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Abstract
Background: Many proteins undergo extensive conformational changes as part of their functionality. Tracing these
changes is important for understanding the way these proteins function. Traditional biophysics-based conformational
search methods require a large number of calculations and are hard to apply to large-scale conformational motions.

Results: In this work we investigate the application of a robotics-inspired method, using backbone and limited side
chain representation and a coarse grained energy function to trace large-scale conformational motions. We tested the
algorithm on four well known medium to large proteins and we show that even with relatively little information we are
able to trace low-energy conformational pathways efficiently. The conformational pathways produced by our methods
can be further filtered and refined to produce more useful information on the way proteins function under physiological
conditions.

Conclusions: The proposed method effectively captures large-scale conformational changes and produces pathways
that are consistent with experimental data and other computational studies. The method represents an important first
step towards a larger scale modeling of more complex biological systems.

Background

Proteins are flexible molecules that undergo conforma-
tional changes as part of their interactions with other pro-
teins or drug molecules [1]. Changes in torsional angles
may induce localized changes or large scale domain mo-
tions. Figure 1 shows an illustration of the closed structure
of the GroEL 7-membered single ring complex taken from
PDB code 1SS8 (Figure 1(a) ) and the opened structure
(GroEL-GroES-ADP7) taken from PDB code 1SX4 (Fig-
ure 1(b) ). GroEL transitions between the closed and open
conformations as part of its chaperone activity, but the
structural details of the transition process are not fully

understood. Tracing these changes is crucial for under-
standing the way these proteins perform their function.
Existing physics-based computational methods that trace
and simulate conformational changes in proteins include
Molecular Dynamics (MD) [2], Monte Carlo (MC) [3]
and their variants. These methods require large amounts
of computational resources and are therefore hard to apply
to conformational motions that take place over time scales
larger than several hundreds of nanoseconds. In the past
two decades several efficient conformational search algo-
rithms have been developed. Some use a coarse represen-
tation of the protein molecule [4–6] and employ various
efficient search methods such as Normal Mode Analysis
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(NMA) [7, 8], elastic network modeling [9–14], or mor-
phing [15, 16]. In recent years sampling based motion
planning methods have been successfully applied towards
an efficient exploration of protein conformational space.
Motion planning is an area in robotics concerned with
finding a pathway for robot-like objects in constrained
environments [17–19]. When applied to biological prob-
lems, the protein is represented as an articulated body
with the degrees of freedom in all or selected torsional an-
gles. The physical constraints are implicitly encoded in a
penalty function which approximates the potential energy
of the molecule. The conformational space of the protein
is explored so that high energy regions are avoided and
feasible conformational pathways are obtained more effi-
ciently than with traditional simulation methods. Among
the many applications of motion planning to biology are
the characterization of near-native protein conformational
ensembles [20], the study of conformational flexibility
in proteins [21, 22], protein folding and binding simula-
tion [23–25], modeling protein loops [21, 26], simulation
of RNA folding kinetics [27] and recently the elucida-
tion of conformational pathways in proteins, subject to
pre-specified constraints [28].

The search methods described above strike a balance
between accuracy and efficiency. Many of those methods
are successful in sampling the conformational landscape
of proteins but are often biased by the protein native con-
formation and some of them require additional, problem
specific information. Additionally, when atomic details
are skipped the conformational search process is greatly
accelerated but fine details are missed.

In this work we present a prototype of a novel, ef-
ficient motion-planning based methodology to perform
conformational search on proteins requiring only back-
bone and limited side-chain information. The molecule is
mapped into a reduced representation using a small num-
ber of parameters that represent its degrees of freedom.
This allows for larger motions to be explored efficiently.
We aim to make the conformational search as general as
possible so it can be applied with as little system spe-
cific knowledge as possible. We use a coarse-grained
physics based energy function which captures low energy
conformations in a realistic but efficient way [29]. We
identify the flexible parts of the proteins and manipulate
them to simulate the conformational changes, treating the
rest of the protein as rigid. In this way we reduce the
dimensionality of the search space while still capturing
the essential conformational flexibility of the protein. We
tested our methodology on four proteins ranging in size
from 101 to 525 residues that are known to undergo ex-

tensive conformational changes. The results show that we
are able to efficiently produce low energy pathways for
each one of them. The method can serve as a filtering tool
which can provide biologists with useful hypotheses about
the way proteins transition from one conformational state
to another, and help to gain more insight about protein
function.

Problem Statement
Given two conformational states of a molecule, denoted
by start and goal, our objective is to find conformational
pathways connecting the start and goal conformations. A
pathway is a sequence of affine transformations that, when
applied successively to the degrees of freedom of the start
conformation, the start conformation will be brought to
within a tolerance range of the goal conformation under a
defined distance metric. Furthermore, the energy of each
intermediate conformation along the pathway must be
lower than a given threshold as measured by a potential
function that approximates the protein energy. The de-
grees of freedom of the structures lie in the flexible parts
connecting rigid structural elements. Several assumptions
are made in this paper. We assume that secondary struc-
ture elements do not change significantly during domain
motion and that the flexible parts are the loops connecting
secondary structure elements. While this assumption is
true in many cases, there are cases where secondary struc-
ture elements melt or change. In these cases, it is possible
to incorporate a more detailed modeling of the flexible
parts into the general framework of the algorithm without
limiting the proposed procedure. It should be emphasized
that the algorithm does not always produce the same con-
formational pathway, but rather a possible pathway. This
is due to randomness in the search algorithm (see Meth-
ods section below). By repeating the procedure a large
number of times we produce a set of feasible pathways,
thus limiting the huge search space to a manageable num-
ber of possibilities. These pathways can later be clustered,
refined and filtered using information about the tested
systems. The size of the clusters can give us information
about the likelihood of given conformations along the
pathway.

Results and Discussion
Below we first describe in depth the conformational search
method including the data structures, distance metric, en-
ergy function and search algorithm used to perform the
conformational search and produce low-energy pathways.
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After the description of the method, we will present simu-
lation results for four well-studied proteins.

Data Representation

We use a coarse grained representation used success-
fully by our research group in the past [29]. The pro-
teins are stripped of their side-chain and hydrogen atoms
and represented at the backbone and Cβ level (Glycine
is represented by its backbone only). The amino acids
are grouped into secondary structure elements. The sec-
ondary structures can be assigned by the PDB header or
using a secondary structure assignment algorithm such as
DSSP [30]. Loop residues are assigned to the nearest sec-
ondary structure element. To save computational time, it
is possible to cluster several secondary structure elements
into one rigid element if their positions are known not to
change with respect to one another during the conforma-
tional transition. Alternatively, to gain accuracy, in highly
movable regions of the protein such as flexible loops or
if some secondary structure elements are known to break
or change, their structural representation can be refined
and broken down to smaller sub-structures. This refine-
ment is not considered in the context of this paper but it
can be applied without loss of generality. The high-level
data structure that represents a conformation is a graph
G = (V,E) such that each secondary structure element
is a node v ∈ V in the graph. Two secondary structure
elements v1 and v2 are connected by an edge e∈ E if there
is at least one pair of adjacent amino acids r1,r2, such that
r1 ∈ v1 and r2 ∈ v2. The backbone angles in r1, r2, and a
small number of sequentially adjacent residues form the
degrees of freedom of the protein. In other words, the
protein motions consist of bond rotations in these residues
while the remaining angles stay fixed.

Based on the graph we construct a spanning tree
T = (V,X) where X is a subset of E using a greedy ap-
proach. The root of the tree is specified as the structure
that is expected to move the least during the search as de-
termined by aligning the start and goal structures and mea-
suring the least RMSD between corresponding secondary
structure elements. Each one of the root’s neighbors forms
a child node in the tree, and at each stage the selected node
and its adjacent edges are removed from the graph. The
process repeats iteratively until all the secondary structure
elements are represented in the tree. In some cases we
may know that the poses of certain secondary structure
elements is likely to stay fixed. This allows us to speed up
the search for a feasible pathway by restricting motions to
the remaining secondary structure elements. Let K ⊆V be

the set of secondary structures that is free to move. This
set is used below in the definition of a distance metric for
our representation.

Handling Symmetric Complexes
Many biomolecules self-assemble into symmetric com-
plexes. The GroEL chaperonin, described in more detail
in the results section, is an example of such a symmetric
complex. Each of its two rings contains 7 monomeric
subunits. We imposed exact symmetry by using one
monomer and applying the appropriate symmetry transfor-
mation. The symmetry is exploited in distance and energy
calculations to improve computational efficiency of the
conformational search. For distance calculations we can
limit ourselves to distances between conformations of
one monomer rather than the entire complex. Energy is
computed similarly, except that care should be taken of
the interaction energy between adjacent monomers.

Distance Between Structures
Motion planning methods need a distance measure to esti-
mate the progress of the search. In our representation of
protein structures, there is not necessarily one-to-one map-
ping between atoms or residues in different conformations.
Even if there was one, defining a distance measure over
residue positions would be needlessly computationally
expensive, since our algorithm will manipulate proteins
at the secondary structure level. Below we will describe a
distance measure defined in terms of the relative positions
between secondary structure elements.

Given a conformation C, we first define a score for
each secondary structure element i in C:

score(Ci) = ∑
j∈K

(
|αi j−α ′i j|×wi + |di j−d′i j|×w′i

)
. (1)

The summation is over the set K of ‘mobile’ secondary
structures in C excluding i, αi j is the angle and di j is
the distance between secondary structure element i and
secondary structure element j in C, α ′i j is the angle and
d′i j is the distance between the corresponding secondary
structure elements in the goal structure, and wi and w′i
are weight factors proportional to the size of secondary
structure element i, such that the angle and distance com-
ponents will be brought to the same order of magnitude.
In the current implementation we use the values of 1 for
wi and 5 for w′i, which seem to give the best results. An an-
gle between two secondary structure elements is defined
as the angle between the two vectors representing them.
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A vector representing a helix is the least-square straight
line that passes through the helix atoms, and a vector
representing a sheet is the normal to the plane best repre-
senting the sheet. The distance between two secondary
structure elements is defined as the distance between their
centers of masses. We then compute for a conformation
C a feature vector:

vC = 〈score(C1),score(C2), . . . ,score(Ck)〉 (2)

where the components of the vector are the scores of the
K secondary structure elements of the conformation.

If the molecule is a complex, the score also measures
the distances and angles between secondary structure el-
ements from adjacent units, so that equation (1) above
also contains terms from secondary structures on different
symmetric units. To save computational time and due
to the fact that distant monomeric subunits do not inter-
act in a complex, we only included interactions between
secondary structures taken from adjacent monomers.

The distance between two conformations, C1 and C2
is defined as the Euclidean distance between their feature
vectors, i.e., ‖vC1 − vC2‖2. By definition, when C2 is the
goal structure, the score of C1 is the magnitude of its
vector representation. Therefore, the lower the score for
a given conformation, the more similar it is to the goal
structure. The feature vector is used as a projection of
the conformation to a lower dimensional subspace that
is used to measure coverage of the search space by the
search method described below. It should be noted that
other distance measures exist for our representation of pro-
tein structures [31], but after extensive experimentation
the measure described above produced good results.

Energy Function
In order to approximate the potential energy of the pro-
duced conformations we suggest a simplified energy func-
tion which includes the following components:

Etotal = Esoft-vdW +EHB +Eburial +Ewater +Ebond +Eangle
(3)

The first four terms in this coarse-grained energy function
are a part of an energy function successfully used in our
group in the past [29]. The compaction term mentioned
in [29], which biases the energy towards folded, compact
structures, was removed from our implementation since
we are not simulating protein folding. The bond and angle
terms are taken from the AMBER ff03 force field [32].
If the structural manipulation causes the energy to be at
least 100 kcal/mol higher than the energy of the starting

structure 20 minimization steps are performed over the
bond, angle and van der Waals energy terms of the ma-
nipulated secondary structure elements using a steepest
descent scheme [33].

Search Methodology

The search is performed using a sampling-based motion
planning algorithm. Motion planning algorithms have
been applied extensively in the past to solve biologi-
cal problems due to the analogy between protein chains
and robotic articulated mechanisms [23–25]. The search
methodology applied in this paper is based on the Path-
Directed Subdivision Tree (PDST) planner [34–36]. We
chose this algorithm because of its good performance
with articulated systems with complex dynamics moving
in physically constrained environments. We adapted the
algorithm to model protein motions. In our adaptation,
the planner iteratively constructs a tree of conformational
pathways as the search progresses. The input to the al-
gorithm consists of the start and end conformations of
a molecule, represented as sets of articulated secondary
structures as discussed in Data Representation above. The
root of the search tree is a “pathway” of length 0 con-
sisting only of the starting structure. At every iteration a
previously generated pathway is selected for propagation
using a deterministic scoring scheme described below.
From a random conformation along that pathway, a new
pathway is propagated by applying a small random rota-
tion to the φ or ψ backbone dihedral angle of a residue
that resides on a loop connecting two randomly chosen
secondary structure elements. A molecular motion is
sampled by applying the rotation until a high energy con-
formation is reached. The coarse grained energy function
described above is used to determine when a high energy
conformation is encountered. A high energy conforma-
tion is defined as being more than 50 kcal/mol above the
starting energy. It should be noted that our search aims
to cover the conformational space and simulate a path-
way from the start towards the goal conformation. It is
not a minimization scheme and therefore is not aimed
towards the minimum energy conformation. This makes
it suitable for cases where the goal conformation has a
higher potential energy than the start conformation. The
algorithm maintains a subdivision of the low-dimensional
projection of the conformational space (described in Dis-
tance Between Structures above) into cells, such that no
sample spans more than one cell in the subdivision. The
goal of the subdivision is to guarantee coverage of the
search space [35]. After a sample is selected for propa-
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gation, the cell containing that sample is subdivided into
two cells. The algorithm keeps track of how many sam-
ples are contained in each cell to estimate how dense the
sampling is in different areas of the space. It maintains a
scoring scheme that gives selection preference to samples
residing in large, empty cells, thus pushing the exploration
towards unvisited areas in the conformational space. Prob-
abilistic completeness is obtained via a scoring scheme
that favors the selection of samples contained in larger
cells and leads to unexplored areas of the search space.
The sample scores are updated in a way that guarantees
that every sample in the tree will eventually be selected
for propagation and avoids over-sampling of parts of the
space. A previous study in path-directed motion plan-
ning algorithms [37] showed that employing a biasing
scheme in a small percentage of the iterations greatly
improves the performance of the planner. Motivated by
these results [37], we employed biasing at 10% of the
iterations. During these iterations the scoring scheme de-
scribed above is ignored and a sample is chosen out of a
pool of conformations closest to the goal conformation,
which gives the planner a better chance to successfully
terminate the search. We found that the biasing improves
the performance of the algorithm. Our top-level algorithm
runs PDST iteratively. Each iteration runs until a gener-
ated conformation is closer to the goal conformation than
a pre-specified intermediate distance threshold, where the
distance threshold is determined by the distance measure
described above. We found that a threshold of 0.8–0.9 of
the distance between the start and goal conformations is
usually sufficient to achieve good results. The iterative
runs of the PDST planner help reduce memory use and
improve performance, as also shown in [38]. To produce
the results shown in this paper, three PDST cycles, each of
20,000 iterations, were allowed per run of the algorithm
for each example.

Simulation Results and Validation

We ran the PDST-based search algorithm described above
on several test cases: Adenylate Kinase (AdK), Ribose
binding protein (RBP), the 2 ring GroEL complex and
Cyanovirin-N (CVN). These proteins have been chosen
for the following reasons: all undergo extensive confor-
mational transitions, they are well studied and have an
abundance of data for testing and comparison.

For comparison purposes, we produced conforma-
tional pathways using a random walk using a Monte Carlo
like algorithm [3]. In order to make the two methods as
comparable as possible, we used the same representation,

similarity score and potential function described in our
algorithm. The random walk algorithm differs from the
common use of Monte Carlo in protein conformational
search. Rather than optimizing the energy, it optimizes
the similarity score (see Distance between Structures sub-
section under Methods for definition) in order to simulate
a conformational pathway from the start to the goal con-
formation. The energy, while not optimized, is used to
filter out non-feasible conformations. The random walk
implementation uses the Metropolis criterion for the selec-
tion of steps. At each iteration a random conformational
pathway is generated from the current conformation by
applying a small random transformation to either the φ
or ψ dihedral angle of one of the degrees of freedom con-
necting secondary structure elements, in a similar way
to the one used to generate new conformations described
in the Search Methodology subsection above. If a step
brings the similarity score of the generated conformation
closer to the goal it will be accepted. Otherwise it is ac-
cepted with a probability proportional to e∆S where ∆S is
the difference in the similarity score of the current step
and the previous step. In practice, this criterion accepts
all “good” steps while allowing a very small fraction of
“bad” steps.

In order to compare the performance of the two meth-
ods by an objective standard, each algorithm was run a
100 times per example and the least RMSD (lRMSD) of
the closest conformation to the goal at that given time
step was measured. lRMSD is the root mean square de-
viation between two conformations after alignment. In
our implementation, only Cα atoms were considered for
the lRMSD measurement. lRMSD was measured after 1
hour, 2 hours, and at the end of the run. All runs were
allowed to continue for a maximum of 8 hours or until
a generated conformation is closer to the goal structure
than a specified threshold, varying according to the tested
protein. All experiments were run on the Rice Cray XD1
Cluster, where each node runs at 2.2 Ghz and has 8 GB
RAM. Table 1 summarizes the lRMSD statistics over 80
of the 100 test runs for each algorithm and protein test
case, with the top and bottom 10% outliers excluded from
the calculation.

Adenylate Kinase (AdK)

AdK is a monomeric phosphotransferase enzyme that cat-
alyzes reversible transfer of a phosphoryl group from ATP
to AMP. The structure of AdK, which contains 214 amino
acids, is composed of the three main domains, the CORE
(residues 1–29, 68–117, and 161–214), the ATP binding
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domain called the LID (residues 118–167), and the NMP
binding domain (residues 30–67). AdK assumes an “open”
conformation in the unligated structure and a “closed”
conformation. The lRMSD between the two structures is
6.95Å. Supposedly, during the transition from the “open”
to “closed” form, the largest conformational change oc-
curs in the LID and NMP domain with the CORE domain
being relatively rigid. Our model contains 10 rigid ele-
ments where most of the CORE domain was modeled as
one large segment and was considered fixed, since it does
not undergo a large-scale motion. The distance measure
threshold for successful termination of the algorithm was
a conformation with a distance of 0.16 from the goal con-
formation when the distances are normalized on a scale
of 0–1 (the start conformation has distance 1 to the goal
conformation). The threshold was chosen as a compro-
mise between low RMSD and a reasonable runtime and
memory consumption. Figure 2(a) shows an example of a
pathway from the start to the end conformation. The Cα
RMSD from the goal structure is 2.07Å. As seen in table
1 the resulting average lRMSD was 2.53Å. Random walk
performed significantly worse compared to our planner
with an average lRMSD of 3.65Å. The average running
time was 3 hours, 58 minutes.

Ribose Binding Protein (RBP)

RBP is a sugar-binding bacterial periplasmic protein
whose function is associated with large conformational
changes upon binding to ribose. It is a 271 residue pro-
tein made of two domains, the first containing residues
1–99 and 238–260 and the second containing residues
104–233. The domains are linked by a three stranded
hinge spanning residues 100–103, 234–237, and 261–271.
The lRMSD between the two conformations is 4.06Å. We
modeled the closed state to open state motion using PDB
codes 2DRI and 1URP for the closed and open states,
respectively. Our model contains 3 rigid elements where
most of the N- and C-terminal domains were modeled as
rigid segments and the hinge was modeled as a separate
domain. The distance measure threshold for successful
termination of the algorithm was a normalized distance
of 0.08 from the goal conformation. As seen in table 1,
the resulting average RMSD was approximately 1.38Å.
Random walk performed poorly comparing to our planner
and the average RMSD in the end of the run was 2.59Å.
In this example, as well as the AdK example above, the
vast majority of the progress was achieved during the first
60 minutes of the run. Figure 2(b) shows an example of
a pathway from the start to the end conformation. In this

example, the Cα RMSD from the goal structure is 0.76Å.
The average run time for our method was approximately
1 hour and 40 minutes.

Cyanovirin-N (CVN)
CVN is an anti-viral fusion inhibitor protein that binds
to viral sugars, and is trialed for preventing sexual trans-
mission of HIV. It comprises two repeat domains of 30%
sequence identity. The domain swapped dimer has higher
anti-viral affinity than the monomer [39], and it was
shown that the two forms can exist in solution, with a
high energy transition barrier between them. In addition,
it has been reported that certain mutations can affect the
energy barrier and stabilize alternative conformations [40].
We simulated the unpacking of the repeat domains of a
single chain from the intertwined monomeric conforma-
tion to an extended domain-swapped conformation. The
swapped conformations deviate by approximately 16Å.
CVN contains 101 amino acids and our model contains 6
rigid elements. The flexible rotation axis resides mainly
between residues 48–55. The distance measure threshold
for successful termination of the algorithm was a normal-
ized distance of 0.13 from the goal conformation. Figure
2(c) shows an example of a pathway from the start to the
end conformation. The Cα RMSD from the goal structure
is 2.06Å. As seen in Table 1, our algorithm significantly
outperformed random walk with an average lRMSD of
about 3Å comparing to nearly 5Å for random walk. Many
of our runs got as low as less than 2Å from the final con-
formation. The average run time was approximately 2.5
hours.

GroEL Complex
The GroEL protein belongs to the chaperonin family and
is found in a large number of bacteria [41]. It is required
for the correct folding of many proteins. GroEL requires
the lid-like cochaperonin protein complex GroES. Bind-
ing of substrate protein, in addition to binding of ATP, in-
duces an extensive conformational change that allows as-
sociation of the binary complex with GroES. We modeled
the epical domain movement from the GroEL monomer
(modeled from chain A of PDB code 1SS8) to the GroEL-
GroES-ADP7 monomer (modeled from chain A of PDB
code 1SX4). Each symmetric complex was generated by
applying 6 rotational transformations to the monomers to
generate the 7-membered complex while imposing sym-
metry. The monomer contains 525 amino acids, and our
model contains 13 rigid elements where most of the equa-
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torial domain, whose structure does not change signifi-
cantly, was modeled as one large segment and was consid-
ered fixed. The distance measure threshold for successful
termination of the algorithm was a normalized distance
of 0.18 from the goal conformation. The initial lRMSD
between the Cα atoms of the two complexes is 12.21Å.
Table 1 shows that our method significantly outperforms
random walk both in runtime and average lRMSD. The
average lRMSD between the resulting structures and the
goal structure was 4.67Å compared to 6.11Å for MC.
Many runs produced low lRMSD results in the order of
magnitude of 3–4Å RMSD or less from the goal structure.
The average run time was approximately 6.5 hours.

Analysis of the Results

Potential Energy Measurement In order to provide ini-
tial validation for our results, we tested whether our algo-
rithm produces biologically reasonable, low-energy path-
ways when using an all-atom force field. Such an analysis
was done in an earlier work [28], where the authors used
a similar method to show that their conformational search
was reasonable. Side chain information was completed
for the resulting pathways using the algorithm described
in [42]. The resulting full-atomic structures were mini-
mized for 1000 Steepest Descent steps using the AMBER
energy minimization package [2] and subject to a har-
monic restraining force of 10 kcal/mol/Å2. The minimiza-
tion was done for a relatively small number of steps and
was restrained in order to resolve initial clashes but not
cause large conformational changes to the structures. The
purpose of this test is not to provide a fully minimized
pathway, but to show that the algorithm produces path-
ways with reasonable conformations whose clashes can
be resolved within a small number of minimization steps.
Figure 2 shows an example of a pathway for AdK, RBP,
CVN, and GroEL and Figure 3(a)-(d) shows the potential
energy plots of the corresponding pathways. In each case,
the pathway chosen for figures 2 and 3(a)-(d) corresponds
to the run with the lowest final lRMSD from the goal struc-
ture. For clarity, the conformations shown in the figures
were sampled at approximately 1 distance measure unit
from one another (see Distance Between Structures sec-
tion for definition). As seen, even with a small number of
energy minimization steps all the intermediate structures
exhibit low potential energies, below −6000 kcal/mol
for AdK, below −7000 kcal/mol for RBP, approximately
−3000 kcal/mol for CVN and below −100,000 kcal/mol
for GroEL, as measured by AMBER.

Free Energy Profile for AdK To provide further evi-
dence that the produced paths are reasonable, we refer to
a study [43] which provided an extensive analysis of the
conformational pathway of AdK. The authors generated
a conformational pathway using a Nudged Elastic Band
(NEB) simulation [15]. Their large-scale analysis of the
pathway included a free energy profile using umbrella
sampling over a number of reaction coordinates. One of
the reaction coordinates used for the free energy calcula-
tion was ∆DRMSD which is defined, given conformation
C, as:

∆DRMSD(C) = RMSD(C,Copen)−RMSD(C,Cclosed)
(4)

We characterized the free energy profile along this reac-
tion coordinate using our results. The data points were
obtained by running the algorithm on AdK for 200 times.
For each resulting pathway we recorded the ∆DRMSD
value for the conformations along the pathway. To gen-
erate sets of uncorrelated conformations as required for
free energy calculations, we sampled each pathway in
spaces of 1 distance unit (see definition of the distance
measure in the Methods section). Overall approximately
7500 conformations were included in the calculation. The
free energy was calculated along the ∆DRMSD reaction co-
ordinate using the Weighted Histogram Analysis Method
(WHAM) [44]. It should be noted that the calculation was
carried out under a number of assumptions: we used only
backbone and Cβ and a relatively small number of sam-
ples. Therefore, our “pseudo free energy” results should
be interpreted with caution. Also, our sampling method
and potential of mean force calculation parameters differ
significantly from the ones used in [43]. For these reasons,
we can expect only qualitative similarity to the free energy
profile obtained by that work and the absolute free energy
values do not have the same meaning. The free energy
profile shown in Figure 3(e) exhibits a qualitatively sim-
ilar pattern to that shown in Figure 2(a) in [43] for the
free conformational pathway: high free energy around a
∆DRMSD of 3 to 6 (closed conformation), and a low en-
ergy basin around the open conformation, at ∆DRMSD of
−5 to −4. The spikes shown in the profile are the result
of a relatively small number of samples and non-uniform
sampling at some areas in the search space, whereas NEB
provides an initially uniform interpolation. These results
show that the sampling the algorithm provides along the
conformational pathway is qualitatively similar to the one
provided by NEB.

Free Energy Profile for RBP To provide further valida-
tion of our results we compare with another study which
analyzed RBP [45]. The authors simulated the opening
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motion of the RBP protein and characterized the free
energy profile using the reaction coordinate θ , which is
the angle between the two domain, defined as the angle
formed by the following three points: the center-of-mass
(CM) of the N-terminal domain, the CM of the C-terminal
domain and the CM of the hinge. The values of θ are
109 and 130 in the closed and open conformation, respec-
tively. Our free energy calculations as a function of θ
were conducted in a similar manner to the calculations de-
scribed above for ADK. The result is shown in Figure 3(f).
Two minima are shown: one local minimum around 106
degrees and one global minimum at 123 degrees, very
similar to the pattern shown in Figure 3(a) of [45]. It
should be noted that we did not simulate the RBP mutant
pathway discussed in [45], and therefore our plot ends at
approximately 130 degrees.

In general, knowledge about intermediate states is
needed in order to provide a case-specific validation, but
this knowledge does not always exist. With the advances
in structural detection and simulation methods, one can
expect to have more information about intermediate states
in the future. It should be noted that several intermedi-
ate structures already exist for AdK and a recent study
makes use of those structures to validate their low en-
ergy profile calculations [46]. This is an important way
to validate computational results and is the subject of
present and future work. In cases where such information
is not available, this algorithm can be viewed as an effi-
cient initial filtering tool that reduces the tremendously
high-dimensional space of possible conformations into a
relatively small number of possible pathways. Refinement
can then be made by other tools or indirect experimen-
tal knowledge to select biologically feasible pathways
out of these possibilities. In the future we plan to apply
clustering methods on the resulting pathways to extract
more knowledge about feasible conformations and gain
insight about the likelihood of each conformation along
the resulting pathways.

AdK Intermediate Result Analysis AdK has several
known mutants and intermediate structures. In a recent
study [46] the energy profile of AdK was produced using
elastic network interpolation (ENI). The method was
used to generate the conformational transition pathway
between the open and closed form of AdK and compare
the intermediates to known structural intermediates. In-
spired by that study, we performed a similar test on our
results. We focused on four known intermediates: chains
A, B, and C of the hetero-trimer Adenylate Kinase from
Aquifex Aeolicus (PDB accession code 2RH5), which are
conformational change intermediates of the ligand free

AdK [47] and 1E4Y, which is an AdK mutant having 99%
sequence identity with 4AKE and 1AKE and is a closed
form of AdK binding with AP5A. We selected our best 20
paths in terms of RMSD from the goal structure, all below
2.5Å, and recorded for each path the closest conformation
to 1E4Y and to chains A, B and C of 2RH5. Our results
are shown in Table 2. For each intermediate, the table
shows the average RMSD from the closest conformation
along the 20 paths and the conformation number (normal-
ized to 1–100 to compare with the results in [46]). Our
results are in good qualitative agreement with that work,
which predicted 2RH5A-C and 1E4Y to be closest to the
88-100, 76-87, 68-78 and 1-12 percentiles, respectively
(notice that in [46] the authors calculated the reverse path,
from 4AKE to 1AKE).

CVN Path Analysis We compared 25 paths generated by
our algorithm against a consensus path obtained by Raveh
et al. [28] (B. Raveh, personal communication). We se-
lected from our paths the ones yielding the closest RMSD
to the goal structure, all below 2.5Å. We compared each
one of our paths to the consensus path conformation-wise,
recording the RMSD between each conformation along
our path to its nearest neighbor along the consensus path.
The paths tend to be similar towards the ends and deviate
in the middle. The farthest point between our paths and
the paths generated in [28] ranges between 5.9–10Å with
an average of 8Å. The average distance between the end-
points of the paths is 3.15Å. The starting points are nearly
identical between the two methods since both started from
the same file. This is expected since the paths were ob-
tained using different methods and different constraints.
However, the fact that the differences between the paths
were not very large in the edges of the paths and only
deviated in the middle and even then not drastically on
average, shows that the two methods are able to achieve
similar results.

Conclusions
We present a prototype for a novel method for explor-
ing large scale conformational changes in proteins rep-
resented at the backbone level, requiring relatively little
information. The search methodology is based on robot
motion planning, and it strikes a balance between an ef-
ficient coverage of the conformational space and fast ex-
ploration towards the goal structure. A relatively simple
potential function is used to guide the search. This rep-
resentation and potential function make the computation
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tractable and especially useful in cases where side chain
information is missing or if a detailed search is compu-
tationally infeasible. The goal of this paper is to provide
an initial proof of concept for our method. Therefore,
we tested our algorithm on the following four well stud-
ied proteins: Adenylate Kinase, Ribose binding protein,
Cyanovirin N, and the GroEL complex. We show that our
method performs significantly better than random walk
by producing low energy pathways with resulting struc-
tures closer to the goal structure. We believe this is an
important first step towards a larger scale modeling of
more complex biological systems.
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Intrinsic motions along an enzymatic reaction trajectory. Na-
ture 2007, 450(7171):838–844.

10



Figures

Figure 1 - GroEL
(a) The GroEL complex (PDB structure 1ss8). (b) The GroEL-GroES-ADP7 complex (PDB structure 1sx4).

Figure 2 - Conformational pathways
Illustration of the results for AdK (a), RBP (b), CVN (c) and GroEL (d): The conformational pathways are obtained
after side chain completion and basic energy minimization. The conformation colors are interpolated on the white
(start) to black (goal) scale.
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Figure 3 - Energetic profiles of the resulting pathways
Potential energy for ADK (A), RBP (B), GroEL (C) and CVN (D) along slightly minimized conformational pathways.
Notice the different potential energy scale and different path lengths. Free energy along the ∆DRMSD reaction coordinate
of the AdK pathway (E) and along the θ reaction coordinate for the RBP (F) pathway. See Results section for the
definition of the reaction coordinates.
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Tables

Table 1 - Performance statistics for the AdK, RBP, CVN and GroEL complex examples
The average ±(standard deviation) lRMSD data were taken over 80 runs where the top and bottom 10% outliers were
removed from the original set of 100 runs.

AdK AdK RW† RBP RBP RW† CVN CVN RW† GroEL GroEL RW†

Initial lRMSD (Å) 6.95 6.95 4.06 4.06 16.01 16.01 14.64 14.64
#Residues 214 214 271 271 101 101 525‡ 525‡

lRMSD after 1 hour (Å) 2.69±0.21 3.81±0.49 1.48±0.25 2.35±0.52 4.52±0.73 5.28±1.59 5.67±0.67 8.21±1.93
lRMSD after 2 hours (Å) 2.55±0.2 3.68±0.46 1.34±0.21 2.23±0.45 3.842±0.79 5.09±1.52 5.04±0.42 7.66±2.04

Final lRMSD (Å) 2.53±0.2 3.65±0.47 1.26±0.15 2.22±0.49 3.18±0.34 4.88±1.44 4.67±0.36 6.11±1.9

† Random walk. See Results section for a discussion.
‡ This is the number of residues per monomer. As explained in the text, the symmetry is exploited to model the entire
7-ring complex, which has 7×525 = 3675 residues.

Table 2 - Comparison of our paths with intermediate structures of AdK
The closest pathway index (normalized to 1–100) and the lRMSD of the closest point to each PDB structures shown in
Table 1 are listed. 2RH5 is from a hyperthermophilic E. coli and 1E4Y is an AdK mutant having 99% sequence identity
with 1AKE and 4AKE. The measurements were taken over an average of 20 runs.

2RH5A 2RH5B 2RH5C 1E4Y

lRMSD (Å) 2.55 2.47 2.96 2.82
Closest conformation (percent) 86.89 82.46 73.4 4.95
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