
To appear in Proceedings of International Conference on Robotics and Automation 2019, Montreal, Canada.

Efficient Symbolic Reactive Synthesis for Finite-Horizon Tasks

Keliang He1, Andrew M. Wells1, Lydia E. Kavraki1, and Moshe Y. Vardi1

Abstract— When humans and robots perform complex tasks
together, the robot must have a strategy to choose its actions
based on observed human behavior. One well-studied approach
for finding such strategies is reactive synthesis. Existing ap-
proaches for finite-horizon tasks have used an explicit state
approach, which incurs high runtime. In this work, we present a
compositional approach to perform synthesis for finite-horizon
tasks based on binary decision diagrams. We show that for pick-
and-place tasks, the compositional approach achieves orders-
of-magnitude speed-ups compared to previous approaches. We
demonstrate the synthesized strategy on a UR5 robot.

I. INTRODUCTION

Robots are working increasingly closely with humans. In
scenarios such as human-robot co-assembly and assisted
living, robots share the same space as humans. Human
behavior, however, is highly unpredictable. To guarantee safe
completion of the tasks given to them, robots must handle
changes caused by the humans.

Consider a scenario where a manufacturing robot must
complete an assembly along with human workers. The
assembly may require many steps, and the robot needs to
guarantee the completion of the assembly, despite the varying
level at which the human may be involved, and even in cases
where the human is counter-productive. Figure 1 shows an
example of this in the lab, where the robot must build an
arch, but the human may move the objects around. In such
scenarios, the robot must behave reactively, i.e., choose its
action depending on the actions performed by the human.

One approach to achieving this reactive behavior is replan-
ning [1], [2]. In replanning, the robot finds a sequence of
actions to complete the task and starts executing the plan.
When the human interferes with the task, the robot stops
and finds another plan to execute. Replanning, however,
does not guarantee task completion. Without considering
possible human actions during planning, the robot could
reach situations where the task is impossible to complete.

A popular approach for achieving reactive behavior is
reactive synthesis [3], [4], [5], [6], [7]. These works find
strategies that can determine the correct robot actions at each
possible situation and guarantee the completion of the task.
Reactive synthesis requires two inputs: a task and a planning
domain (also called an abstraction). The task is written as a
logical formula, and describes the properties that must hold
and their temporal relationships. The planning domain is
given as a transition system that describes, on a discrete level,

1Dept. of Computer Science, Rice University, Houston, TX 77005,
USA. This work has been supported in part by NSF 1830549. This
work was supported by a NASA Space Technology Research Fellowship.
keliang.h@gmail.com, andrew.wells@rice.edu,
kavraki@rice.edu, vardi@cs.rice.edu.

Fig. 1: An arch construction task executed on a UR5 robot.
(All figures best viewed in color and on screen.)

the possible robot and human actions. Reactive synthesis
finds the solution strategy by first combining the task and
the domain into a game between the robot and the human,
and then solving for a winning strategy for the robot in this
game. The winning strategy can then be mapped back to the
planning domain to guarantee robot task completion under
all modeled human behaviors.

In this work, we focus on reactive synthesis for finite-
horizon tasks represented using formulas of linear temporal
logic on finite traces (LTLf), as described in [7]. These tasks
represent problems such as factory assemblies and object
rearrangement. They are different from infinite-horizon tasks
(such as surveillance tasks) in that they must be determined
complete at some point during execution. Note that unlike
[7], we do not constrain the amount of resources the robot
consumes during execution.

Previous work introduced an algorithm to perform reactive
synthesis for finite-horizon tasks and an explicit approach
to implement this algorithm [7]. This explicit approach
represents each state in the game separately. However, this
technique lacked scalability, which prevented it from being
applied to larger problems. On the other hand, advancements
in LTLf synthesis [8] have shown that using symbolic
solving techniques can significantly speed up synthesis. LTLf
synthesis is targeted at software synthesis where the input is
a formula. Unfortunately, robotic problems require a planning
domain that encodes the possible behaviors of the robot and
the human. This planning domain is given as a transition
system and not as a formula.

In this work, we propose a compositional method to apply
symbolic techniques from LTLf synthesis to reactive synthesis
for robots. The main challenge is the incorporation of the
planning domain in the symbolic LTLf synthesis framework.
Our compositional method converts the domain and the task
separately into symbolic representations called binary decision

1

diagrams (BDDs) [9], and combines these BDDs into a game,
which is solved for a strategy. Due to the compactness of
BDDs, we achieve significant performance improvements.

The main contribution of this paper is a compositional
approach to reactive synthesis for finite-horizon tasks. This
approach leverages symbolic synthesis techniques and outper-
forms the previous explicit approach. In Section III, we define
the problem of reactive synthesis for finite-horizon tasks. In
Section IV, we describe the existing explicit approach as
well as a monolithic approach inspired by work from reactive
synthesis for infinite-horizon tasks. In Section V, we detail
the proposed compositional approach. In Section VI, we use a
pick-and-place case study to compare synthesis time between
the explicit, monolithic, and compositional approaches and
demonstrate the scalability of the compositional approach. We
also validate the synthesized strategy via physical execution
of the arch construction task on a UR5 robot.

II. RELATED WORK

In reactive synthesis for LTLf formulas, [8] has shown that
significant performance gains can be achieved by applying
symbolic methods. The symbolic data structures used are
called binary decision diagrams (BDDs) [9], which are
compact representations of sets of boolean assignments. Using
BDDs, the synthesis algorithm is able to operate over sets of
similar states in a single operation, as opposed to operating
on each state individually in the explicit method (see Section
IV-C). However, [8] only takes as input a formula. For robotic
applications, the planning domain, which encodes the possible
behaviors of the robot and the human, is often given as a
transition system and not a formula. In this paper, we focus
on incorporating the planning domain into the LTLf synthesis
process, leveraging the symbolic representations in LTLf
synthesis to achieve better performance.

Existing works [10], [11] in infinite-horizon reactive syn-
thesis have also considered the incorporation of the planning
domain into symbolic methods [12], [13]. In these works, the
planning domain is encoded as a formula which is combined
with the task formula. The combined formula is input to a
symbolic synthesis tool to find a strategy. This monolithic
approach has been shown to be effective for 2D navigation
problems for infinite-horizon tasks. There are differences
between the problems investigated in [10], [11] and the
problems in this paper. First, the tasks investigated in these
previous works are infinite-horizon (e.g., surveillance tasks),
while in this paper, we focus on finite-horizon tasks (e.g.,
assembly tasks), which are computationally less complex.
Second, the manipulation case study in this paper is higher-
dimensional than many of the 2D navigation domains studied
in previous work, and therefore more complex. Nonetheless,
we implement this monolithic approach, as described in
Section IV-D, and compare it with the proposed approach.

III. PROBLEM DEFINITION

The reactive synthesis problem for finite-horizon tasks
considers a planning domain where a robot and a human
can take actions, and the robot must achieve a given finite

task while the human has a limited number of “moves” to
interfere with the task.

A. Problem Inputs

1) Planning Domain: The reactive synthesis problem is
given on a planning domain. A reactive planning domain is
a transition system G = (V, v0, Ae, As,Π, ρ), where
• V is a finite set of states;
• v0 is an initial state;
• Ae and As are human and robot actions respectively.

Each action a ∈ Ae ∪ As is a partial function from V
to V ;

• Π is a set of task relevant propositions;
• ρ : V → 2Π is the predicate function that determines

the truth value of the propositions from the states.
In this paper, the planning domain will be specified using

the planning domain description language (PDDL) [14], a
standard language in the field of AI planning. In a PDDL
domain, functions over objects determine the state of the
transition system. For example, in a block-stacking scenario, a
function at : Blocks→ Locations would map the blocks to
their current locations. Thus, the instantiation of the function
at can determine where objects are, and therefore the state of
the transition system. Actions in PDDL have preconditions
and effects. The preconditions must be satisfied for the action
to be applied. The effects indicate the change to the functions
caused by the action.

For reactive planning, we extend PDDL to differentiate
human and robot actions. We always allow the human to
choose to take no action. The pick-and-place domain is
detailed in Section VI.

2) Temporal Task: To express the robot task, we use linear
temporal logic over finite traces (LTLf) [15]. An LTLf formula
φ is defined over the set of propositions Π to describe how
the truth assignment to Π changes over time. The syntax
for an LTLf formula is identical to LTL [16] and is defined
recursively as:

φ = p | ¬ψ1 | ψ1 ∧ ψ2 | ◦ψ | ψ1Uψ2 | >

where p ∈ Π and ψ1, ψ2 are also LTLf formulas.
The semantics of LTLf formulas are defined over finite

sequences (w0, w1, ..., wn) of truth assignments wi ∈ 2Π,
called traces. Unlike LTL where the semantics are defined
over infinite traces, reasoning over finite traces allows LTLf
to describe finite-horizon tasks such as assembly and delivery.
The semantics of LTLf are as follows.
• w, i |= >;
• w, i |= p iff wi contains p;
• w, i |= ¬ψ iff w, i 6|= ψ (negation);
• w, i |= ψ1 ∧ ψ2 iff w, i |= ψ1 and w, i |= ψ2

(conjunction);
• w, i |= ◦ψ iff w, (i+ 1) |= ψ and i < n (next);
• w, i |= ψ1Uψ2 iff there exists 0 ≤ j ≤ n such that
w, k |= ψ1 for all i ≤ k < j, and w, j |= ψ2 (until).

We say the trace w satisfies the formula φ, w |= φ, iff
w, 0 |= φ. We also include the following shorthands:

• ψ1 ∨ ψ2 ≡ ¬ψ1 ∧ ¬ψ2 (disjunction);
• ♦ψ ≡ >Uψ (eventually ψ);
• �ψ ≡ ¬>♦(¬ψ) (always ψ).
To describe the robot task, we use an LTLf formula φ over

the task relevant propositions Π. The task is completed if the
trace incurred (ρ(v0), ρ(v1), ..., ρ(vh)) satisfied φ.

For example, in the arch-building task, the task is

♦(Block1-at-top)
∧

�(
∧

l2 supports l1

l1-occupied→ l2-occupied). (1)

Block1-at-top indicates whether block1 is at the top location
on the arch. l-occupied indicates if location l is occupied,
and is written as a disjunction of Blocki-at-l for all blocks.
The formula says that block1 should be at the top of the arch,
but also ensures each object is supported.

3) Human Action Limit: We also assume that the human
only has a limited number of moves K. This assumption is
placed because for many domains, the human is more capable
than the robot, and if we allow the human to keep performing
actions, the robot has no way to guarantee task completion.

B. Solution strategy

A strategy for the robot on a reactive domain is a mapping
Str : V ∗ → As, where the robot chooses an action according
to the history of domain states. A strategy is winning for the
robot if for every infinite execution (v0, v1, ...) that starts at
the initial state v0 and follows transitions from Str and at
most K actions from Ae, then we can find h > 0 such that
the trace (ρ(v0), ρ(v1), ..., ρ(vh)) satisfies φ. In other words,
a winning strategy guarantees that at some finite horizon h,
the task is satisfied. The goal of reactive synthesis is to find
a winning strategy for the robot.

IV. EXISTING SYNTHESIS APPROACHES

A. Overview of the Synthesis Algorithm

In previous work [7], we proposed an algorithm for solving
the reactive synthesis problem. The explicit, monolithic,
and compositional approaches compared in this paper all
implement this algorithm, using different encodings and tools.

In this algorithm, the task is first converted to a determinis-
tic finite automaton (DFA). Then, the DFA and the planning
domain are combined to construct a game between the robot
and the human, and a strategy is found for the game.

A DFA A = {Z, z0, δ, Zf} over a set of boolean proposi-
tions Π is a transition system where
• Z is a finite set of states;
• z0 is the initial state;
• Zf is a set of final states;
• δ : Z × 2Π → Z is a transition function that determines

the next states given the current state and the set of truth
assignment to Π.

We say a trace w = (w0, w1, ..., wn) of Π is accepted by
A if by starting in z0 and applying δ(zi, wi) = zi+1 for
0 ≤ i ≤ n, we terminate in a final state zn+1 ∈ Zf .

We convert the task φ into a DFA Aφ that accepts
exactly the traces that satisfy φ [17]. We then take the
product of the DFA and the domain G to create a game
P = (S, s0, Sf , Ts, Te), defined as the following:
• S = Z × V × ZK is the set of game states. Each state

encodes the current DFA state, the domain state, and
the number of human actions remaining.

• s0 = (z0, v0, k) is the initial state.
• Sf = {(z, v, k)|z ∈ Zf} are the final states.
• Ts is a set of partial functions from S to S inherited

from the robot actions As. If as is defined from v,
then the corresponding ts is defined as ts((z, v, k)) =
(δ(z, ρ(as(v))), as(v), k).

• Te is similarly inherited from Ae, but only defined from
states where k 6= 0. The transition is te((z, v, k)) =
(δ(z, ρ(ae(v))), ae(v), k − 1).

Intuitively, the game states propagate by first applying the
action to find the next domain state, then using the proposition
assignment at the new state to advance the DFA state. The
count of human actions remaining is reduced if the processed
action is a human action. The task is achieved if the execution
leads the game from the initial state to a final state.

The game is then solved using a fixed-point approach. We
incrementally build a set of game states called the winning
set Wi, where the robot can force a win. Initially, we let
the winning set W0 = Sf . Then, at each iteration i, we add
states to the winning set if all results of a human move are
in the winning set and the robot can force the game into
the winning set in one move, Wi+1 = Wi ∪ {s ∈ S|(∀te ∈
Te, te(s) ∈ Wi) ∧ (∃es ∈ Ts, ts(s) ∈ Wi)}. This process
terminates when s0 is added, at which point a strategy is
found. If a fixed-point is reached, i.e., no more states can be
added, then no strategy exists for the game.

B. An Explicit Approach

In our previous work [7], the game is represented explicitly
as states and transitions. Each state is recorded using an
assignment to the domain functions and predicates. The
winning set maintains an explicit set of states. At each
iteration of the fixed-point computation, we check all game
states that are not in Wi, and decide if they should be added
to Wi+1. This causes significant scalability issues because
the number of possible game states is exponential in the size
of the domain. Thus scaling to larger domains is intractable,
as will be shown in Section VI. Empirically, this approach
only scaled to pick-and-place domains with 3 objects.

C. Symbolic LTLf Synthesis

To avoid explicitly constructing the states and transitions
in the game, we leverage recent work in symbolic LTLf
synthesis [8]. LTLf synthesis solves a similar problem to
reactive synthesis, but the input is only a LTLf formula φ. The
propositions of the formula are not generated by a planning
domain, but are instead partitioned into inputs X and outputs
Y , directly controlled by the environment (human), and the
system (robot), respectively. The goal is to find a strategy that
chooses an assignment to Y that guarantees φ is satisfied.

Symbolic LTLf synthesis leverages a data structure called a
binary decision diagram (BDD) [9] to achieve fast synthesis.
BDDs are compact representations of boolean functions that
map a set of boolean variables to a boolean output (true or
false). BDDs can also encode a set of boolean assignments
by considering the set as a function that maps all assignments
in the set to true, and everything else to false. Common
operations on functions such as evaluation and composition,
as well as set operations such as union, intersection, and
complementation have efficient implementations on BDDs.

Symbolic LTLf synthesis [8] finds a strategy by first
converting the LTLf formula into a DFA Aφ. The traces
that satisfy φ are exactly those that are accepted by Aφ. This
DFA is represented compactly using BDDs. The states are
numbered and encoded using a set of variables Z as bit
vectors. The set of final states Zf is written as a function
Zf = 2Z → {0, 1}. The transition function δ is encoded as a
boolean function from Z×X ×Y to true or false for each bit
in Z . Once the DFA is constructed, the synthesis algorithm
performs a fixed-point computation and finds a strategy that
maps Z to Y . During this computation, the winning set and
strategy are compactly maintained as BDDs, as previous work
showed this is more efficient than explicit synthesis for a
benchmark of randomly-generated problems [8]. Symbolic
synthesis is utilized in both the monolithic approach (IV-D)
and our new approach (V).

D. A Monolithic Approach

Instead of using the explicit approach, one way to leverage
symbolic LTLf synthesis is to combine the planning domain
and the task as a single LTLf formula, and call the existing
symbolic LTLf synthesis tool. This is similar to the approach
taken in infinite-horizon reactive synthesis [11], [10].

We generate the LTLf formula

φ = φ0 ∧ φtrans ∧ φpre−s ∧ ((φh ∧ φpre−e) =⇒ φgoal),

where
• φ0 describes the initial state;
• φgoal is the task given by the user;
• φpre−e asserts at all times steps, the human respects its

action preconditions;
• φpre−s asserts at all times steps, the robot respects its

action preconditions;
• φh ensures the number of human actions does not exceed

the limit;
• φtran describes the relationship between the current and

next state given the action chosen. This subformula is
written using add-lists, delete-lists and framing axioms
as commonly done in SAT-Plan [18].

Essentially, the formula states that the initial condition and
the transition function must hold, and the robot must choose
legal actions, and if the human performs legal actions, then
the task must be achieved.

We then give this formula to an existing symbolic LTLf
synthesis tool [8].The result is a strategy that determines the
action to take and, given the previous state and the human
action chosen, the next state of the planning domain.

In the case study in Section VI, we see that this monolithic
approach has a bottleneck in memory usage during the
translation from the LTLf formula to the DFA. In practice,
this bottleneck prevents the monolithic approach from solving
large problems.

V. PROPOSED COMPOSITIONAL APPROACH

The monolithic approach fails to scale well because the
formula we input to the LTLf synthesis tool is unnecessarily
large. Using this insight, we propose the compositional
approach, which is the main contribution of this paper. Since
the planning domain is defined by functions and sets, we
can encode the planning domain directly as BDDs, and pass
only the task through the conversion from LTLf to a DFA.
The task is often a much smaller formula than the domain,
thus we alleviate the LTLf to DFA conversion bottleneck.
Once the task is converted to a DFA, the compositional
approach directly combines it with the BDDs representing
the planning domain to generate a product DFA. The symbolic
synthesis tool then computes a strategy on this product DFA.
Specifically, we perform the following steps.

We first create the variables Πd representing the planning
domain state and the number of human actions remaining.
The state includes πl (loss) and πw (win) representing the
robot and the human violating the preconditions of the
planning domain respectively. We create variables Πe and
Πs to represent the human and robot actions respectively.

For each variable in Πd, we generate a BDD that describes
whether this variable is true on the next step, given the
current state and the actions chosen. These BDDs combine to
represent a function S2S : 2Πd∪Πe∪Πs → 2Πd , that describes
the transition function of the planning domain.

We then create BDDs that map Πd to the truth value
of the propositions in Π. These BDDs represent a function
S2P : 2Πd → 2Π, that describes the predicate function of
the planning domain.

We construct the formula �(¬πl)∧(♦(πw)∨φ), essentially
saying that the robot should respect action preconditions,
and if the human respects action preconditions and number
of actions available, then the task should be satisfied. We
input this formula to the symbolic LTLf synthesis tool in [8],
and generate a DFA represented by its transition function
δ : 2Z × 2Π → 2Z and its final states Zf : 2Z → {0, 1}
encoded as BDDs. For details on translation from LTLf to the
BDD-represented DFA, see [8]. Essentially, the states of the
DFA, represented by assignments of Z , describe the progress
toward completion of the task. The transition function δ
describes how the task state progresses according to the
output from the planning domain.

We then construct a product DFA Ap, where the state
variables are Z ∪ Πd, inputs are Πe, and outputs are Πs.
The transition function is represented as δp((v, z), ae∪as) =
(S2S(v, ae ∪ as), δ(z, S2P (v)). In other words, from a state
with planning domain state v and task state z, if the human
performs ae and the robot performs as, then the next
domain state is found using the planning domain transition
S2S(v, ae ∪ as), and the next task state is found using the

DFA transition with the predicate function δ(z, S2P (v)). This
is essentially the game construction from section IV-A.

Finally, we use the synthesis tool from [8] to generate
a strategy for this game. This tool performs a fixed-point
computation similar to that described in Section IV-A, but
uses BDD operations instead of explicit state operations.
Specifically, for the explicit approach, the existential and
universal quantification operations are linear in the number of
product DFA states. Using BDD representations, the universal
quantification is worst-case quadratic in the size of the BDD,
and the existential quantification is constant time (due to the
variable ordering in the BDDs). In the case study in Section
VI, we observe that the size of the BDD is much smaller
than the number of explicit states, thus we can compute the
fixed-point much faster using the compositional approach.

The states of the product DFA are the combined task
and domain states, and the output variables represent the
robot action, so the resulting strategy is a mapping from the
combined task and domain states to actions for the robot.
Following this strategy, we ensure that the robot never violates
an action precondition and will achieve the task as long as
the human does not violate its conditions.

VI. CASE STUDY

To compare the scalability of the explicit, monolithic,
and compositional approaches discussed in this paper, we
implement each approach and test them on a pick-and-place
scenario with varying parameters. In this scenario, a set of
objects and a finite set of locations are defined. The human
can move any object to any location. The robot can perform
grasp/place actions to pickup and drop objects, as well as
transfer/transit actions to move the robot arm with/without
an object in its gripper. This scenario is designed to simulate
possible human-robot co-assembly tasks.

The explicit, monolithic, and compositional approaches are
implemented in C++. Translation from LTLf to DFA as well
as symbolic game strategy synthesis are performed using Syft
[8], which uses MONA [19] internally. BDDs are constructed
using the CUDD [20] package. Computation time is measured
on a workstation with a quad core 4GHz processor with 32G
memory and averaged over 10 runs.

A. Runtime

We vary the number of objects |O|, locations |L|, and
human actions allowed K, in order to test the scalability of
each approach. The goal for each task is to rearrange the
objects so that each object is at a specific location. Overall, we
observe that for the pick-and-place domain, the compositional
approach achieves a significant speedup over the explicit and
monolithic approaches, and does not experience the memory
bottleneck of the monolithic approach.

Figure 2a shows the total runtime for varying numbers of
locations. We see that the runtime for the explicit approach
grows as a polynomial with the number of locations.

On average, the monolithic approach is 2.7 times faster
than the explicit approach. Note that synthesis time for each
test case varies drastically. This is because specific parameter

(a)

(b)

(c)

Fig. 2: Average end-to-end runtime for synthesis using dif-
ferent approaches (log-scale). Dashes lines show exponential
(b) or quadratic functions (a, c) fit to the corresponding data.

values (in this case, the number of locations) could affect
the symmetry of the combined formula, thus reducing the
runtime even though the problem itself is larger.

The compositional approach, on the other hand, is over
an order of magnitude faster than both the monolithic and
explicit approaches. We observe a larger speedup for a larger
number of locations, with a 37 times speedup over the explicit
approach for 6 locations.

Figure 2b shows the total runtime for varying numbers
of objects. The runtime for the explicit approach grows
exponentially, and quickly times out at 500 seconds with
only 3 objects.

We observe that the monolithic approach runs out of

(a) (b) (c)

(d) (e)

Fig. 3: Execution of the arch construction task. (a) Initial condition; block1 needs to be placed at top of arch. (b) The robot
places the other base (red) while the human helps by placing one of the upper supports (blue). (c) The robot places the other
upper support. (d) As the robot is reaching for the top object, the human interferes by removing an upper support. (e) The
robot recovers the misplaced support and finishes the task.

memory during the translation from LTLf to DFA starting at 3
objects. In particular, we found that between 40% to 53% of
the runtime for the monolithic approach is spent on translating
the formula to a DFA prior to synthesis. This bottleneck was
also observed in [8]. This prevents the monolithic approach
from handling large problems in the pick-and-place domain.

The compositional approach also scales exponentially with
the number of objects, but exhibits a much smaller rate of
growth on the log plot, indicating an exponential speedup
over the explicit approach. Even for a difficult problem with
5 objects, the compositional approach was able to find a
strategy using an average of 219 seconds.

Figure 2c shows the runtime with respect to the number
of human actions allowed. The monolithic approach runs
out of memory beyond 5 actions allowed. The explicit
approach demonstrates a quadratic growth in runtime. The
compositional approach, however, seems to perform sub-
quadratically. This is due to the fact that as the number of
human actions grows, the BDD representation of the planning
domain does not necessarily increase in size. In this case,
K = 10 and K = 15 both require 4 bits to represent the
human actions, thus the runtime increase from K = 10 to
K = 15 is very small.

B. Physical Execution

We validate the correctness and feasibility of the strategy
synthesis tool by exporting it as a ROS [21] package and
incorporating it on a UR5 robot. Figure 3 shows an example

of the robot performing the arch construction task using the
strategy found by the compositional approach. The LTLf
formulation of the task is Formula (1). This task is more
complex temporally than the rearrangement problems in
Section VI-A, but we do not allow the human to place objects
at the top of the arch.

We see that the robot successfully completes the arch,
despite the human interfering twice. The first time the human
was helpful, and the robot takes advantage of the help. The
second time the human action hinders the task, but the robot is
able to recover. This problem was not synthesizable with a 500
seconds timeout for the explicit and monolithic approaches.
The compositional approach was able to synthesize a strategy
in 24 seconds. Specifically, there are over 2.8 million explicit
game states, while the final BDD that represents the strategy
only contains 2604 BDD nodes.

VII. CONCLUSION AND DISCUSSION

In this paper, we present a reactive synthesis algorithm
for finite-horizon tasks expressed in LTLf. By encoding the
planning domain and the task as BDDs and combining them
at the BDD level, we achieve orders-of-magnitude speed-up
over existing explicit approaches on a pick-and-place domain
and break the scalability bottleneck of monolithic approaches.

Whether the runtime experiments extend to other domains,
such as navigation domains, remains open for further inves-
tigation. Also open for investigation is whether using the
compositional approach instead of a monolithic approach

could improve the runtime performance of reactive synthesis
for infinite-horizon tasks.

REFERENCES

[1] M. Guo, K. H. Johansson, and D. V. Dimarogonas, “Revising motion
planning under linear temporal logic specifications in partially known
workspaces,” in Int. Conf. on Robotics and Automation (ICRA). IEEE,
2013, pp. 5025–5032.

[2] M. Lahijanian, M. R. Maly, D. Fried, L. E. Kavraki, H. Kress-Gazit,
and M. Y. Vardi, “Iterative temporal planning in uncertain environments
with partial satisfaction guarantees,” IEEE Transactions on Robotics,
vol. 32, no. 3, pp. 538–599, 2016.

[3] H. Kress-Gazit, G. Fainekos, and G. Pappas, “Temporal-logic-based
reactive mission and motion planning,” IEEE Transactions on Robotics,
vol. 25, no. 6, pp. 1370–1381, 12 2009.

[4] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon
temporal logic planning,” IEEE Transactions on Automatic Control,
vol. 57, no. 11, pp. 2817–2830, 2012.

[5] C. I. Vasile and C. Belta, “Reactive sampling-based temporal logic path
planning,” in International Conference on Robotics and Automation
(ICRA). IEEE, 2014, pp. 4310–4315.

[6] E. M. Wolff, U. Topcu, and R. M. Murray, “Efficient reactive controller
synthesis for a fragment of linear temporal logic,” in International
Conference on Robotics and Automation (ICRA). IEEE, 2013, pp.
5033–5040.

[7] K. He, M. Lahijanian, L. E. Kavraki, and M. Y. Vardi, “Reactive
synthesis for finite tasks under resource constraints,” in Int. Conf. on
Intelligent Robots and Systems (IROS). Vancouver, BC, Canada: IEEE,
2017, pp. 5326–5332.

[8] S. Zhu, L. M. Tabajara, J. Li, G. Pu, and M. Y. Vardi, “Symbolic LTLf
synthesis,” in Proceedings of the 26th International Joint Conference
on Artificial Intelligence. AAAI Press, 2017, pp. 1362–1369.

[9] R. E. Bryant, “Graph-based algorithms for boolean function manipula-
tion,” IEEE Transactions on Computers, vol. 100, no. 8, pp. 677–691,
1986.

[10] C. Finucane, G. Jing, and H. Kress-Gazit, “LTLMoP: Experimenting
with language, temporal logic and robot control,” in IEEE/RSJ
International Conference on Intelligent Robots (IROS). IEEE, 2010,
pp. 1988–1993.

[11] I. Filippidis, S. Dathathri, S. C. Livingston, N. Ozay, and R. M.
Murray, “Control design for hybrid systems with TuLiP: The temporal
logic planning toolbox,” in Control Applications (CCA), 2016 IEEE
Conference on. IEEE, 2016, pp. 1030–1041.

[12] A. Pnueli, Y. Sa’ar, and L. D. Zuck, “JTLV: A framework for developing
verification algorithms,” in International Conference on Computer
Aided Verification. Springer, 2010, pp. 171–174.

[13] R. Ehlers and V. Raman, “Slugs: Extensible GR (1) synthesis,” in
International Conference on Computer Aided Verification. Springer,
2016, pp. 333–339.

[14] D. L. Kovacs, “BNF definition of PDDL 3.1,” Manuscript from the
IPC-2011 website, 2011.

[15] G. De Giacomo and M. Y. Vardi, “Linear temporal logic and linear
dynamic logic on finite traces.” in International Joint Conferences on
Artificial Intelligence (IJCAI), vol. 13, 2013, pp. 854–860.

[16] A. Pnueli, “The temporal logic of programs,” in Foundations of
Computer Science, 1977., 18th Annual Symposium on. IEEE, 1977,
pp. 46–57.

[17] G. De Giacomo and M. Y. Vardi, “Synthesis for LTL and LDL on finite
traces.” in International Joint Conferences on Artificial Intelligence
(IJCAI), vol. 15, 2015, pp. 1558–1564.

[18] H. Kautz and B. Selman, “SATPLAN04: Planning as satisfiability,”
2006.

[19] J. G. Henriksen, J. Jensen, M. Jørgensen, N. Klarlund, R. Paige,
T. Rauhe, and A. Sandholm, “Mona: Monadic second-order logic
in practice,” in International Workshop on Tools and Algorithms for
the Construction and Analysis of Systems. Springer, 1995, pp. 89–110.

[20] F. Somenzi, “CUDD: CU Decision Diagram Package 3.0.0. Universiy
of Colorado at Boulder,” 2016.

[21] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no. 3.2.
Kobe, Japan, 2009, p. 5.

	Introduction
	Related Work
	Problem Definition
	Problem Inputs
	Planning Domain
	Temporal Task
	Human Action Limit

	Solution strategy

	Existing Synthesis Approaches
	Overview of the Synthesis Algorithm
	An Explicit Approach
	Symbolic LTLf Synthesis
	A Monolithic Approach

	Proposed Compositional Approach
	Case Study
	Runtime
	Physical Execution

	Conclusion and Discussion
	References

