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Abstract
We present a novel multi-level methodology to explore and characterize the low energy landscape
and the thermodynamics of proteins. Traditional conformational search methods typically explore
only a small portion of the conformational space of proteins and are hard to apply to large proteins
due to the large amount of calculations required. In our multi-scale approach, we first provide an
initial characterization of the equilibrium state ensemble of a protein using an efficient
computational conformational sampling method. We then enrich the obtained ensemble by
performing short Molecular Dynamics (MD) simulations on selected conformations from the
ensembles as starting points. To facilitate the analysis of the results we project the resulting
conformations on a low-dimensional landscape to efficiently focus on important interactions and
examine low energy regions. This methodology provides a more extensive sampling of the low
energy landscape than an MD simulation starting from a single crystal structure as it explores
multiple trajectories of the protein. This enables us to obtain a broader view of the dynamics of
proteins and it can help in understanding complex binding, improving docking results and more.
In this work we apply the methodology to provide an extensive characterization of the bound
complexes of the C3d fragment of human Complement component C3 and one of its powerful
bacterial inhibitors, the inhibitory domain of Staphylococcus aureus extra-cellular fibrinogen-
binding domain (Efb-C) and two of its mutants. We characterize several important interactions
along the binding interface and define low free energy regions in the three complexes.
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Introduction
Proteins are flexible molecules1–3 that can assume various conformations via structural
changes that range from small-scale movements to large domain motions. From a
computational point of view, the prediction and modeling of protein flexibility is a
challenging problem due to the large number of calculations required. Conformational
modeling methods such as Molecular Dynamics (MD)4 and Monte Carlo5 can sample
atomic level dynamic processes, yet their usefulness is limited for several reasons. First,
they require large computational resources, but only allow for modeling of interactions that
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take place on very small time scales (e.g., several hundreds of nanoseconds). This is a
significant shortcoming, since most physiological processes occur within milliseconds or
seconds. Second, because the computational resources needed to conduct these studies scale
up quickly with the size of the protein, carrying out a computational simulation of large
proteins or protein complexes is especially time consuming. Finally, an MD simulation
outputs a single trajectory that depends on the accuracy of the starting model, which is
usually a single crystal structure that represents the average conformation at equilibrium
state. As a result, a single MD simulation may only cover a small portion of the
conformational space of a protein. To extend the capability of MD, several approaches have
been proposed. Computational multi-scale methods have been shown to work well in
characterizing the large scale molecular motions that underlie the function of many
proteins6. These methods use local perturbations7, coarse grained modeling8, elastic
networks9 and other approaches to sample larger portion of protein dynamics than MD. The
subject is further reviewed elsewhere6.

Earlier work in our research group includes the Fragment/Protein Ensemble Method FEM/
PEM10,11. This method uses an efficient sampling algorithm inspired by robotics to
characterize the low-energy equilibrium state ensemble for a given protein under
physiological conditions. Later, using only sequence data and a novel multi-scale approach,
our group produced conformational ensembles of single, relatively small proteins that have
multiple functional states such as Calbindin, Calmodulin and Adenylate Kinase12.

Inspired by the success of that study, in this paper we take a different approach. We consider
protein complexes where the size of the complex makes the application of the earlier
methods computationally infeasible. We develop a method to provide a multi-scale
characterization of the local conformational flexibility and thermodynamics of proteins by
combining an efficient conformational modeling algorithm, MD simulations and non-linear
dimensionality reduction techniques13. Our work seeks to further enrich the set of available
approaches for the exploration of protein dynamics. We first generate an initial
conformational ensemble for the tested proteins using the Fragment Ensemble Method
(FEM)10,11. We then enrich the initial ensemble by conducting short (2ns) MD simulations
using each of the initial ensemble conformations as a distinct starting point. We show that
this can provide a more extensive sampling of the conformational space and produce
multiple trajectories rather than a single one, as is typically the case for a long MD
simulation starting from a single structure. Using thousands of processors we are able to
cover a larger portion of the conformational space using an equivalent amount of time,
whereas a single MD simulation generally scales up to several hundreds of processors13,14.
In order to facilitate data analysis, the resulting multiple trajectories are then embedded on a
low-dimensional landscape using a non-linear dimensionality reduction technique called
SciMap15. This method provides a small number of collective coordinates that best
characterizes the variance in the data. These global coordinates are used as reaction
coordinates for free energy calculations and enable the analysis and visualization of datasets
consisting of a large number of individual observations. Non-linear dimensionality reduction
techniques were shown to provide a better characterization of complex, non-linear events
such as protein folding and binding than linear methods such as principal component
analysis (PCA)16.

As shown by our results, the proposed methodology is suitable for extensive characterization
of local conformational changes in proteins and complexes, as it uses an adaptation of two
local conformational search methods, FEM and MD. Caution should be taken when
applying this method to complexes where there are known significant or allosteric changes
to the proteins upon complex binding. In these cases the method is not directly applicable.
The ensemble generation should use multiple distinct conformations of the involved

Haspel et al. Page 2

Proteins. Author manuscript; available in PMC 2011 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



molecules and docking methods may be applied to aid in assembling the complex following
the initial ensemble generation. Modeling of large-scale conformational transitions is
beyond the scope of this paper.

We applied our method to the complex formed between the C3d domain of human
Complement Component C3 and one of its bacterial inhibitors, the Staphylococcus aureus
(S. aureus) extra-cellular fibrinogen binding protein (Efb-C). Previous studies17 identified
Arg-131 and Asn-138 as two residues on Efb-C that create a number of discrete contacts
with C3d and thus play an important role in formation and maintainence of the Efb-C/C3d
complex. Simultaneous mutation of both residues to either alanine (RA/NA) or glutamic
acid (RE/NE) resulted in a complete loss of both C3d binding and complement inhibition,
whereas the single mutants, R131A and N138A, formed stable complexes that still retained
some function. Previously18 we used a combination of crystallography, isothermal titration
calorimetry (ITC), surface plasmon resonance and MD simulations to characterize the
thermodynamics, kinetics and energetics of the complex and the two single mutants, N138A
and R131A. We found that while the mutations had little effect on the structure of the
complex, they had a significant adverse effect on the binding energy and the kinetics of the
complex. We further characterized several potential, though previously unidentified
interactions along the Efb-C/C3d binding interface that appear to contribute to the intricate
network of salt bridges and hydrogen bonds that anchor Efb-C to C3d and that support its
potent complement inhibitory properties. In this work, using our extended analysis of the
complexes described above, we characterize several distinct low free energy states for each
of these three complexes. Using our previous knowledge about the binding interface
between C3d and Efb-C, we analyze the low energy states, with the goal of describing
correlations between low energy regions and specific interactions. We find that the low free
energy regions correspond to a large number of native contacts between C3d and Efb-C. In
addition to Arg-131 and Asn-138, we find that both the N- and C-terminal portions of Efb-C
and several other residues located on helices α2 and α3 play a major role in the binding of
C3d in both the wildtype and mutant complexes. The findings reported here provide further
insight into the contribution of individual residues of Efb-C in disrupting C3 function.

Methods
Generation of Initial Equilibrium State Ensembles for C3d and Efb-C

Sampling of protein conformational space was done using the Fragment Ensemble Method
(FEM)10,11. This algorithm models flexible regions in proteins and produces an ensemble
of conformations representing the near-equilibrium conformational preference of the input
protein. It uses Cyclic Coordinate Descent (CCD)19 and subsequently minimizes the
generated conformations using the AMBER program4,20 for a duration of 1500 steps to
allow relaxation of the structures without causing large structural changes. The resulting
minimized conformations are weighted according to their Boltzmann probability and only
those within 10 kcal/mol of the native structure are retained.

The initial structures for C3d and Efb-C were taken from PDB accession code 2GOX for the
wildtype complex and from data provided to us for the N138A and R131A mutants with
PDB accession codes 3D5S and 3D5R, respectively18. To generate the ensemble to the C3d/
Efb-C complex we generated the conformational ensembles for each of C3d and Efb-C
separately using FEM. We then combinatorially assembled each conformation generated for
C3d with each conformation generated for Efb-C to produce an ensemble for the entire C3d/
Efb-C complex. The process was repeated similarly for both the N138A and R131A
mutants. An initial set of 10,000 conformations was generated for each of the three C3d
structures and each of the wildtype and mutant Efb-C. The ensembles were generated for all
of Efb-C and residues 1029–1050, 1089–1099 and 1157–1166 of C3d, which comprise the
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three inter-helix loops that provide the binding interface for Efb-C. Following energy
minimization, a total of 90, 78, and 84 starting structures constituted the initial ensembles
for the wildtype, R131A, andN138A complexes, respectively. Figure 1 shows an example of
the ensembles generated for the wildtype complex. No docking was needed for the assembly
since the input conformations were obtained directly from the refined coordinates of the
relevant co-crystal structures18. FEM was applied to only limited regions of C3d and did not
cause drastic structural changes (see Figure 1). Each assembled complex was subject to
energy minimization prior to the MD simulation to resolve clashes that may have occurred
as a result of FEM.

Molecular Dynamics Setup
Each conformation generated as described in section 2.1 above was the starting point of an
MD simulation. Prior to this, missing side chains from the PDB files, as well as hydrogen
atoms, were added using AMBER 9 leap utility21. The simulations were conducted using
the AMBER ff03 force field22. Implicit solvent was used via the General Born solvation
method23. Each conformation was subject to 2500 steepest descent minimization steps24
followed by 2500 conjugate gradient minimization steps25. This minimization was required
to resolve initial clashes between the C3d and Efb-C structures, which were generated
separately as described above, and to allow relaxation of the structure. Minimization was
followed by 20 ps of gradual heating to 300 K and equilibration. The MD simulations were
performed for 2 ns for each equilibrated conformation using a constant temperature of 300
K. The SHAKE algorithm26 was used to restrain the length of bonds involving hydrogen.
This allowed an integration time step of 2 fs.

Binding Energy Calculation
The binding energy of the complex was estimated using the mm-pbsa/gbsa approach
implemented as a part of the AMBER package27. The average complex binding energy is
obtained using the following formula:

where:

EMM;gas is gas phase molecular mechanics energy and Gsolv is the change in the free energy
upon solvation. The solvation free energy is the sum of two terms, the electrostatic
contribution and the non-polar contribution:

The electrostatic contribution was estimated using the General Born method23,28,29. The
non-polar term (Gnp) was calculated from the solvent accessible surface area (SASA), which
is estimated using the LPCO method30. γ was set to 0.0072 kcal/(mol*Ǻ2) and β was set to
0 kcal/mol in the following equation:
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In the mm-pbsa/gbsa approach the binding energy is calculated on an ensemble of
uncorrelated snapshots extracted from the equilibrated simulation. A snapshot was taken
every 5 ps. The first 500 ps of the simulations were excluded from the binding and free
energy calculations to ensure that the simulation has equilibrated. The binding energy was
calculated using the single trajectory approach. This means that the C3d and Efb-C
molecules were not simulated separately, but rather the snapshot structures for the energy
calculations of the C3d-Efb-C complex and separated C3d and Efb-C were taken from the
MD trajectory of the C3d/Efb-C complex18.

Dimensionality Reduction and Free Energy Calculation
The trajectories of all MD simulations for each complex were projected onto a low
dimensional subspace using SciMAP15, a non-linear dimensionality reduction technique
based on the Isomap algorithm31. The values of the reaction coordinates are scaled and are
specific to the input set of coordinates thus the actual value of the reaction coordinates
cannot be compared across two separate sets of conformations.

The low dimensional representations of the trajectories were used as reaction coordinates for
potential of mean force (PMF) calculations using the Weighted Histogram Analysis Method
(WHAM)32, using the binding energy mentioned above as the potential energy. WHAM
outputs non-negative values since the PMF values are calculated relative to a minimum
reference value, hence the positive free energy values in Figure 3.

Results and Discussion
The Low Energy Landscape of the wildtype and Mutants C3d/Efb-C

90 initial conformations were used as starting points for MD simulations of the wildtype, 78
conformations were generated for the R131A mutant and 84 conformations were generated
for the N138A mutants. Overall 180ns, 156ns and 168ns were simulated for the wildtype,
the R131A and the N138A mutants respectively. Each set of trajectories produced 27,000,
23,400 and 25,200 conformations, respectively. To test whether the simulations had reached
equilibrium, which is necessary for free energy calculations, we measured the evolution of
the potential energy as a function of the simulation time for the last 1.5ns of the simulations
(as mentioned above, the first 0.5ns was excluded from the calculation to assure
convergence). Figure 2 shows an example of such calculation for one conformation of each
of the wildtype and mutant complexes. As seen, the potential energy changes very little and
remains within a range of 250 kcal/mol. The root mean square fluctuation (RMSF) of the
potential energy was approximately 56–58 kcal/mol. Other conformations show a similar
pattern (results not shown). The conformations were the input for binding energy
calculations and for low dimensional embedding using SciMap (see Methods section for
details about the MD simulation setup and the criteria for selecting conformations for free
energy calculations). In each case, low dimensional embedding produced three reaction
coordinates which captured approximately 75–80% of the variance in the data. Figure 3
shows the energy surfaces of the three complexes along the first two reaction coordinates,
which encompass approximately 60% of the variance in the data in each case. The data
points are colored by energy values on the red (high energy) to blue (low energy) scale. The
potential energy maps along the first and second reaction coordinates are shown in Figure
3(a), (c) and (e) for the wildtype, R131A mutant and N138A mutant, respectively. Generally
the reaction coordinates do not necessarily carry a biological meaning. However, in this case
the values of the first reaction coordinate were well-correlated with the values of the
potential energy for each conformation (correlation coefficients of 0.42, −0.51 and −0.47,
respectively). We also found by visual inspection that in all three cases the first reaction
coordinate was also correlated to the position of the 1089–1099 loop of C3d of the given
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conformation with respect to Efb-C. This accounts for a large number of native contacts
formed between this loop and helices α2 and 3 of Efb-C. Figure 3(b), (d) and (f) show the
free energy surfaces of the complexes as a function of the first and the second reaction
coordinates of the wildtype and the R131A and N138A mutants, respectively. In the
following sections we present an in-depth analysis of the three free energy surface map.

The Low Energy Landscape of the Wildtype C3d/Efb-C
Figure 3(b) shows a clear free energy minimum at the top left part of the figure, as well as
several other local minima. The low free energy conformations are all associated with
particularly strong interactions between the 1089-1099 loop in the C3d and helix α2-3 of
Efb-C. Figure 4(a) shows an example of a conformation corresponding to the low energy
minimum on Figure 3(b). Maps for the pairwise interactions between C3d and Efb-C are
shown in Figure 4(b)–(d). For clarity, only interactions lower than −1.5 kcal/mol are
displayed. Notable interactions include the 1089-1099 loop with helices α2 and 3, a set of
interactions between the N-terminal domain of Efb-C and the 1057-1066 loop of C3d, and a
strong interaction between the C-terminal residue of Efb-C and the 1029-1050 loop of C3d.
Strong interactions in the N-terminal domain of Efb-C include the following:
Glu-1159,Glu-1160/Lys-110, Glu-1159/Lys-107 and multiple hydrogen bonds involving
Gln1161 with the N-terminal domain of Efb-C and Ser-101 with the 1157-1176 loop of C3d.
Interactions along the 1089-1098 loop include Lys-145/Asp-1096, Lys-148/Ile-1095-
Ser-1097, as well as multiple hydrogen bonds formed by Asn-138 and by Ser-1097. The
strong involvement of the Lysine residues of Efb-C correlates well with our previous
studies17 and further emphasizes the importance of the salt bridges involving these residues
to the binding interaction. In addition, these findings reaffirm the role Asn-138 plays in
complex binding, which was detected to a lesser extent in our previous study17. The
1029-1050 loop is anchored to Efb-C by a network of salt bridges between Arg-131/
Asp-1029-Glu-1030 and between Arg-165/Glu-1032,Glu-1035 as well as Lys-160/Glu-1047
and Asp-156/Lys-1050. This loop showed very little mobility in our analysis, which further
reaffirms the role played by Arg-131 and Arg-165 in maintaining the stability of the binding
interface.

The Low Energy Surfaces of the R131A Mutant
The free energy map of the R131A mutant is shown in Figure 3(d). A broad low energy
region can be seen in the map. Two distinct minima can be viewed within this region. An
examination of the low energy regions shows that as is the case with the wildtype, they too
are associated with a large number of pairwise contacts involving the N-terminal region and
helices α2-3 in Efb-C. Figure 5(a) shows an example of a conformation associated with the
low minimum A. Plots displaying pairwise interactions are shown in Figure 5(b)–(d), in a
similar fashion to the wildtype above. The absence of Arg-131 is partly compensated for by
the hydrogen bond formed by the backbone of Ala-132 and the side chain of Asn-1091 in
C3d; In addition, there is a large number of contacts formed by nearby residues with
residues 1028-1042 of C3d, which help in anchoring Efb-C to the 1029-1042 loop of C3d. A
bifurcated salt bridge involving Arg-165/Glu-1032, Glu-1035 is also observed as it appears
in the wildtype complex. Most of the other interactions in that area are hydrogen bonds
which are weaker than the salt bridges formed by Arg-131. Together, these observations
better explain the lower-affinity complex formed by R131A mutant when compared to
wildtype. Other notable interactions in the N-terminal domain of Efb-C involve Glu-1159/
Lys-110, Gln-1061/Lys-110 and Glu-1159/Lys-107. Notable interactions along the
1089-1098 loop include Lys-145/Asp-1096, Lys-148/Ile-1095-Ser-1097 as well as multiple
hydrogen bonds formed by Asn-138 and by other residues in its vicinity. This is similar to
the picture seen in the wildtype complex, although the specific residues involve in the
interactions may be different.
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The Low Energy Surfaces of the N138A Mutant
The free energy map of the N138A mutant is shown in Figure 3(f). A low energy region can
be seen in the right side of the free energy map. An examination of the low energy region
shows that, as is the case with the wildtype complex and the R131A mutant, it is associated
with a large number of pairwise contacts involving helices α2-3 and the N-terminal region in
Efb-C. However, since Asn-138 is missing, the number of contacts involving helix α2 is
significantly smaller than in the case of the previous two examples. Figure 6(a) shows an
example of a conformation associated with the low energy minimum. Plots showing
interactions involving the two are shown in Figure 6(b)–(d). The strongest interaction
between the N-terminal domain of Efb-C and C3d is Glu-1160/Lys-110. Arg-131 is
associated with two strong salt bridges with Asp-1029 and Glu-1030 and participates in a
hydrogen bond with Asn-1091. Other strong interactions are found between Arg-165/
Glu1032,Glu-1035 and Lys-148/Asp-1096. As in the previous examples, this set of
interactions anchors Efb-C to the binding interface of C3d. The absence of Asn-138 which
makes a large number of individual contacts with C3d can explain the previously known fact
that N138A forms a weaker complex than the wildtype.

Conserved Interactions
All the low energy regions described above exhibit a variety of pairwise contacts between
Efb-C and C3d. However, several interactions are conserved throughout all of the low
energy conformations we have associated with low free energy. Foremost, those interactions
are the salt bridges formed by Arg-131 and the 1029-1042 loop and the multiple contacts
formed by Asn-138 and the 1089-1099 loop, whose absences have previously been shown to
compromise Efb-C binding to C3, and, therefore, its ability to inhibit C3 function17,33.
Other than these previously known interactions, all the conformations exhibited a network of
salt bridges and hydrogen bonds between the lysine-rich N -terminal part of Efb-C and the
1057-1067 loop of C3d which involved mostly Lys-107 and Lys-110 with Glu-1159/1160.
Other interactions are Arg-165/Glu-1032,Glu-1035, Lys-148/Ile1095-Ser1097 and Arg-131/
Asn-1091. The latter is a hydrogen bond between the backbone of Arg-131 and the side-
chain of Asn-1091; it is worth noting that this bond is also found in the R131A mutant. The
results are summarized in Table 1. Our results further emphasize the role played by Arg-131
and Asn-138, as well as the lysine rich region found near the N-terminus of Efb-C in
promoting C3d binding.

Performance Analysis
In order to quantitatively analyze the amount of coverage obtained by our method when
compared to a single MD simulation we present the following calculation: A 1 ns of MD
simulation as performed in our previous work18 and in this work requires approximately 6
hours using 64 CPUs on a Cray XT3 machine. A single 20 ns MD simulation would
therefore require a total of 120 hours. Using the method outlined in this paper we can utilize
640 processors to invoke 10 simultaneous 2 ns MD simulations in 12 hours. Using all 640
processors in a single MD simulation trying to get the same effect will not result in linear
speedup due to the nature of the MPI protocol employed by standard MD packages20,34.
This way we achieve a practical linear speedup as a function of the number of processors, at
the cost of losing time-related information which can be achieved by a single, long MD
simulation. A significant gain in performance is still obvious after taking into account the
time spent on generating the initial conformations using FEM. FEM is embarrassingly
parallel since the loops are generated independently of one another11. When the generation
of 10000 conformations is divided into 200 processors, each producing 50 conformations,
each processor requires approximately 1.5 hours on a Cray XD1 machine for C3d and 15
minutes for Efb-C. The energy minimization of the 10000 conformations can also be done in
parallel. Minimizing a single C3d conformation requires approximately 45 minutes on a
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single processor using a Cray XT3 machine, and minimizing a single Efb-C conformation
requires less than 5 minutes. Therefore, utilizing 600 processors the entire minimization of
10000 C3d conformations can be completed in approximately 12 hours and 10000
conformations of Efb-C can be minimized within 1.5 hours. The filtering and selection of
low energy conformations takes several minutes in total. Overall, FEM requires
approximately the same amount of time as the MD simulations. The rate limiting step is the
minimization of C3d. This can be accelerated by either using more processors or a faster
minimization protocol, since at this stage we are not interested in the global minimum
conformations but rather in the lowest energy conformations with respect to the generated
ensemble. Figure 7 Shows the conformational landscape of the wildtype complex as
obtained by our method (light shade) and using a single MD simulation as in our previous
work17 (dark shade). As seen, the single 20ns MD simulation extends a single trajectory
that has a small overlap with the rest of the conformational space captured by our method,
which provides a broader coverage of other conformational preferences of the complex.

Conclusions
We have presented an efficient computational framework for analysis of the low energy
landscape of proteins that combines MD simulations and a robotics-inspired geometric
conformational sampling algorithm, FEM. MD, while being a powerful tool for exploring
the energetics and dynamics of proteins, can be limited to exploring local dynamics due to
its large computational requirements. FEM enables us to capture larger scale motions, but is
limited in its ability to explore large proteins. The combined approach presented in this
paper allows us to overcome the limitations of each method and provides an extensive
sampling of the energy surfaces of the proteins in question. To provide a more complete
picture, we used a non-linear dimensionality reduction technique that captures the main
variability of the data and facilitates both the visualization and analysis of the protein low
energy landscape. The proposed methodology is suitable for the extensive characterization
of proteins and complexes which undergo small and medium scale conformational changes.

The study presented in this paper enabled us to identify several distinct low energy
conformations of the C3d/Efb-C complex and its two mutants, R131A and N138A and
identify interactions detected by experimental methods such as ITC, SPR and mass
spectrometry in addition to other previously uncharacterized interactions. The method
presented here is a first step towards obtaining a complete picture of the conformational
motions of large proteins in near-equilibrium conditions. We are currently working on
developing methods that will allow us to scale up to even larger complexes and larger
conformational motions.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
The initial low energy ensemble generated for the C3d molecule (a) and Efb-C molecule (b)
of the wildtype complex. The modeling was done only on the three binding loops. The
lowest energy conformations of this ensemble were subject to further enrichment by
multiple MD simulations. Helices are depicted in dark gray and loops in light gray.
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Figure 2.
The evolution of the potential energy during the simulation time for an example of a
wildtype, R131A mutant and N138A mutant conformation. The values are shown for the last
1.5ns of the MD simulation. These conformations represent the minimum free energy values
shown in Figure 4–Figure 6.
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Figure 3.
A 2-dimensional representation of the potential energy (a,c,e) and free energy (b,d,f) of the
ensemble generated from short MD simulations for the C3d/Efb-C complex. (a) and (b)
show the wildtype complex, (c) and (d) show the R131A mutant and (e) and (f) show the
N138A mutant. The points are colored according to their free energy: Shades of blue
indicate lower energy and shades of red indicate higher energy. Notice the different energy
value ranges. The energy is measured in kcal/mol. The free energy values in (b,d,f) are
relative to a minimum free energy conformation, as output by WHAM29, and therefore are
non-negative. See Methods section for an explanation.
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Figure 4.
Representative structure from the minimum free energy conformations of the wildtype C3d/
Efb-C complex. The free energy landscape of the complex can be found in Figure 2(b). (a)
Structure of Efb-C (green) and the conformation of the binding loops from C3d (purple).(b)–
(d) Energetic contributions of each pairwise interaction between Efb-C and C3d residues
along the 1029-1050 loop (b), 1089-1099 loop (c) and 1157-1167 loop (d).
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Figure 5.
Representative structure from the minimum free energy conformations of the R131A mutant
complex. The free energy landscape of the complex can be found in Figure 2(d). (a)
Structure of Efb-C (green) and the conformation of the binding loops from C3d (purple).
(b)–(d) Energetic contributions of each pairwise interaction between Efb-C and C3d residues
along the 1029-1050 loop (b), 1089-1099 loop (c) and 1157-1167 loop (d).
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Figure 6.
Representative structure from the minimum free energy conformations of the N138A mutant
complex. The free energy landscape of the complex can be found in Figure 2(f). (a)
Structure of Efb-C (green) and the conformation of the binding loops from C3d (purple).
(b)–(d) Energetic contributions of each pairwise interaction between Efb-C and C3d residues
along the 1029-1050 loop (b), 1089-1099 loop (c) and 1157-1167 loop (d).

Haspel et al. Page 16

Proteins. Author manuscript; available in PMC 2011 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 7.
The conformational landscape of the wildtype C3d/Efb-C complex. The landscape
represents both the trajectories obtained by a 20-ns MD simulation in our previous work17
(dark shade) and the analysis performed in this study (light shade).
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Table 1

Conserved interactions and their values in the low energy conformations of C3d/Efb-C and the two mutants.
The energy values may be the sum of several individual interactions

Residues involved (Efb-C/C3d)
Interaction energy (kcal/
mol), wildtype

Interaction energy (kcal/
mol), R131A mutant

Interaction energy (kcal/
mol), N138A mutant

Lys-106-107,Lys-110/Glu-1159,Glu1160 −26.3 −17.53 −25.25

Arg-131/Asn-1091 −2.59 −2.89 −4.22

Lys-148/Ile-1095-Ser-1097 −12.45 −8.86 −10.62

Arg-165/Glu-1032,Glu-1035 −13.36 −15.96 −18.54

Arg-131/Asp-1029,Glu-1030 −16.81 N/A −12.79

Asn-138/Val-1090,Ile-1093-1095 −9.8 −9.74 N/A
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