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Abstract— Manipulation planning from high-level task spec-
ifications, even though highly desirable, is a challenging prob-
lem. The large dimensionality of manipulators and complex-
ity of task specifications make the problem computationally
intractable. This work introduces a manipulation planning
framework with linear temporal logic (LTL) specifications. The
use of LTL as the specification language allows the expression
of rich and complex manipulation tasks. The framework deals
with the state-explosion problem through a novel abstraction
technique. Given a robotic system, a workspace consisting of
obstacles, manipulable objects, and locations of interest, and
a co-safe LTL specification over the objects and locations, the
framework computes a motion plan to achieve the task through
a synergistic multi-layered planning architecture. The power
of the framework is demonstrated through case studies, in
which the planner efficiently computes plans for complex tasks.
The case studies also illustrate the ability of the framework in
intelligently moving away objects that block desired executions
without requiring backtracking.

I. INTRODUCTION

In recent years, there has been an increasing interest in the
integration of task and motion planning (ITMP) (e.g., [1]–[7]).
The ultimate goal of ITMP is to enable the specification of
robotic tasks at a high level and the automatic generation
of satisfying motion plans. This is, however, a challenging
problem due to the complexity of combining the robot’s
continuous motion planning with discrete task reasoning. For
instance, consider a robot behind a counter at a sushi bar
serving several customers. On the counter, there exist several
glasses, sushi plates, a tip jar, and a tray for dirty dishes. An
example of a desirable task specification for this robot is

“Serve the customers such that each one first receives
a glass of water and then a sushi plate. Eventually,
show the tip jar to the customers, but it must not be
placed in front of a customer unless she is served both
drinks and sushi. Finally, all the dirty dishes must be
collected and then placed on the tray.”

The specification expresses the task at a high level and does
not detail a sequence of movements to be performed. This
paper focuses on a manipulation planning framework that
enables planning from such high-level specifications expressed
in temporal logics, namely linear temporal logic (LTL) [8].

The power of LTL as the specification language in ITMP has
been demonstrated in applications other than manipulation,
particularly mobile robotics (e.g., [1]–[3], [9]–[11]). LTL
allows Boolean and temporal constraints, accommodating
rich specifications such as the example above. In addition to

This work is supported in part by NSF 1317849, 1139011, and 1018798.
The authors are with the Department of Computer

Science at Rice University, Houston, TX, USA, Email:
{keliang.he,morteza,kavraki,vardi}@rice.edu.

high expressivity, LTL planners provide strong correctness and
completeness guarantees [1]–[3]. These methods, however,
face a combinatorial blow up of the state space, commonly
known as the state-explosion problem [9]. Therefore, LTL
planning frameworks usually involve a construction of discrete
abstraction of the robotic system [1]–[3]. Generally, the
construction of such abstractions is nontrivial. For simple
mobile systems, a (bi)similar abstraction is typically possible,
guaranteeing completeness of the LTL planners (e.g., [1], [2]).
For complex mobile systems, sampling-based motion planners
are usually employed to provide probabilistic completeness
guarantees [3], [10], [11]. The abstraction techniques devel-
oped for mobile robotics rely on discretizations of the state-
spaces, making them intractable for manipulation planning
due to the large dimensionality in the manipulation problem.

ITMP has received a lot of attention in robot manipulation
planning (e.g., [4]–[7], [12]–[14]). These works typically
employ classical AI planners [15], such as FF [16], at the
task level for discrete planning and use a motion planner at
the low level to find paths in the robot’s continuous space.
Even though these ITMP frameworks enable manipulation
planning for high-level tasks, their specifications are restricted
to reaching a set in the configuration space. The temporal
requirements over the events along the path are typically
encoded as a part of the action requirements.

Popular architectures in ITMP include hierarchical two-
layer planners and cooperative three-layer planners (e.g.,
[6], [7], [13]). Particularly, the work in [13] introduces an
aggressive hierarchical approach to ITMP. The framework
makes choices at the high level and commits to them in
a top-down fashion. This architecture is relaxed in [6] by
first constructing partial plans (skeletons) and then solving
a constraint-satisfaction problem. The recent work in [7]
proposes a three-layer planning framework to take advantage
of the existing off-the-shelf task and motion planners by
introducing an interface layer. This interface layer allows
communication between task and motion planners through
identifying failures of the motion planner and asking the task
planner for a different high-level plan. The process repeats
until either a motion plan is successfully computed or all
of the high-level plans are exhausted. In the latter case, the
interface layer resorts to moving a removable object to another
location and reinitializing the planning process. This removal
action, however, may cause a blocking of future motions.
This problem is commonly referred to as backtracking.

This paper improves the state-of-the-art by allowing more
expressivity, specifically enabling temporal reasoning at the
task level and significantly relaxing action requirements. The
main contribution of this work is an LTL planning framework
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for robotic manipulation. Different from [17] that uses LTL
to specify controller properties for dexterous manipulation,
where the focus is on securing the grasp of an object with
provably correct finger gaits, the focus of this work is to
generate the necessary grasp and transfer of objects between
locations of interest in order to accomplish a task specified
in LTL. To the best of our knowledge, this is the first attempt
in employing temporal logics in this context of manipulation
planning. The use of LTL allows the expression of complex
manipulation tasks with temporal constraints, which existing
ITMP solutions for manipulation are not able to accommodate.
Since LTL is a formal language, by expressing the task in
LTL, we remove any ambiguity from the specifications and
formalize the planning procedure. Even though the problem
of state explosion [18] of the LTL planners is inherited in
this framework, this problem is partially alleviated by a novel
abstraction technique and a synergistic multi-layered planning
structure. This structure follows the synergistic framework
introduced in [3] and is particularly modified for manipulation
planning. The abstraction is developed in this paper and is
essentially a coarse representation of all the ways that the
robot can manipulate the objects. Consequently, the planner
gains a global awareness with this abstraction. By combining
the abstraction with the automaton that represents the LTL
specification [19], the planner finds all possible methods
of satisfying the specification at a high level. It then uses
the planning layers to generate a satisfying continuous path.
Subsequently, the common occurring problem of backtracking
in ITMP as encountered in [7] does not arise in this framework.
The power of our method is illustrated through case studies,
in which motion plans for complex manipulation tasks were
efficiently computed for a PR2 in simulation. The case
studies also demonstrate the capabilities of the framework in
intelligently removing objects blocking desired paths without
requiring backtracking in the remaining steps of planning.

II. PROBLEM FORMULATION

Let R be a robot in a three-dimensional workspace. The
workspace consists of a finite set of obstacles, a finite set
of manipulable objects denoted by O = {o1, . . . , on}, and
a set of locations of interest for the objects to be placed.
We assume that the locations are mutually exclusive, and
each one is large enough to be occupied by an object and
only one object. Each location is given a set of labels from
the set Ł = {l1, . . . , lm}. Note that the same label li could
be assigned to multiple locations, allowing a large location
that may contain several objects to be represented as several
locations with the same label.

To illustrate these concepts, consider again the robot server
scenario in Section I. The manipulable objects in this example
are the glasses, the sushi plates, and the tip jar. The locations
of interest are the counter-top areas in front of the customers,
the tray, and the initial locations of the glasses and plates.

A. Manipulation Planning

To define the manipulation problem, the configurations of
the objects being manipulated are represented in addition

to the configuration of the robot. The configuration space
(C-space denoted by C) of the system is the Cartesian product
of the C-spaces of the robot (CR) and the joint C-space of
the objects (CO = Co1 × . . . × Con), i.e., C = CR × CO.
Under this formulation, the manipulation planning problem
is to find a path P : [0, 1]→ C such that P (0) is the initial
configuration of the system, and P satisfies some constraints.
One constraint is that the objects can only move while being
manipulated by the robot. Another constraint imposes that the
path is collision free. The final constraint is that the path must
satisfy a specified task. In this work, the task is expressed
using co-safe LTL, which is defined below.

B. Task Specification Language - Co-safe LTL

Co-safe LTL is a fragment of LTL and combines Boolean
operators with temporal reasoning. Let Π be a set of
Boolean atomic propositions (detailed below for manipulation
problems). The syntax of co-safe LTL formula ϕ over Π is
inductively defined as:

ϕ = π | ¬π | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕUϕ | Xϕ | Fϕ
where π ∈ Π. The Boolean operators are “negation” (¬),
“and” (∧, true if both operands are true), and “or” (∨, true if
either operands are true). The temporal operators are “until”
(ϕ1Uϕ2, true if ϕ1 holds true until ϕ2 is true), “next” (Xϕ,
true if ϕ is true on the next time step), and “eventually” (Fϕ,
true if ϕ is true at some point in the future). See [19] for
formal definitions of the syntax and semantics of co-safe LTL.

The semantics of LTL formulas are defined over infinite
words, which are infinite sequences of letters from the
alphabet 2Π. Nevertheless, each word that is accepted by
a co-safe LTL formula can be detected by one of its finite
prefixes [19]. Thus, co-safe LTL is a desirable specification
language to express robotic tasks that must be accomplished
in finite time.

In manipulation tasks, the interest is in the manipulation
of the objects between the labeled locations. We define the
propositions of the co-safe LTL formulas to be of the form
oi ∈ lj , which reads as, “object oi is in a location with the
label lj .” Therefore, the set of all such propositions is Π.
For each configuration of the objects, we define a labeling
function L : CO → 2Π that maps the configuration to the set
of all propositions that hold true in the configuration. Such a
set of valid propositions at a configuration is called a letter
from the alphabet 2Π. We define the word generated by a
continuous path in CO as the sequence of letters assigned by
L along this path, where a letter is appended to the word
only if it differs from the previous letter. Recall that P is a
mapping to C = CR×CO. Thus, P generates a word through
its projection onto CO that represents the sequence of truth
assignments to the propositions along the execution.

C. Problem Definition

Given a robot with configuration space CR, a set of
manipulable objects O with joint configuration space CO, a set
of propositions Π, a labeling function L : CO → 2Π, and a co-
safe LTL formula ϕ over Π, find a valid path P : [0, 1]→ C
such that the word generated by P using L satisfies ϕ.
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Fig. 1: LTL manipulation planning framework.

III. PLANNING FRAMEWORK

To approach the above problem, we draw inspiration from
the synergistic framework in [3] and propose a planning
framework that consists of three layers: high-level plan-
ner, coordinating layer, and low-level search layer. The
discretization method proposed in [3], however, is not an
appropriate abstraction for manipulation due to the state-
explosion problem caused by the high dimensionality of
the C-space. Instead, we introduce a suitable abstraction
that is essentially a composition of the permutations of the
objects in the locations and the fundamental robot motions
required to manipulate the objects. This abstraction captures
all possible robotic manipulations of the objects. The high-
level planner operates on a graph, which is the product
of this abstraction with the automaton that represents the
specification. This product graph captures all possible ways
that the robot can move the objects between the locations to
satisfy the specification. The high-level planner searches for
a path over this graph and passes it to the coordinating layer,
which decomposes the path into segments. The segments that
need motion planning are passed to the low-level planner.
These segments are generally the motions that the robot needs
to perform between locations. The low-level layer searches
C by extending a sampling-based tree to find a path that
realizes the corresponding high-level plan segment. During
this search, the coordinating layer collects the exploration
information and assigns weights to the abstraction graph
edges of the corresponding plan segments, representing their
realizability difficulty. As a result, the high-level planner
learns the feasibility of the high-level plans and suggests the
ones for which motion planning is more likely to succeed.
Hence, the synergy between these planning layers results in
the generation of a satisfying continuous path. Figure 1 shows
a block diagram representation of this planning framework,
whose components are detailed in the following sections.

A. Abstraction

Recall that the major challenge in LTL planning for
continuous systems is state explosion. In manipulation, this
issue becomes even more significant than in mobile robotics
due to the large number of degrees of freedom of typical
manipulators. Therefore, the abstraction techniques used for
mobile robots, which consider only the workspace of the robot,
become ineffective as such abstractions cannot be computed in

(a) M (b) L
Fig. 2: (a) Motion primitive graph M. Motion of the robot must
follow a path onM. (b) A possible location graph L. The locations
of interest are labeled with Łi ⊆ Ł for i ∈ {1, . . . , r} and are
connected by the intermediate area.

high dimensional configuration spaces [18]. Here, we present
the construction of a suitable abstraction.

To obtain this abstraction, we first discretize the actions
of the robot to the set of motion primitives GRASP, PLACE,
HOLD, and MOVE and produce the graph M to encode the
allowed sequence of these motions as shown in Figure 2a.
These primitives capture the ways in which the robot can
interact with the world. Given the robot is within a set of
configurations called the pre-image of a location of interest,
and certain criteria regarding the state of the system are
satisfied, the primitives GRASP (PLACE) are guaranteed to
perform the necessary actions to grasp (place) the object
from (in) the location, and end in a configuration called the
post-image of the location. The criteria to perform each of
the actions are detailed later in this section. These actions
are precomputed, similar to [7], for pre-images close to
the locations of interest. The primitive HOLD represents
the motions from one location to another while holding an
object. Similarly, MOVE represents the robot motions between
locations while no objects is in the gripper. The HOLD and
MOVE actions are created by the low-level planner during
planning. In this work, we consider only these four actions,
but the framework could allow the inclusion of other ones,
such as pushing and pulling.

Next, we construct the location graph L, which captures
the locations of interest in the workspace of the robot. The
location graph consists of one node for each location of
interest, and an intermediate area representing the free-space
that connects the locations of interest. The edges of L
represent the adjacency of the locations. For the simplest case,
L consists of the locations of interest and an intermediate area
that connects all these locations (when they are non-adjacent).
In our setting, an object belongs to the intermediate area
when it is in the manipulator’s gripper. Recall from Section
II that each location is associated with a set of labels. Figure
2b illustrates the location graph of the simplest case.

We then combine these graphs through an automatic
procedure to obtain a coarse abstraction, which is essentially
a discrete representation of all possible ways that the robot
can manipulate the objects between the locations of interests.
We define the abstraction graph R = (V, v0, E, L,W ), where
• V =M×L×(O∪{∅})×∏oi∈O L is the set of abstrac-

tion nodes. A node in V can be represented as the tuple
(action, eeLoc, grpObj, obj1Loc, · · · , objnLoc). The first
component action ∈ M is the motion primitive being
performed. Second component eeLoc ∈ L is the location
of the end effector. Third component grpObj ∈ (O∪{∅})



is the object being manipulated, which could be the
empty set. The final components objiLoc ∈ L for
i ∈ {1, . . . , |O|} are the objects’ locations.

• v0 ∈ V is the initial node. Note that every continuous
state of C can be mapped onto a node in V by examining
the configuration of the robot, the objects’ locations, and
the action being performed. The initial configuration
c0 ∈ C is mapped to v0.

• E ⊆ V × V is the set of edges of the abstraction graph.
This captures all possible moves from an abstraction
node in V to another. The rules of the existence of an
edge between two nodes are detailed below.

• L : V → 2Π is the labeling function from the abstraction
nodes to the set of valid propositions at the node induced
by the labeling function L. The definition of this function
is also detailed below.

• W : E → R is the weight function which assigns
a weight to each edge of the graph. Intuitively, the
weight of the edge between two nodes represents the
difficulty level of generating a motion plan between the
corresponding configurations.

Note that not all nodes in V are physically possible. For
example, the case where o1 is in l1 and the gripper object
is also o1 is not possible. The number of valid nodes in
the abstraction is 2(|L| + 1)P

(|L|+1)
|O| , where Pk

n is the k-
permutation from n elements. We implicitly construct the
abstraction by defining the possible edges of R. Therefore,
we can construct the reachable set of valid nodes by starting
from v0 and following transitions that only point to valid
nodes. A valid transition exists between nodes v, v′ ∈ V , i.e.,
(v, v′) ∈ E if one of the following conditions is satisfied.
Each condition corresponds to one of the transitions on the
motion primitive graph M. These conditions are similar to
pre- and post-conditions in AI planning. In these conditions,
all the unmentioned components of v′ are required to be the
same as v. The conditions are:

• v.action = GRASP, v′.action = HOLD, v.grpObj = ∅,
for some i, v.eeLoc = v.objiLoc and v′.grpObj = oi.

• v.action = HOLD, v′.action = HOLD, and v.eeLoc is
connected to v′.eeLoc by an edge in L.

• v.action = HOLD, v′.action = PLACE, and v.eeLoc is
not the intermediate area.

• v.action = PLACE, v′.action = MOVE, for all j,
v.objjLoc 6= v.eeLoc, and for some i, v.grpObj = oi
and v′.objiLoc = v.eeLoc.

• v.action = MOVE, v′.action = MOVE, and v.eeLoc is
connected to v′.eeLoc by an edge in L.

• v.action = MOVE, v′.action = GRASP, and v.eeLoc is
not the intermediate area.

We can extract the set of propositions in the form oi ∈ lj
that are valid in v by examining its components objiLoc.
Therefore, the labeling function of the abstraction nodes
L : V → 2Π is defined as L(v) = {(oi ∈ lj) |
lj is a label of location v.objiLoc}. The edge weights are
initially assigned a value of one, and they are updated during
the planning process (see Section III-D).

B. Product Graph

In order to find a sequence of abstraction states to satisfy the
co-safe LTL formula ϕ, we use a high-level planner to search
a graph composed of the abstraction and the specification
as in [3] (see Figure 1). From a co-safe LTL formula, a
deterministic finite automaton (DFA) that accepts precisely all
the satisfying words of ϕ can be constructed [19]. This DFA
is defined as Aϕ = (Z, z0,Σ, δ, F ), where Z is the finite set
of states, and z0 is the initial state. Σ is the alphabet of the
LTL formula (recall from Section II-B that Σ = 2Π). The
letters of Σ are the possible truth assignments of the atomic
propositions. δ : Z × Σ→ Z is the transition function. F is
the set of final states (also called accepting states).

The accepting runs of Aϕ are paths from z0 to a state in
F following the transitions in δ. The letters along the path
represent the sequence of truth assignments of the propositions
to satisfy the specification. However, such assignments may
not respect the physical world. For example, the truth
assignment on one transition may require an object to be in
multiple locations at the same time (oi ∈ lj ∧ oi ∈ lk).

In order to find plans that satisfy both the specification
and the manipulation environment, we construct the product
graph P between the abstraction R and the DFA Aϕ, i.e.,
P = R×Aϕ. A product graph node p has two components,
p = (v, z), where v is a node in R, and z is a state in Aϕ.
An edge from p = (v, z) to p′ = (v′, z′) exists iff there is an
edge (v, v′) ∈ E and δ(z, L(v′)) = z′. Furthermore, edges
of P inherit the weights of the corresponding edges in R.

The start node of P is p0 = (v0, z0), and the goal nodes
of P are the nodes (vi, zj), where zj ∈ F . An accepting path
p0p1 . . . pk from the start node to a goal node on P induces a
path v0v1 . . . vk on R and a run z0z1 . . . zk on Aϕ. Note that
z0 . . . zk is necessarily an accepting run of Aϕ. Moreover, the
path v0 . . . vk in R respects the constraints of (1) each object
being at exactly one location, and (2) objects can move only
by the manipulator. Therefore, the motion plan that realizes
the edges (vi, vi+1) for all i ∈ {0, . . . , k − 1} satisfies the
specification ϕ.

In our implementation, only the reachable portion of P
from p0 is explicitly generated using Aϕ and an implicit
representation of the edges of R. Dijkstra’s algorithm is used
to find an accepting path on P with minimum total edge
weight. This path from the high-level planner is then used as
a guide for the low-level continuous planner to implement
each of the motion primitives required [3]. Recall that the
size of the abstraction is 2(|L|+1)P

(|L|+1)
|O| ; therefore the size

of the product graph P grows significantly with the increase
in the number of objects and locations, as well as the size
of the specification. In such cases, the product graph can be
represented implicitly, and a heuristic search algorithm can
be used to search P for a satisfying path. The selection of a
good heuristic remains for future work.

C. Realization of Guide

When a guide is generated by the high-level planner,
it is passed to the coordinating layer (see Figure 1). The
coordinating layer breaks the guide into segments according
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Fig. 3: (a) Initial configuration. Cubical object: osnack; spherical object: otipjar; cylinder farther from camera: odrink1; cylinder closer to camera:
odrink2. Horizontal bars on the table mark the customer locations, from customer 1 (closest) to customer 3 (farthest). (b) An execution of
Specification 1. The robot moves osnack out of the way for odrink2 to be served to customer 1. (c) An execution of Specification 2. The
robot moves osnack to customer 2 and then to customer 3 to offer them snacks.

to the motion primitives. For a GRASP or PLACE action, the
coordinating layer inserts the precomputed motion primitive.

For a segment of the guide that consists of a sequence of
HOLD or MOVE actions, the coordinating layer translates the
abstraction edges involved into a continuous space planning
query from the post-image of the first node to the pre-
image of the last node. The coordinating layer then allocates
some time for the low-level planner to attempt to solve this
continuous motion planning query. The low-level planner uses
sampling based motion planning techniques to implement
the path required (e.g., [20], [21]). The coordinating layer
starts with the first action and continues until all segments are
implemented, in which case a continuous path that satisfies
the specification is generated. If a low-level planning query
fails within the given time, the coordinating layer asks the
high-level planner to generate a new guide.

D. Feedback from Low to High

The failure of the motion planning query in the given
amount of time may occur due to several reasons. One reason
is that the obstacles in the environment and the robot’s
physical constraints allow no possible solution. Another
reason is that the high dimensionality (generally 6 or higher)
of the manipulation planning problem and the possible
existence of narrow passages may require more planning time
than is given to the low-level planner. Specifically, if the low-
level planner uses sampling based techniques, the planning
time may vary for the same query. Therefore, when low-level
planning fails in the given time, it is crucial for the framework
to decide whether to continue with the same query or to
generate a new high-level plan. The synergistic framework in
[3] provides an answer to this problem. For each failure of a
planning query, the coordinating layer increases the weight
of the corresponding abstraction edge proportional to the
planning time, and asks for a new high-level plan. Therefore,
if a query fails multiple times, the query is interpreted as
a difficult planing problem and becomes less likely to be
included in the next high-level plan. On the other hand, if
a segment of the high-level plan is successfully found, the
weight of the segment is set to 0. The high-level planner
considers this edge to be desirable in the future searches. This
feedback is represented in Figure 1 as the edges from low-
level planner to the coordinating layer and the coordinating
layer to the high-level planner.

E. Completeness

The proposed LTL planning framework is probabilistically
complete for the manipulation problem defined in Section
II-C, assuming all possible ways to manipulate the objects
are captured by the motion primitives GRASP and PLACE.
That is, if the grasping or placing of an object exists from
a configuration, then it can be achieved through a MOVE
or HOLD primitive and the precomputed GRASP or PLACE
primitive. Under this assumption, if there exists a continuous
path that satisfies the LTL specification, then the probability
of failing to find the path approaches zero as planning time
increases. This is because the planning layers work in a
synergistic manner. By assigning weights to the abstraction
edges according to the exploration data, the high-level planner
eventually considers all satisfying paths on P infinitely often.
The path segments with HOLD and MOVE actions are assigned
to the low-level planner, which is probabilistically complete,
infinitely often. The motion plans for the path segments
corresponding to GRASP and PLACE are simply inserted, as
they are assumed to exist.

IV. EXPERIMENTS

Our planning framework is implemented in C++. Trans-
lation from co-safe LTL to DFA is done using Spot [22].
The high-level planner is implemented in the Open Motion
Planning Library (OMPL) [23]. The coordinating layer is
implemented as a ROS package. Low-level planning is done
through MoveIt! using the LBKPIECE [20] and RRTConnect
[21] planners. The framework is used to plan for a PR2 in
simulation, visualized using RViz. All of the experiments are
perform on an AMD FX-4100 QUAD-CORE processor with
16GB RAM and Ubuntu 12.04 x64.

To test our planning framework, we created a scenario
where a PR2, which is a mobile manipulation platform, was
asked to perform a set of waiting tasks. As shown in Figure
3a, the scene consisted of an L-shape counter with two drink
glasses odrink1 and odrink2, a snack box osnack, a tip jar otipjar,
and three customer seats. Each customer was given a unique
ID, and two locations in front of each customer were made
available for objects to be placed. The locations were labeled
with their corresponding customer ID. Initially, the snack box
and the tip jar are in front of customer 1, drink 1 is in front
of customer 2, and drink 2 is in a preperation area. We asked
the robot to perform the following tasks:
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Fig. 4: One execution of specification 3. An object in purple (brighter) indicates the object has just been moved. The initial configuration
is illustrated in Figure 3a. First, the robot moves odrink2 to customer 2 (a) and then moves odrink1 back to the preparation area (b). Next,
the robot offers osnack to each customer (c,d), and shows otipjar to each customer (e,f). Note that this execution is only a sample of many
motion plans that can have different sequences of moves, depending on the high-level plans found and the low-level queries solved.

Specification 1: Serve customer 1 her drink.

Specification 2: Offer snacks to every customer.

Specification 3: First, take drink 2 to customer 2 and bring
the empty drink 1 back to the preparation area. Next, offer
snacks to each of the customers and show the tip jar to the
ones whom have already been served snacks.

These specifications can be expressed in co-safe LTL
using the following formulas, for ϕ1, ϕ2, and ϕ3 respectively,
ϕ1 = F(odrink1 ∈ l1), ϕ2 =

∧3
i=1 F(osnack ∈ li),

ϕ3 = F(odrink2 ∈ l2 ∧ odrink1 ∈ l4 ∧∧3
i=1 F

(
osnack ∈ li ∧ F(otipjar ∈ li)

)
).

Note that for these specifications, the robot has the freedom
to choose the order in which the sub-tasks are performed.
In this case study, the order of sub-tasks to satisfy the
specification is not unique, and the planner must find such
an order for each of the three formulas. In Specification 1,
since both locations for customer 1 are occupied initially,
even though the task is to serve the drink to customer 1, the
planner must make a decision to remove one of the occupying
objects first. Specification 2 does not indicate a particular
order of customers to serve snacks. The decision is left to
the system to pick an order that works. In Specification 3,
the robot could give snacks to everyone first, then show the
tip jar in one execution. Alternatively, the robot could serve
each customer one by one, or a combination of the two ways.
The planner has to intelligently pick which order to execute
the sub-tasks to avoid motions that violate the specification.
Note that some of the existing manipulation ITMP frameworks
such as the one introduced in [7] can support Specification 1,
where the task can be reduced to reaching a set in C. However,
to the best of our knowledge, no existing framework can plan
for Specifications 2 and 3. We used the framework proposed
in this paper to plan for all the specifications.

We performed 50 motion planning runs for each specifica-

tion. In all the cases, the framework successfully produced a
satisfying plan within 100 seconds. The size of DFAs and the
product graphs, along with the average computation times are
shown in Table I. The times shown here are the total plan time
of the high-level and low-level planners, accounting for all the
calls during the creation of one motion plan. The coordinating
layer time is not measured as it is simply constructing low-
level planning queries and setting weights on the abstraction
graph. For Specification 1, which can be solved using other
manipulation planning frameworks (e.g., [7]), the planning
time of our method is comparable to the other methods.

Note that the sizes of Aϕ and P increase with the length
of the formula. For ϕ3, the number of states in Aϕ and P
are an order of magnitude larger than the ones for ϕ1. The
increase in the size of P causes an increase in the high-level
planning time because when the high-level planner is called,
we run Dijkstra’s algorithm on a larger graph.

An execution of ϕ1 and an execution of ϕ2 are illustrated
in Figures 3b and 3c. Note that the actions performed in these
figures may be different from other executions since the robot
can satisfy the specifications in multiple ways. Snapshots of
the execution of one of the plans for Specification 3 are
shown in Figure 4. In this plan, odrink1 was moved out of
the way immediately after odrink2 was given to customer 2.
The robot then offered snacks to everyone and then the tip
jar. This is a shorter motion plan than serving the customers

Spec. |ZAϕ | |EAϕ | |VP | THL(s) TLL(s)

ϕ1 2 3 44,100 2.76 12.32
ϕ2 8 27 75,511 4.48 8.07
ϕ3 27 290 498,000 33.12 31.15

TABLE I: Planning data for Specifications 1, 2, and 3. |ZAϕ | and
|EAϕ | are the number of states and edges in the DFA, respectively.
|VP | is the number of nodes constructed in the reachable portion of
the product graph. THL and TLL are the average planning times for
the high-level and low-level planners, respectively, over 50 runs.
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Fig. 5: Aϕ2 generated using Spot [22]. Propositions πi for i ∈
{0, 1, 2} represent osnack ∈ li+1. The shortest path from initial
state 0 to accepting state 1 is through the edge with proposition
assignment π0∧π1∧π2 (top-most edge). This path, however, requires
the snack box being in 3 different locations at the same time, which
is physically impossible.

one by one, as drink 2 would need to be removed for both
the snack box and tip jar to be offered to customer 2. This
illustrates that by considering the location of each object for
the entire duration of the task, our approach avoids potential
backtracking where objects are unnecessarily removed to a
location blocking future trajectories.

One may propose to plan for these specifications by
using the DFA Aϕi

as a monitor for the sampling-based
continuous planner. By keeping the progress of the nodes
of the search tree over Aϕi

, a solution can be reported as
soon as a node reaches an accepting state of Aϕi

. Our
initial experiments show that such an approach would be
computationally infeasible due to the large dimensionality
of this manipulation problem. In such a method, the low-
level planner has no guidance (bias) in expanding the search
tree in the joint configuration space of the robot and the
objects, which is 34 dimensional in our case study. Another
naive method is to generate an accepting run on Aϕi and
attempt to implement this run using low-level planners. This
method is also likely to fail because (1) Aϕi

has no notion
of objects and locations, and thus the run may include
impossible propositional assignments, as shown in Figure 5
and discussed in Section III-B; (2) the chosen run may have
possible propositional assignments but not implementable
in the continuous space due to robot’s physical constraints
and obstacles in the environment. Therefore, our synergistic
multi-layer planner enables the computation of satisfying
plans more efficiently than such methods.

V. DISCUSSION

In this work, we introduce a manipulation planning
framework for co-safe LTL specifications. The architecture of
the framework includes a novel abstraction technique and a
synergistic planning framework. With this abstraction, we are
able to generate motion plans that do not exhibit backtracking
behavior. The planner, however, suffers from poor runtime
when the numbers of objects and locations are large, and
the LTL specification is complex. To address this problem,

possible extensions could include an implicit representation
of the product graph and the use of heuristic search. These
are to be explored in future works.
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