyces cerevisiae. Since 2005 MINT has

focused on curating articles from FEBS Letters, EMBO Journal and EMBO

Reports. By the numbers, MINT contains 28817 proteins and 105899 inter-

actions. A study in 2006 of human PPIs found in several different databases,

including DIP and MINT, demonstrated that there was low overlap between

the interactions found in the two databases and in PPI databases in general

(28). However, it is worth noting that since that article the number of human

PPI in MINT has nearly doubled and the number in DIP has increased by

about 20 percent. The data in MINT is freely available for research purposes

and they also provide their data in a number of standard and non-standard

formats.

While not a PPI database in the sense of DIP and MIP, the Search Tool

for the Retrieval of Interacting Genes/Proteins (STRING) is worth men-

tioning as a site which makes PPI data readily available (29). The goal of

STRING is to “collect, predict and unify most types of protein-protein as-

sociations” (30). STRING does not curate PPIs, but rather relies on other
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databases such as DIP and MINT for experimentally determined interactions.

It then integrates the data from the different sites to produce a data set us-

ing consistent identifiers. STRING also uses information across multiple PPI

databases to compute confidence scores for each interaction. On top of this

data, STRING has a number of search and visualization tools and cross links

to other types of databases. STRING also provides several computationally

determined or augmented data sets with predicted PPIs based on a number

of criteria. The interaction data is free to download from STRING, but the

entire database requires a license to prevent redistribution. STRING also

provides an API for programmatic access to the database. Data integra-

tion sites such as STRING are an important part of the management of the

increasing amount of pathway data.

2.5. Standardizing Data Representation

Bioinformatics and computational biology have been plagued by the cre-

ation of numerous, custom file formats for data representation and exchange.

Too much effort has been put towards creating new parsers and converters

for these different file formats. However, creating well designed and useful

format standards for a wide range of researchers is a non-trivial task.

Given the wide range of data available, the systems biology community

recognized that creating standards for data representation and exchange was

important to enable collaboration and development of useful software tools

(32). Several different efforts were started to create standard formats which

could be widely used. We will discuss three major ones: SBML (33), CellML

(34) and BioPAX (35). All three of these formats are utilize XML, an open

standard for creating markup languages (36). The advantage of using XML
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Figure 3: Visualization of the PPIs within two steps away from the epidermal growth factor
receptor (EGFR) in humans extracted from the Human Protein Reference Database (31).
The nodes are proteins and the edges represent interactions between them. There are
2,331 proteins and 5,255 interactions. EGFR is in magenta, proteins directly interacting
with EGFR are in yellow and proteins two steps away are in green. The size of the node
is proportional to its degree. This figure was made using Cytoscape (11).
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lies in ability to use well established software tools developed to parse and

validate XML based languages. While these formats have many similarities,

they also address different needs in the community and may be more or less

appropriate based on the type of data. Additionally, all three of these formats

are under active development and are sure to evolve with the needs of the

community.

CellML and SBML have similar goals to provide a way to represent and

exchange mathematical models of biological processes. They often use simi-

lar methods and technologies to represent data, for example both models use

MathML 2.0 to represent mathematical expressions. However, the two mod-

els differ on the specifics of how the data is conceptualized and represented.

The decision on whether to use CellML or SBML will depend on the

specific model being worked on and compatibility with the desired software

tools. Tools are being developed to convert between the two formats and

work to some extent. However, it is possible to represent data in one format

which cannot be converted to the other and thus the choice of format is still

relevant.

BioPAX is different from SBML and CellML in that its goal is not to rep-

resent mathematical models, but rather to provide a standard exchange for-

mat for biological pathway data. BioPAX Level 1 was designed for metabolic

pathways, Level 2 extended to contain molecular interactions, sequence fea-

tures and hierarchical pathways. BioPAX Level 3 is under development and

will extend to include signaling pathways, gene regulation and genetic inter-

actions.
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2.6. Multiple Types of Pathways and Integration Across Databases

While the division of biological pathway information into separate cate-

gories is convenient, it is often an artificial division and makes integrating

multiple types of data difficult. As a result, several resources have been

started to help gather, integrate and provide access to multiple types of

pathways.

Some of these resources remain organism specific, but try to provide in-

formation about all of the different types of pathways in an organism. The

Reactome project is such a resource for human pathway (37). Reactome

seeks to be a expertly curated, comprehensive and detailed database for hu-

man biologic processes. This spans all of the biological networks discussion in

the previous sections along with cross referencing to other databases in order

to help with data integration. More recently, Reactome has added computa-

tionally inferred pathways and reactions from other organisms based on the

human pathways. In addition to their website, where one can browse and

search the data, Reactome has a variety of human and machine readable files

for downloads.

Other resources function more as repositories where researchers can up-

load pathway models. Often the repositories offer both curated and uncu-

rated pathway models. These typically revolve around a certain pathway

format, for example the CellML Model Repository (38) or the BioModels

Database (39) which is SBML oriented, but also provides other formats.

Several different ways have emerged to create a centralized resource for

pathway information. WikiPathways is an open and public resource based on

wiki model where the community is responsible for submission and curation
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of pathways (40). WikiPathways was originally seeded with pathways from

another data source, GenMAPP, but the goal is to mainly promote user

submission of pathways.

Another approach is taken by Pathway Commons (41), which hopes to

provide a common access point for existing biological pathway information.

They act as a centralized source for information in other databases, and do

not store or curate the data themselves. In 2008, Pathway Commons accesses

data from Cancer Cell Map, HPRD, HumanCyc, IntAct,MINT, NCI/Nature

Pathway Interaction and Reactome, with plans for more to come. All data is

provided in BioPAX format. In addition to their website interface, Pathway

Commons provides a web service API for programmatic access.

3. Topological Structure of Biological Networks

The availability of data on biological networks has led to new questions

such as: Are they random? Does the structure of the network have implica-

tions for its functions? There is strong evidence that they are not fully ran-

dom, but the exact nature of their structure is still not completely answered.

Biological networks fit nicely into the general study of complex networks and

so the analysis of their properties both drew upon and contributed to network

and graph theory.

3.1. Graph Representations

In general, the elements in the networks, whether they be proteins, chem-

icals, genes or other biological entities, are usually the vertices of the graph

and the edges represent some sort of interactions between them. Represent-

ing biological networks as graphs allows us to tap into the rich field of graph
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theory to understand the properties and behaviors of these systems. How-

ever, the exact graph representation can vary depending on the data and in

turn this can affect the choice of algorithms and conclusions reached about

the structure of the networks.

3.2. Scale-Free and Small-World

One of the first questions to be addressed was how biological networks

compare to random graphs. Random graphs are surrounded by well estab-

lished theory beginning with the work of Erdős and Rényi (42). In 2000, a

systematic analysis of the metabolic networks of 43 organisms was performed.

The conclusions of this work was that topology of the metabolic networks are

not random but rather “scale-free” and “small-world” (43). A scale-free net-

work is one whose degree distribution is characterized by a power law of the

form P (k) ∼ k−γ (44). A small-world network is one where any two vertices

in the network can be connected by a relatively short path. These properties

of networks are of interest because a number of real-world networks, such as

the Internet and citation networks, appear to have similar properties (45).

A number of other papers found that other biological networks, such as PPI,

transcription and signaling network also are scale-free and small-world and

there have been number of review written about the subject (46; 47; 45; 48).

However, these properties have also been a point of contention and the

debate surrounding them highlights how the properties of biological networks

can change depending on how they are viewed. A recent review of the struc-

ture of metabolic pathways organizes arguments against biological networks

being scale-free into four major categories (49): the quality of the data, the

methodology used to determine scale-freeness, the graph representation of
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biological networks and whether scale-free is a meaningful property.

The first argument is that biological data is incomplete or noisy and there-

fore one cannot conclude that the networks are scale-free. This does not prove

that biological networks are not scale-free, but it is important to note that

random subnets of scale-free networks are not scale-free (50). Additionally,

one study sampled from theoretical biological networks and demonstrated

that a limited sampling may provide misleading results (51). These results

have important implications when dealing with incomplete biological net-

works and hopefully the picture will become clearer as the available data

improves.

Methodological arguments say that different types of fitting and compar-

ison can change whether the network is considered scale-free or not. In the

area of PPI networks, it was argued that the networks fit a geometric ran-

dom graph model better than a scale-free graph model (52). Instead of just

looking at the degree distributions the article compares the distribution of

“graphlets” which are all possible combinations of 3, 4, and 5 node graphs.

The comparison of the frequencies of each of these graphlets in the PPI net-

works to random graphs, including random scale-free networks, revealed that

the geometric random graph model provided the best fit. Therefore the con-

clusion was that the geometric random graph model is a better fit for PPI

networks than the scale-free model.

It is argued that many graph representations of biological information

abstract away potentially important differences between biological entities.

This is the basis of the conclusion that the metabolic network of Escherichia

coli is not small-world found in (53). Instead of allowing any path between
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two nodes, this study only allowed a path from metabolite X to Y if at

least one carbon atom in X reached Y. This approach brings the biochemical

meaning of the metabolic pathways into the structural analysis. If one de-

fines paths in this way, then the average path length of the Escherichia coli

metabolic network is eight, larger than a random graph of the same size (53).

It is also noted that in this type of representation of the metabolic network

makes it inappropriate to evaluate scalefree-ness.

The final argument is that even if biological networks are scale-free, this

does not tell us much about the network. One aspect of this argument is that

scale-free networks are perhaps not as new and unsuspected as the literature

would suggest (54). Another is that knowing a network is scale-free does

not necessarily give any additional biological insight into the properties and

behavior of the network (55). Therefore, researchers have moved towards

understanding in more detail the structure of these networks. One popular

way of doing this is to look at motifs found in the graphs.

4. Identifying Network Motifs

In the study of biological networks, “network motifs”, often just called

motifs, are defined as subgraphs which occur in significantly higher numbers

than expected by random chance (56; 57). It has also been proposed that

it is also important to look at rare subgraphs. These subgraphs are just

identified by their topology; any biological information is ignored and just

the structure of the graph is analyzed. Finding motifs in the networks helps

to provide a better understanding of the structural elements of biological

networks beyond just looking at global properties. For example, motifs have

19



been used to predict PPIs (58). The existence of different motifs may also

help understand the role of modularity in biological networks and how it

relates to the evolution of biological networks (59; 60).

The first type of networks to undergo motif analysis were transcription

regulatory networks. As mentioned previously, these networks are usually

represented as directed graphs where the vertices are transcription factors

and their targets. In initial studies they exhaustively searched the networks

for all subgraphs of size 3 and 4 (56; 57). Then by comparing the number

of subgraphs found to the number of subgraphs found in random graph they

were able to detect motifs. They found two motifs in both the Escherichia

coli and Saccharomyces cerevisiae networks which are now widely known:

the “feedforward loop” and the “bi-fan”, which have interesting biological

meaning (56; 61). This type of motif analysis has been extended to all types

of biological networks.

Finding motifs can be broken down into three steps. First is determining

the frequencies of subgraphs in the input network. Second is identifying and

grouping isomorphic subgraphs. Last is then determining which subgraphs

occur at significantly higher frequencies in the input graph than in a random

graph. It should also be noted that the level of overlap two subgraphs are

allowed to have can affect both results and performance. There are three

different ways which the subgraphs can overlap: arbitrary overlaps of nodes

and edges, only overlaps of nodes, and no overlaps (62). Motif finding al-

gorithms in biological networks usually allow for arbitrary overlaps. The

computational demands of these these three steps limit exact methods to

motifs of 3-5; however using sampling techniques motif finding techniques
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can find motifs of up to size 12-15 (63).

In order to overcome computational limitations, many algorithms use

some form of sampling to estimate the frequencies of the subgraphs for the

first step of motif finding. One way to do this is to randomly pick nodes

from the network, which provides uniform sampling but will also sample

disconnected subgraphs which are not considered motifs (64). Another motif

finder, called mfinder (65), takes a different approach by picking a random

edge and iteratively expanding by choosing an adjacent node until obtaining

a subgraph of size n . The final sampled subgraph contains the selected nodes

and all of edges between them in the original graph. This form of sampling

produces a biased sampling and so the algorithm uses weights to correct the

bias. This is done by calculating the probability P of sampling the specific

subgraph and assigning it a weight W = 1/P . The weights are then used to

calculate a significance score for a motif. The results from mfinder show that

it is able to extract rare motifs and that relatively few samples are needed

to obtain good results. Addtionally, mfinder is able to scale well with the

overall size of the network, but does not scale well for larger motifs. Other

criticisms of mfinder include the fact that the sampling bias is not necessarily

eliminated by the weighting scheme and that computing these weights is

expensive. Another sampling-based algorithm, called RAND-ESU addresses

some of these issues, but still requires empirically calculated probabilities

(66).

Non-sampling approaches include: partitioning the network as in NeMoFINDER

(67) and mapping the network onto an embedded space (68). NeMoFINDER

is able to find motifs up to size 12 by partitioning a network into a set of
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graphs based on repeated trees. Other algorithms take a motif-centric view,

where the algorithm is focused on finding a single motif instead of all motifs of

a certain size. By taking this approach and enumerating all of the subgraphs

and search for one at a time, motifs of size 15 in the PPI and transcription

regulatory network of Saccharomyces cerevisiae were found (69).

The second step of motif finding requires graph isomorphism, a well-

researched and difficult problem in graph theory. Therefore, many motif

finding algorithms use established graph isomorphism algorithms, both exact

and approximate. However, many graph isomorphism algorithms are aimed

at comparing two relatively large graphs. While in motif finding, one must

compare a large number of relatively small graphs. Therefore, the methods

and heuristics may vary. One approach is to develop a label assignment

based on the topology of each subgraph. This label is designed such that if

two graphs are isomorphic they have the same labeling, and are likely, but

not guaranteed, to have different labeling if they are not isomorphic (64).

NeMoFINDER introduces the concept of “graph cousins”, which is based on

the similarity of the graph’s canonical adjacency matrix (67). Large speed

ups have also been achieved by using symmetry-breaking techniques to avoid

repeatedly finding a subgraph due to its symmetry (69). These methods

share similar themes to traditional graph isomorphism heuristics, but tailor

them specifically to the motif finding application.

The third and final piece needed for motif finding is to determine an

appropriate null model in order to determine which subgraphs occur at a fre-

quency higher than expected. Most algorithms generate an ensemble of ran-

dom graphs and run their subgraph finding methods on the random graphs.
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Figure 4: Some examples of directed and undirected motifs. The first three from left to
right were identified in transcription regulatory networks: “feedforward loop” (57),“bi-
fan” (56) and one of size 5 (65). The next two are from PPI networks: one of size 5 (52)
and one of size 15 (69).

However, the choice of random graph is not necessarily straightforward as

there are a number of random graph models and which ones are appropriate

to use for biological networks is not always clear (70; 71).

Identifying motifs provides a more complete picture of an individual net-

work, and research demonstrates that certain motifs appear to be common

across a number of different networks. This has led to hypothesis and stud-

ies on on how motifs are related to evolution and modularity of biological

networks. While motifs are an important tool to understand and compare

the topology of networks, they do not explicitly incorporate biological infor-

mation. Algorithms developed to compare biological as well as topological

information of biological networks are usually classified as network alignment

or network querying algorithms.

5. Biological Network Comparison

Today, biological sequence comparison algorithms, such as BLAST (72),

are standard tools used by researchers. They provide an efficient way to

identify sequence similarity which may have functional and/or evolutionary

implications. In turn, the sequence alignments provide the basis for many

other endeavors such as phylogeny and structure prediction algorithms. As
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discussed previously, there is an increasing amount of biological network data

available, and so questions arise if network comparison can be done to un-

derstand the similarities and differences between biological networks. This

has also been termed “comparative interactomics” (73).

Network alignment differs from motif finding because it is not purely

topological. Instead, network alignment includes both topology and a no-

tion of biological similarity between the matched nodes. Network alignment

requires both a scoring function and a search procedure. The similarity

measure used is highly dependent on the type of network, for example in

metabolic networks it could be the enzyme classification numbers (74), while

in PPI networks it is usually based on sequence alignments (75).

Network comparison algorithms can be roughly classified as pairwise

alignment, multiple alignment or querying methods. Pairwise network align-

ment is where two networks are globally compared to one another to identify

regions of similarity. Figure 5 depicts a generic pairwise alignment. Multi-

ple network alignment is a generalization of pairwise alignment, where more

than two networks are compared. Network querying is finding parts of a

larger network which are similar to a smaller query network. In the rest

of this section, we briefly describe a few examples of network comparison

algorithms.

5.1. Pairwise Network Alignment

PATHBLAST is an example of a pairwise alignment method (76). It takes

as input two PPI networks and outputs conserved pathways between the two

networks. This is done by first merging the input graphs based on protein

sequence similarity into a “global alignment graph”. Any two proteins from
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Figure 5: The similarity between nodes is represented by the shapes, in reality this would
be some measure of biological similarity. Note that graph A and B would not be considered
the same motif because the topology is different, but they can be aligned because of the
similarity between the shapes. An alignment graph C is then constructed a solid edge
is drawn if the corresponding edges if found in both A and B and a dashed line if the
corresponding edge is only found in one of the graphs.
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the original graphs which have a specified level of sequence similarity are

merged into one node in the global alignment graph. The edges in the global

alignment graph are labeled as direct, graph or mismatch, based on the

existence of connections in the original graphs. A direct connection means

the pair of nodes from the first graph and the pair of the nodes from the

second graph are directly connected in their respective graphs. A gap means

that one of the pairs of nodes is not directly connected, but are within two

edges of each other. A mismatch means both of the pairs of nodes are within

two edges of each other in their original graphs. And no edge is drawn if

both of the pairs are further than two edges of each other.

Paths in the global alignment graph represent a potential alignment and

each path has a score based on how likely the two proteins in a node are

homologous and how likely the PPIs are real. Therefore, the objective is to

find the highest scoring path. If the graph is acyclic, the high scoring path

can be found in linear time via dynamic programming, but the global align-

ment graph normally contains cycles. Therefore, PATHBLAST generates 5L!

acyclic subgraphs, where L is the is the length of the path to be found, and

then finds the highest scoring path for each subgraphs. The expense of this

operation limits the practical size of path. The method has been extended to

three networks to find dense clusters of interactions in addition to the short

linear paths (77).

5.2. Multiple Network Alignment

Multiple network alignment is often viewed as an extension of pairwise

network alignment. One example is Graemlin (78), an algorithm developed

for multiple alignment on large PPI networks that is based on performing
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multiple pairwise alignments . The order that the pairwise alignments are

performed is based on phylogenetic information about the species that the

networks come from. Parsimonious ancestral history is also used in Graem-

lin’s node scoring scheme along with the BLAST bitscore between proteins.

The edge scoring parameterization can be adjusted based on the user’s goals.

Graemlin performs a pairwise alignment by generating a set of seeds, or

“d-clusters”, as all the nodes some d distance away from each node in the

network. These clusters are then compared across the networks and clus-

ters which score higher than some threshold T are kept and expanded. The

method stops when no expansion can increase the score of the alignment.

Multiple alignment is progressively done using the pairwise method and the

order of pairwise comparisons are given by a phylogenetic tree, hence more

closely related species are compared first. One difficulty with network align-

ment methods is creating an objective way to evaluate the quality of the

results. The authors of Graemlin present measures using KEGG pathways

as a way to evaluate the specificity and sensitivity of the alignment methods.

5.3. Network Querying

The final type of network comparison discussed in this section is network

querying. In the case of network alignment a global comparison between one

or more network is being done to find areas of similarity. In contrast, network

querying takes a large biological network and a much smaller subnetwork or

path of interest and returns parts of the larger network which have high

similarity to the provided subnetwork or path.

PathMatch and GraphMatch are related network querying methods (79).

The PathMatch algorithm only takes in a linear path to match against a
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large biological network. By taking advantage of the fact that the query is

a linear path, the algorithm is able to run in polynomial time. The path

matching problem can be reduced to finding the longest weighted path in a

directed acyclic graph. This is done by constructing a DAG containing all

of the nodes in the network which correspond to the nodes in the pathway.

The graph query method, GraphMatch, is an exact algorithm with time

complexity O(2|V0||V0|2) where V0 is the number of vertices in the query graph,

G0. These are efficient algorithms, but they are limited because they assume

that the edge scoring scheme penalizes equally for mismatches and indels in

the case of PathMatch and ignores mismatches in the case of GraphMatch.

This assumption is unlikely to be true for a number of biological networks.

The formulation of these algorithms demonstrate how the scoring scheme

can effect the algorithm design and speed. If the scoring scheme does not

penalize equally then the presented algorithms can no longer be used and it

is likely that a more expensive algorithm is required.

Biological network comparison is still a relatively new field with a lot of

potential, but it has many challenges to overcome before becoming a standard

tool like sequence comparison. A more through discussion on the challenges

that network comparison faces can be found in a recent review (75). While

the development of comparison algorithms will greatly further the under-

standing of biological networks, especially how they relate to each other, it is

still a static analysis of a dynamic system. Therefore, modeling and simula-

tion play a key role in systems biology in order to understand the dynamics.
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6. Biological Network Modeling and Simulation

While the term computational systems biology has had a recent resur-

gence, the idea of modeling biological systems has been around for many

decades. For example, Turing worked on the idea of “mathematical biology”

in the 1950’s, publishing a paper on models for morphogenesis (80). Since

then, developing computational models and simulating biology systems has

become an area of increasing interest. As mentioned in the previous sections,

understanding and comparing the structure of biological networks does bring

important insight, but the next step beyond is understanding the dynamics

of the system. A major goal, especially when it comes to disease and thera-

peutics, is to understand how the system changes when perturbed and how

to modify the system to achieve a desired outcome.

Good computational modeling and simulation should be integrated tightly

with experimental laboratory work. Experimental work provides information

for creating the model, the computational work then generates hypothesis or

points out where data is missing and provide information for which exper-

iments should be done next, whose results are then used to improves the

model. The research area concerned with modeling biological networks is

vast. There are a number of different modeling and simulation types used in

systems biology, depending on the type of system, the data available and re-

sults desired. These span from detailed continuous models such as ordinary

differential equations to simple discrete models such as boolean networks.

Mirroring the large number of options for modeling, a large number of soft-

ware packages have been developed specifically for modeling and simulating

biological networks and systems (81; 82; 83; 84). We will only touch on a
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few techniques and examples here. Other recent reviews cover a number of

methods and models used for gene regulatory networks (85; 86), signaling

networks (87) and metabolic networks (88; 89).

6.1. Boolean Networks

The idea of using boolean networks to model has been around for several

decades now, at least since 1969 when it was proposed to model a gene as

“binary (on/off) device” in order to understand regulatory behavior (90).

Boolean models are often cited as one of the “simplest” types of models

because each entity in the model only has two states. This type of modeling

fits naturally with gene regulatory networks and signaling networks where the

states can represent represent active and inactive states. The relationships

between the entities are then modeled using logical functions. The states of

the entities are then updated synchronously or asynchronously based on the

logical functions. Synchronous update is faster and more straightforward,

but it is argued that biological systems do not operate synchronously and

therefore asynchronous methods are needed (91; 92). There is also work to

combine the two methods of updating for applications in biological networks

(93). Boolean networks have also been extended to probabilistic boolean

networks to deal with uncertainty (94).

Despite, or perhaps because of, their simplicity boolean models can pro-

vide insights into the dynamics of biological networks. Random boolean

networks have been used to understand the robustness and stability of yeast

transcriptional network (95). By generating a number of random boolean

networks based on yeast transcriptional network data, it was concluded that

the network is stable and robust under randomization of the boolean func-
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tions. The results indicate that this may be because the structure of the

network causes many nodes to be in a fixed state.

Other studies model systems more directly to understand the specific

behavior of a network of interest. A recent example constructs a boolean

network model for the T cell large granular lymphocyte (T-LGL) survival

signaling network (96). Using this model the authors made predictions on

what could cause deregulation in leukemic T-LGL. In turn these predictions

were verified experimentally, demonstrating the validity and usefulness of the

original model. Just a few examples of other biological networks modeled us-

ing boolean networks include mammalian cell cycle (92), yeast cell cycle (97),

T-cell receptor signaling (98) and stomatal signaling networks in Arabidopsis

thaliani (99).

6.2. Petri Nets

Standard petri nets provide a different way to model related discrete

events asynchronously. The origins of petri nets are found in work by Carl

Petri in the early 1960s to model asynchronous distributed systems (100).

Since then petri nets have been applied to a number of different systems.

Therefore, much work has gone into developing an underlying theory in or-

der to understand their properties and behaviors (101). This preexisting

framework can be a large advantage when modeling biological systems. The

basic petri net is a directed bipartite graph consisting of place and transition

nodes. Each place can be marked by a number of tokens, the state of the sys-

tem represented by the number of tokens on each place is called a marking.

Edges connect places to transitions if the transition is dependent on the state

of the place. Transitions are connected to places if the transition has some
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effect on the place. The weight of the edges represent the number of tokens

that need to be transferred. If each of the inputs to a transition contain at

least w(p, t) tokens, where w(p, t) is the weight of the edges, from the place

to the transition, then the transition is said to be enabled. This allows the

transition to be fired. A firing of a transition moves the w(p, t) from each in-

put and increments the number of tokens in each output place w(t, p), where

w(t, p) is the weight from the transition to the output place. The petri net is

initialized with an initial marking and allowed to evolve based on the firing

of transitions and therefore the dynamics of the system can be studied.

There are a number of extensions to the basic petri net model, such as

colored (102; 103), stochastic (104; 105) and hybrid petri nets (106). Many

of these variations have found applications in modeling different types of

biological networks, and in turn biological networks have been the driving

force behind other petri net extensions such as hybrid functional petri nets

(107) and signaling petri nets (108). Petri nets are applied most naturally to

systems where there is some discrete unit being transferred, such as metabolic

networks where the flow of tokens can represent fluxes (109; 110; 111; 112;

113; 114). They have also been applied to gene regulatory networks (115;

116; 117) and signaling networks (108; 118; 119; 120). A full review of

petri nets and their applications to biological networks are outside the scope

of this review. There are a number of reviews and books on petri nets

(121; 101) as well as the application of petri nets to biological networks

(122; 123; 124; 125).

32



6.3. Ordinary Differential Equations

Ordinary differential equations (ODEs) have a long history of being used

to model dynamical systems, and biological networks are no exception. ODEs

have been used heavily over the years to model biological systems (126). Dif-

ferential equation modeling is appealing because it has deep mathematical

roots which can be used to analyze and understand the system and its prop-

erties, such as robustness. Additionally, many software packages can be used

for this type of modeling, from standard ones like Matlab and Mathemat-

ica to a growing number of custom packages aimed at biological networks

(81; 84).

Kinetic models of biological networks are constructed using rate equations

which describe the reaction rates of interactions in the system. This set of

equations can be solved numerically by a number of methods to determine

the concentration of molecular species over time. One of the problems which

plague differential equation modeling is the lack of parameters, and work on

handling incomplete information is important to overcoming this limitation

(127). However, models using experimentally determined parameters are

currently limited to small systems, such as glycolysis in yeast (128).

Many studies instead focus on how the dynamics of the system change

over a range of parameter values. Bifurcation analysis and sensitivity analysis

are established ways to understand how the dynamics of the system change

in relation to their parameters (2). The results of these types of analysis can

in turn be compared to what is known experimentally to make predictions

about the system and general hypothesis for further study. There have been

many ODE models of various biological systems with varying level of success,
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just one example of a predictive model is that of the cell cycle, first developed

for frog eggs, expanded to budding yeast and then generalized to eukaryotes

(129; 130; 131).

One weakness of ODEs is that they ignore the randomness and noise found

in biological networks, which may have important implications in their func-

tion (132; 133; 134; 135). This has caused a number of other methods to be

developed which incorporate the stochasticity in the simulation of biological

systems.

6.4. Stochastic Simulation

One way to add noise to differential models is to use stochastic differential

equations (SDEs), where a noise term is added to the differential equations.

However, differential equation models assume the concentration of molecular

species to be continuous, which is reasonable when populations are large, but

does not hold when discrete events or small populations need to be accounted

for (136; 137). Therefore, methods which use a discrete formulation have

become a popular way to stochastically model biological networks. Many of

these methods are based on Gillespie’s stochastic simulation algorithm (138).

The original formulation of the Gillespie algorithm is computationally

demanding, but as interest has picked up, a number of improvements have

been made to reduce the time needed for these types of simulations (139).

Others have using field programmable gate arrays (FPGAs) in order to speed

up the simulations by an order of magnitude (140). Stochastic simulations

still remain slower than other techniques, and therefore there has been great

interest in combining then with other techniques in order to model larger

systems (141). This is part of a trend towards hybrid models as a way to
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overcome limitations of current methods.

6.5. Hybrid Models

Hybrid models merge together discrete and continuous dynamics into a

single dynamical model of a system. This encapsulates a broad space of

models and systems, but a number of useful general frameworks have been

developed (142; 143). The details of the model is dependent on the specific

system, but researchers can build upon and draw from foundational work in

the field of hybrid systems (144). In turn, problems from systems biology

have created new challenges for the hybrid systems community and may drive

the development of new models and algorithms (145; 146). Hybrid models are

appealing for biological systems because they contain discrete events, such

as a activation and inactivation, as well as properties that follow continuous

dynamics, such as concentration (147).

A variety of hybrid system models have been developed for biological

networks. Drawing on previous work on hybrid systems in areas outside of

biology, some of these models have been used to perform reachability analysis

to elucidate biologically meaningful properties. In the case of the lac operon,

a relatively efficient reachability algorithm was used to study how the values

of parameters effect the bi-stability of the system. The lac operon system

has been well studied both experimentally and using continuous models (148;

149). Therefore, the hybrid model and use of the reachability algorithm

were validated by comparing with experimental data and continuous models

(150). Just a few other examples of biological hybrid system models analyzed

in similar ways include Delta-Notch decision process (151; 152), bacterial

stringent response (153) and genetic regulatory networks of carbon starvation
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(154) and nutritional stress response (155) in Escherichia coli.

Hybrid petri nets are one specific example of a hybrid modeling tool used

to study the dynamics of biological networks. They are a graphical modeling

tool which allow the petri net to contain continuous places and transitions

as well as the standard discrete elements in order to model hybrid systems

(156; 157; 158). One study modeled several relatively small gene regulatory

networks using hybrid petri nets in order to study their dynamics (117).

In their operon model, consisting of the transcription of translation of two

genes, continuous variables represented the concentration of proteins and

mRNA and discrete variables represented the binding of RNA polymerase

to initiate transcription. The discrete transition of the RNA polymerase

binding and unbinding has a delay time associated with it which represented

the time of transcription. When the transcription of a gene is finished, a

function connects this discrete event to increasing the continuous variable of

concentration of mRNA. Continuous variables and transitions then handle

modeling the translation and degradation of mRNA and the corresponding

proteins. Other work has extended hybrid petri nets to add additional con-

structs specifically for biological networks, called hybrid functional petri nets

(107).

As modeling and simulation of biological networks continue to advance,

researchers will face new challenges to develop meaningful, predictive models

of biological systems. Additionally, new efficient algorithms which can handle

these complex systems will be required. These algorithms will be required

not only to merge discrete and continuous dynamics but also to assist in the

incorporation of multiple levels of data operating in a wide range of time
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scales.

7. Moving Forward: Biological Networks Do Not Stand Alone

The field of systems biology is founded on the principles of integration

and considering the system as a whole. In practice, this has often meant

looking at a single biological network at a time. This approach has provided

a number of important insights into the workings of biological networks and

still contains a number of challenges. However, as the amount of biological

data available continues to increase it will also be increasingly important to

integrate this data for computational analysis. One aspect of this data in-

tegration is incorporating similar data found across separate databases. For

example, STRING’s effort to integrate PPI databases as discussed in Section

2.4. Another, perhaps more challenging, aspect is the incorporation of addi-

tional levels of heterogeneous biological data to the graph representation of

biological networks.

The standard representations of biological networks abstract away sev-

eral layers of biological information. This abstraction is reasonable in a

number of cases where the information is missing or incomplete. However,

biological networks are found in a complex physical environment and as new

data becomes available incorporating it into the model may help improve

analysis and predictions about the system. One area which has had rapid

growth is the availability of three-dimensional structures of proteins. The

number of experimentally determined three dimensional protein structures

has been increasing dramatically (159). This experimental information along

with improvements in computational structural biology have made the use
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of structural details of increasing interest for the field of systems biology

(160; 161; 162; 163). For example, one study characterized PPIs using the

structures of the proteins (164). The interactions were classified as either si-

multaneously possible, that is they use different interaction sites, or mutually

exclusive, that is they use the same interaction site. This adds additional

information to the original interaction graph and may have implications for

the behavior of the system.

Adding protein structure information to biological systems is just one

example of numerous ways in which models of biological systems can be aug-

mented. A sampling of other information include temporal and spatial loca-

tion (165; 166; 167), functional context (168; 169), environmental conditions

(170; 171) and evolutionary context (172). Combining this heterogeneous

data creates a number of challenges, both from a computational and an ex-

perimental point of view. An important study demonstrated the feasibility of

combining a number of data sets for galactose utilization in yeast (173; 174),

but the work in this area is far from done. Addressing how to coherently in-

tegrate multiple different levels and types of data will be an important factor

in advancing systems biology.

8. Concluding Remarks

This review has presented a number of computational challenges in the

field of systems biology. We began with an overview of different types of

relevant data and highlighted a few online resources for each type. We pre-

sented a variety of ways developed to analyze and model both the static and

dynamic properties of biological networks. We then provided a discussion

38



on the importance of integration of many different types of data in systems

biology, as the quantity and quality of available data continues to increase.

In order to further the knowledge of biological systems, computational work

is required to understand the different levels and type of data, distill out the

relevant data, and develop algorithms which can incorporate and analyze this

data in a meaningful way.
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[111] R. Küffner, R. Zimmer, T. Lengauer, Pathway anal-

ysis in metabolic databases via differential metabolic

display (dmd)., Bioinformatics 16 (9) (2000) 825–836.

doi:http://dx.doi.org/10.1093/bioinformatics/16.9.825.

[112] Z. I. Oancea, S. Schuster, Topological analysis of metabolic networks

based on petri net theory, In Silico Biol 3 (3) (2003) 323–345.
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