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Introduction: Peptide-HLA class I (pHLA) complexes on the surface of tumor

cells can be targeted by cytotoxic T-cells to eliminate tumors, and this is one of

the bases for T-cell-based immunotherapies. However, there exist cases where

therapeutic T-cells directed towards tumor pHLA complexes may also recognize

pHLAs from healthy normal cells. The process where the same T-cell clone

recognizes more than one pHLA is referred to as T-cell cross-reactivity and this

process is driven mainly by features that make pHLAs similar to each other. T-cell

cross-reactivity prediction is critical for designing T-cell-based cancer

immunotherapies that are both effective and safe.

Methods: Here we present PepSim, a novel score to predict T-cell cross-

reactivity based on the structural and biochemical similarity of pHLAs.

Results and discussion: We show our method can accurately separate cross-

reactive from non-crossreactive pHLAs in a diverse set of datasets including

cancer, viral, and self-peptides. PepSim can be generalized to work on any

dataset of class I peptide-HLAs and is freely available as a web server at

pepsim.kavrakilab.org.

KEYWORDS

T-cell cross-reactivity, peptide-HLA, immunotherapy, structure comparison,
sequence similarity
Introduction

The cellular immune response is a vital part of our defense mechanism against various

diseases, including viral infection and cancer. As part of this immune response, cytotoxic

T-cells are specialized to defend against specific diseases by pinpointing and eliminating

infected cells. This occurs via interaction of the T-cell receptor (TCR) with the peptide-

human leukocyte antigen class I (pHLA) complex on the surface of the target cells (1). The
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pHLA is formed when HLA receptors bind to peptides inside the

cell and display them on the cell surface. TCRs are specialized to

recognize pHLAs when the peptide that is being presented is not

normally produced by the cell, which means that the T-cell can

respond against non-self peptides.

An intrinsic feature of T-cells is cross-reactivity, which refers to

the natural ability of a TCR to recognize more than one pHLA (2).

In the context of a viral infection, cross-reactivity allows for a

broader response of a single T-cell against multiple viral targets

(e.g., variants of the same virus or related viruses) (3). However,

the broader specificity caused by cross-reactivity can be the

source of dangerous off-target toxicity in the context of cancer

immunotherapy (e.g., T-cell-based immunotherapy) (4). One

method of immunotherapy is adoptive T-cell transfer, where a

large number of tumor-specific T-cells are delivered to the patient

to amplify the immune response against the tumor. Because of

cross-reactivity, there exist cases where therapeutic T-cells directed

towards specific tumor pHLA complexes may also recognize self-

peptide-HLAs, causing autoimmune side effects (5, 6). Therefore,

preventing T-cell cross-reactivity in these cases is critical for

designing T-cell-based cancer immunotherapies that are both

effective and safe.

T-cell cross-reactivity is driven by the similarity between pHLAs,

but the nature of that similarity is not fully defined. Previous studies

have shown that peptide sequence similarity is not sufficient in all

cases to predict T-cell cross-reactivity and highlighted the importance

of pHLA structure and biochemical properties such as electrostatic

potential (7–9). Previous computational works on T-cell cross-

reactivity define similarity in different ways. For example, one

method defines peptide sequence similarity as the number of

identical amino acids at each position in the peptide (10). Because

each position in a peptide is not equally important to TCR-pHLA

binding, the authors also examined the experimentally determined

structure of TCR-pHLA complexes available in the Protein Data

Bank (11) to determine the positions of the peptide that are in contact

with the TCR. Those positions that are in contact with the TCR are

deemed “important” and therefore considered in the calculation of

sequence similarity. A similar method is employed by JanusMatrix

(12), a part of EpiVax’s proprietary immunogenicity screening kit.

Focusing on what they define as the “TCR facing residues”, the

authors define the similarity between peptides as identical amino

acids. Additional methods of predicting T-cell cross-reactivity include

RACER, a method of predicting TCR-pHLA binding affinity using

supervised machine learning techniques (13). Also, iCrossR and

Expitope use transcript and tissue abundance levels of peptide

sequences to predict the likelihood of off-target toxicity (14, 15).

Expitope 2.0 is available as a web server. Finally, a method developed

by Antunes et al. (7) and later optimized by Mendes et al. (8)

implicitly accounted for both structural information and

biochemical features through the analysis of 2D images of the

TCR-interacting surfaces of pHLAs (7, 8).

In this paper, we present PepSim, a novel computational

method for calculating the similarity between pHLAs to predict

T-cell cross-reactivity. Our method calculates a similarity score

based on peptide sequence and 3D structural information. We focus

the structural analysis on the region of the pHLA that interacts with
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the TCR, specifically analyzing the pHLA surface. We show that our

score can differentiate between cross-reactive and non-cross-

reactive pHLAs with high accuracy using five datasets of viral,

cancer, or self-peptides. Each dataset includes peptides that were

experimentally determined to be recognized by the same TCR.

We define a novel similarity score that is calculated between

pHLAs. The input is a list of peptides and the structures of those

peptides bound to the HLA. These structures can be crystal

structures (i.e., from the Protein Data Bank (11)) or generated by

modeling programs such as APE-Gen (16) or DockTope (17). We

calculate the sequence similarity between peptides as well as the

structural and biochemical similarity between pHLAs, once the

peptide has been docked on the HLA. The output is a 2D matrix

where element i, j is the similarity score between peptides (and

corresponding pHLAs) i and j. A low score indicates higher

similarity than a high score. The matrix can then be used to

cluster the peptides. Peptides (and pHLAs) that are clustered

together based on the similarity score are considered more likely

to be cross-reactive. PepSim is available as a web server

at pepsim.kavrakilab.org.
Methods

Sequence similarity

We calculate the sequence similarity between each pair of input

peptides in three ways. The input for each method is the list of

peptide sequences, and the output is a 2D matrix containing the

pairwise similarity scores. The first sequence similarity score is

calculated using a BLOSUMmatrix, where each pair of amino acids

is assigned an integer value based on the relative frequencies of

amino acids (18). The BLOSUM62 matrix values are calculated

based on amino acid sequence alignments with less than 62%

identity. In our method, the similarity between two peptides is

defined as the sum of the BLOSUM62 values for the amino acid pair

at each position of the peptides, which is a common method of

calculating sequence similarity. Secondly, we calculated the pairwise

similarity between peptides using the similarity matrix calculated by

HLAthena (19), which calculates the entropy at each peptide

position based on the entire dataset and uses the entropy to

weight the importance of each peptide position when calculating

similarity based on the PMBEC similarity matrix. Lastly, we

calculated the Hamming distance between two peptides, defined

as the number of amino acid positions that differ between the two

peptides (i.e., AAAA and AAAB have a Hamming distance of 1

because only position 4 differs). The combination of these three

similarity metrics was empirically observed to give the best results.
Structural and biochemical similarity

The pHLA pairwise similarity is calculated starting from a

dataset of pHLA structures. The output is another 2D matrix of

pairwise similarity scores. Depending on the source of the

structures, their reference frame may be different, so we first align
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the structures using the align function of PyMOL (20). Then, we

extract the solvent-accessible surface value from each structure using

the program MSMS with a density of 3.0 and a probe size of 1.5Å

(21). MSMS computes the surfaces as a triangular mesh, which we

then downsample to a resolution of 1.0Åusing pymesh (22). We then

annotate the vertices of this mesh with biochemical features,

specifically the electrostatic potential, hydrophobicity, and

hydrogen bond potential. The electrostatic potential of the surface

is calculated using APBS (23). The hydrophobicity of each amino acid

in the pHLA is assigned based on the Kyte-Doolittle scale (24), and

assigned to each surface point based on the closest amino acid.

Finally, the hydrogen bond potential at each point is calculated based

on the free hydrogens of the closest amino acid residues. We calculate

the hydrogen bond potential using the data preparation method of

MaSIF (25), based on an orientation-dependent hydrogen bonding

potential (26). In brief, the hydrogen bond potential at a vertex is

calculated based on the vertex’s distance and angle from potential

hydrogen donors (polar hydrogens) and potential acceptors (nitrogen

or oxygen). The potential ranges between -1 (hydrogen bond

acceptor) and +1 (hydrogen bond donor).

To account for the T-cell only interacting with a specific part of

the pHLA complex, we define the TCR-interacting region as a

round patch centered on the peptide bound to the HLA. The center

of the patch is calculated by finding the closest surface point to the

peptide’s center of mass. A circular patch is extracted by selecting

the vertices in the neighborhood of the center point up to 16 edges

away from the center, as defined by the triangular mesh. The surface

patch mesh is converted to a point cloud where each point is a

vertex from the mesh, and each point is annotated with the

biochemical features.

To calculate the similarity between pHLAs, we first perform a

pairwise alignment of the point clouds using the Iterative Closest

Point (ICP) algorithm (27). This alignment uses only geometric

information and does not take into account the annotated

biochemical features. The ICP is an iterative procedure that aligns

a source point cloud S to a target cloud T in 3D space by iterating

over three main steps. The first is to create a corresponding point set

C by matching points in the source point cloud to points on the

target point cloud within a distance of ϵ = 2 Å. By taking points

within distance ϵ of each other, we account for the fact that there

may be an unequal number of points in point clouds S and T . The

psilon ball approach is a standard procedure in ICP (27). The

second step is to calculate the rotation and translation that will best

minimize the distance D between each corresponding point pair

(i.e., to find the best transformation to align each source point to its

corresponding target point). For a pair of point clouds S and T and

the set of corresponding points C, the distance D is defined as

D = o
i,j∈C

‖ Si − Tj ‖2

Where Si is the vector of x, y, and z coordinates of point i of

point cloud S. The third step of ICP is to transform the source

points using the rotation and translation found in the previous step.

These three steps are repeated, recreating the corresponding point

set for each iteration until convergence: when the change in D is less

than 1:0e − 06, or until 30 iterations have been performed. ICP
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results in a final distance D and the indices of the corresponding

points for each point cloud.

We define a new score function to calculate the similarity

between aligned point clouds using the geometric coordinates and

the biochemical features. We expand the ICP distance D so that each

vertex in the point clouds has six dimensions, to include not only the

geometric coordinates x, y, and z, but also the biochemical features

electrostatic potential, hydrogen bond potential, and hydrophobicity.

We also account for the size of the corresponding point set, as a low

number of corresponding points indicates that the source and target

point clouds are not well aligned. Our distance score D2 is defined as

D2 =
oi,j∈C ‖ Si − Tj ‖2

ffiffiffiffiffiffi
Cj jp

This score is calculated between each pair of point clouds,

resulting in a 2D matrix where is element s, t is the score between

point clouds s and t.
Combining similarity scores

Each similarity calculation method described above (i.e.,

BLOSUM62, HLAthena, Hamming distance, structural and

biochemical) produces a 2D matrix, where element i, j is the

similarity between peptides/pHLAs i and j. Each matrix is

normalized by subtracting the mean of the matrix and dividing it

by the standard deviation. Then, all matrices are summed element-

wise, producing a 2D matrix. This matrix provides the similarity

score between each pair of pHLAs.
Clustering

The pairwise similarity scores produced by our method can be used

to cluster the peptides. To validate the method, we performed

agglomerative clustering using scikit-learn (28). We performed

clustering with ward linkage or average linkage. We used

agglomerative clustering to create 2 clusters (with parameters

n_clusters=2 and distance_threshold=None) to represent the two

possible clusters “cross-reactive peptides” and “non-cross-reactive

peptides”. We also ran agglomerative clustering to create any number

of clusters (with n_clusters=None and distance_threshold=0) and used

the result to build a dendrogram to visualize the distance between the

different peptides.

We also validated the method using K-nearest-neighbors

(KNN) clustering (29). KNN is supervised clustering, meaning

the true label of each peptide is known, except the peptide we are

attempting to label based on its nearest neighbors. We used k values

between 1 and 8 and used KNN to label each peptide based on all

the other peptides in the dataset.
Datasets

We tested our method on five datasets, as explained below. The full

list of peptides in each dataset is provided in the Supplementary Data.
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Dataset 1
Melanoma-associated antigen 3 (MAGE-A3) is an antigen

expressed in multiple tumor types, and the MAGE-A3168–176 peptide

is recognized by a specific T-cell clone. Gee et al. discovered 60

additional peptides that are recognized by the same T-cell clone (30).

We use these 60 peptides in addition to MAGEA3 as a positive control

for cross-reactivity, for a total of 61 peptides. Negative controls were

obtained by searching IEDB for peptides that bind to the same HLA

allele (HLA-A*01) (31). 60 peptides were chosen at random, and 59

were chosen for being similar in sequence to the 61 positive controls

(i.e., fitting the pattern (EDK) (AGVLIMPFYW) (ED) (PWHST)

(MYLK) (DEGN) (AGPVLIMF) (MYFL) (FYL)). The peptide-HLA

structures for all 180 peptides were modeled in their docked position to

HLA-A*01 using the peptide-HLA modeling tool APE-Gen (16).

Dataset 2
The second dataset was obtained from a previous study on T-

cell cross-reactivity in HCV peptides (32). This dataset contains 28

peptides, each labeled with a T-cell response level (11 high response,

3 intermediate response, 13 low response, and 1 no response). The

pHLA structures were obtained from CrossTope, a curated database

of pHLA structures modeled using DockTope (33).

Dataset 3
The third dataset is an expansion of the second dataset,

containing the 28 HCV peptides and 45 additional peptides (7).

The pHLA structures were obtained from CrossTope (33).
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Dataset 4
The fourth dataset contains 8 Dengue viral peptides, four of

which are recognized by the same T-cell, and 4 of which are not

(34). The pHLA structures were obtained from CrossTop (33).

Dataset 5
The fifth dataset contains 11 peptides, including the cross-

reactive pair of peptides HEV-1527 and MYH9-478 and 9 negative

controls (35). The pHLA structures were obtained from

CrossTope (33).
PepSim web server

The PepSim scoring method is available through a web server

interface (see Figure 1). Users may upload a dataset in PDB format,

including the peptide that they wish to target. The target peptide

will be used as the reference for the final ranking of peptides based

on similarity. After submission and execution, users can visualize

the peptides in a dendrogram based on agglomerative clustering of

the peptides based on the similarity scores. The peptides are also

visualized in a 2D scatter plot created by using non-metric

multidimensional scaling (NMDS) (36). The users also receive a

ranked list of the peptides based on their similarity to the given

target. If they want to perform offline analysis, including clustering,

users can download all the results, which include the 2D array of

pairwise similarity scores.
A

B

FIGURE 1

PepSim web server interface. (A) The home page allows users to (1) name the peptide they wish to target, either using the amino acid sequence or
the file name, (2) give their email address, and (3) upload the PDB files of the peptide-HLAs they with to compare, including the target. A link is sent
to the given email address for users to review the results. (B) On the results page, users can download the results, view the input peptides in ranked
order of similarity to the target, and view interactive plots of either a dendrogram or scatter plot.
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The PepSim web server is implemented using Docker (37),

with the backend implemented in Django (38). The submitted jobs

are managed by a distributed task queue by Celery (39). The

webserver is currently hosted on a virtual machine in the Owl

Research Infrastructure Open Nebula (ORION) VM Pool on Rice

University Campus.
Results

Accurate separation of cross-reactive from
non-cross-reactive peptides

To test the accuracy of our similarity score, we performed the same

pipeline on five datasets. On dataset 1, containing 61 peptides that are

recognized by the same T-cell and 119 negative decoys, we performed

agglomerative clustering with the similarity scores to create two

clusters. The resulting clustering had a sensitivity of 98.36% and a

specificity of 96.64%. A visualization of the clustering results, as well as

the true clustering, can be seen in Figures 2A, B. This clustering

produced 1 false negative (ASDPMNHYY), and 4 peptides that have

not been experimentally determined to produce a T-cell response

(ELDPTNMTY, DSDPTGTAY, ELDPDNETY, ELDPNNAVY).

We also performed agglomerative clustering on dataset 3,

containing 28 HCV peptides and 45 other viral peptides. One of

the HCV peptides causes no T-cell response and the other 27 cause

some level of T-cell response. As seen in Figures 3A, B, all 28 HCV

peptides are clustered in the same cluster, and the decoys are in the

other cluster. Given that all but one HCV peptide trigger a T-cell

response, this clustering produces only one false positive (G3-18).

This exemplifies that our similarity score can differentiate between

peptides from different origins, as all the decoys are different

viral peptides.

We performed a similar experiment on datasets 2, 4, and 5. In

these cases, we did not specify the number of clusters and produced

dendrograms for a full visual of the clusters. Dataset 2 contains the

same 28 HCV-derived peptides as dataset 3. We see in Figure 4A

that the final clustering separates the peptides with a high or

intermediate T-cell response from most of the peptides with low

or no response. The peptides with high or intermediate responses

are split into different clusters, but within their separate clusters,

they are clustered together. The dendrogram defines two clusters,

but if we split the larger cluster based on the dendrogram branches

within it, we completely separate the set of high-response peptides

from the low and no response groups. The other set of high and

intermediate response peptides are in the other cluster in the

dendrogram, with one pHLA that produces a low T-cell response

(G1-03).

Datasets 4 and 5 are smaller datasets with a low number of

cross-reactive peptides. Dataset 4 shows a complete separation of

cross-reactive and non-cross-reactive peptides, as seen in Figure 5.

The cross-reactive peptides are very similar in sequence. Dataset 5

contains two cross-reactive peptides: HEV-1527 and MYH9-478.

As seen in Figure 6, HEV-1527 and MYH9-478 are not separated

into a different cluster from the negative decoys, but they are on the

same branch of the dendrogram. If you select the target peptide
Frontiers in Immunology 05
HEV-1527, then the closest peptide is MYH9-478, and vice versa.

Given that this method would start with a target peptide, then we

can accurately identify the cross-reactive peptide from this dataset.
Comparison with predictions in
the literature

In 2015, Mendes used multivariate statistical methods to

perform structure-based prediction of T-cell cross-reactivity

among the 28 viral peptides in dataset 2 (8). Using their method,

they clustered the peptides into two distinct clusters. The peptides

that trigger a high T-cell response are placed in one cluster and the

peptides with a low response are in the other cluster. One of the

peptides with an intermediate response in the cluster with the high

response peptides, and the other two are with the low response

peptides. In contrast, with our method, the peptides with a high

response are split into two different clusters, and the peptides with

an intermediate response are clustered with the peptides with a

high response.

Dataset 3, being an expansion of dataset 2, was previously

studied in 2011 by Antunes et al. (7) Only 10 of the HCV peptides

were included in the dataset (A0201_0031, A0201_0051,

A0201_0052, A0201_0053, A0201_0054, A0201_0055,

A0201_0056, A0201_0057, and A0201_0058), along with 45 other

peptides. All 10 of the HCV peptides were clustered together, along

with five other peptides not derived from HCV (A0201_0014,

A0201_0083, A0201_0076, A0201_0095, and A0201_0073). In

contrast, our method results in all the HCV peptides clustered

together with only one false positive, A0201_0033, which is an HCV

peptide that causes no T-cell response. We can also look at our

results on dataset 2, where peptides A0201_0051-58 are clustered

together with no other clusters, and A0201_0031 is in the

other cluster.
The effects of structural analysis

To examine the effectiveness of the structural and biochemical

analysis, we repeated the experiments with two variations of the

similarity score. We defined one variation of the score to use only

sequence analysis, and the other variation to use only the structural

and biochemical analysis.

In dataset 1, when we use only sequence analysis, the final

agglomerative clustering (using Ward linkage) has a sensitivity of

96.72% (2 false negatives) and specificity of 97.48% (3 false

positives), as seen in Figures 2C, D. Compared to the similarity

with the structural and biochemical analysis included, there is one

more false negative and one less false positive when we remove the

structural and biochemical analysis.

When we use the similarity score calculated from only the

structural and biochemical analysis, the sensitivity increases to

100%, but the specificity decreases to 44%, as seen in Figures 2E, F.

We also used K-nearest-neighbors to determine the

effectiveness of the similarity score. As seen in Table 1, we

achieved the highest sensitivity and specificity when we use all the
frontiersin.org
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components of the similarity score (sensitivity of 100% and

specificity of 98.3%). We also achieve high accuracy with the

variations of the similarity score, including using only the

structure and biochemical analysis
Frontiers in Immunology 06
In dataset 3, removing the structural and biochemical analysis

from the similarity score does not change the final clustering when

using Ward or Average linkage, as seen in Figures 3C, D. Similarly,

using only the structural and biochemical analysis results in one
A B

D

E F

C

FIGURE 2

2D embedding of peptides in dataset 1 based on pairwise similarity scores, colored based on (A, C, E) true cluster labels and (B, D, F)
agglomerative clustering results shows the accuracy of PepSim similarity scores. (A, B) use the full PepSim similarity score. In (A) peptides that
are recognized by the same T-cell are red, and the negative decoys are blue. In (B), the yellow cluster corresponds to the cross-reactive
peptides. These peptides are clustered using Ward linkage, and the clustering has a sensitivity of 98.36% (1 false negative) and a specificity of
96.64%. (C, D) use the sequence analysis similarity score. In (D) the peptides are clustered using Ward linkage, and the clustering has a sensitivity
of 96.72% (2 false negatives) and a specificity of 97.48% (3 false positives). (E, F) use the structural and biochemical similarity scores. In (F) the
peptides are clustered using Ward linkage and the clustering has a sensitivity of 100% (0 false negatives) and a specificity of 44% (67 false
positives). The 2D embedding is created using NMDS (36).
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1108303
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hall-Swan et al. 10.3389/fimmu.2023.1108303
additional false positive when using Ward linkage (A0201_0014).

Figures 3E, F shows the 2D embedding of the peptides based on the

structural and biochemical similarity score and compared to

Figures 3A, B the clusters are not as separated.

We also used K-nearest-neighbors to determine the

effectiveness of the similarity score. As seen in Table 2, we
Frontiers in Immunology 07
achieved the highest sensitivity and specificity when we use all the

components of the similarity score (sensitivity of 100% and

specificity of 95.6%). We also achieve high accuracy with the

variations of the similarity score, including using only the

structure and biochemical analysis.

justification=centering
A B

D

E F

C

FIGURE 3

2D embedding of peptides in dataset 3 based on pairwise similarity scores, colored based on (A, C, E) true cluster labels and (B, D, F) agglomerative
clustering result shows the accuracy of PepSim similarity scores. (A, B) use the full PepSim similarity score. In (A) peptides that are recognized by the
same T-cell are red, and the negative decoys are blue. In (B), the yellow cluster corresponds to the cross-reactive peptides. These peptides are
clustered using Average linkage, and the clustering has a sensitivity of 100% (0 false negatives) and a specificity of 97.78% (1 false positive). The false
positive is a pHLA that was experimentally determined to have no T cell response. (C, D) use the sequence analysis similarity score. In (D) the
clustering also has a sensitivity of 100% (0 false negatives) and a specificity of 97.78% (1 false positive). (E, F) use the structural and biochemical
similarity scores. In (F) the peptides are clustered using Ward linkage, and the clustering has a sensitivity of 100% (0 false negatives) and a specificity
of 95.56% (2 false positives). The 2D embedding is created using NMDS (36).
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1108303
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hall-Swan et al. 10.3389/fimmu.2023.1108303
A
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FIGURE 4

Dendrogram of peptides in dataset 2 based on agglomerative clustering of pairwise similarity scores shows the moderate success of PepSim to
differentiate between cross-reactive and non-cross-reactive pHLAs. The peptides that cause a high or intermediate response from the T-cell are
labeled in green and clustered into two separate clusters. The peptides that cause a low or no response from the T-cell are in black. In (A), the
clustering is based on the entire PepSim similarity score. In (B) the clustering is using the sequence similarity scores. In (C) the clustering is using the
structural and biochemical similarity scores. The best clustering is achieved with the entire PepSim similarity score.
FIGURE 5

Dendrogram of peptides in dataset 4 based on agglomerative clustering of pairwise similarity scores shows PepSim’s ability to separate cross-
reactive from non-cross-reactive pHLAs. The cross-reactive peptides are colored green. Peptides are evenly split into two clusters with all cross-
reactive peptides in one cluster and all non-cross-reactive peptides in the other. These peptides are clustered using Ward linkage, and Average
linkage produces the same clusters.
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FIGURE 6

Dendrogram of peptides in dataset 5 based on agglomerative clustering of pairwise similarity scores shows PepSim’s ability to separate cross-reactive
from non-cross-reactive pHLAs. The peptides that are recognized by the same T-cell (HEV-1257 and MYH9-478) are labeled in green and are in the
same branch of the dendrogram. If you select the target peptide HEV-1527, then the closest peptide is MYH9-478, and vice versa.
TABLE 1 Accuracy of leave-one-out KNN cross-validation on Dataset 1.

k Complete score Only sequence Only structure/biochemical

sensitivity specificity sensitivity specificity sensitivity specificity

1 1.000 1.000 1.000 1.000 1.000 1.000

2 1.000 1.000 1.000 1.000 0.918 1.000

3 1.000 0.966 1.000 0.958 0.951 0.933

4 1.000 0.983 1.000 0.966 0.885 0.953

5 1.000 0.924 1.000 0.882 0.902 0.875

6 1.000 0.958 0.984 0.899 0.902 0.924

7 1.000 0.832 1.000 0.824 0.902 0.857

8 1.000 0.874 1.000 0.849 0.902 0.916
F
rontiers in Im
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TABLE 2 Accuracy of leave-one-out KNN cross-validation on Dataset 3.

k Complete score Only sequence Only structure/biochemical

sensitivity specificity sensitivity specificity sensitivity specificity

1 1.000 1.000 1.000 1.000 1.000 1.000

2 1.000 1.000 1.000 1.000 1.000 1.000

3 1.000 0.933 1.000 0.911 1.000 0.822

4 1.000 0.956 1.000 0.933 1.000 0.911

5 1.000 0.867 1.000 0.867 1.000 0.778

6 1.000 0.867 1.000 0.889 1.000 0.867

7 1.000 0.844 1.000 0.867 1.000 0.800

8 1.000 0.844 1.000 0.889 1.000 0.867
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Dataset 2 provides more interesting results. When the structural

and biochemical analysis is removed from the similarity score, the

dendrogram clustering shows that the high and intermediate

responders are still separated into two different clusters, as seen

in Figure 4B. One of the clusters has three false positives compared

to the one false positive in Figure 4A.

When using only structural and biochemical analysis, there is

one cluster of all peptides with a high or intermediate T-cell

response, and the other peptides with a high response are

separated from each other (Figure 4C). Therefore, the

clusters are less accurate when only using the structural and

biochemical analysis when compared to the complete score.

However, the peptides derived from different viral genotypes are

clustered together.

We also used K-nearest-neighbors to determine the

effectiveness of the similarity score. As seen in Table 3, we

achieved the highest sensitivity and specificity when we use all the

components of the similarity score (sensitivity of 100% and

specificity of 92.9%). We also achieve high accuracy with the

variations of the similarity score, including using only the

structure and biochemical analysis.

Datasets 4 and 5 show little change when removing the

structural and biochemical analysis and when removing the

sequence analysis. In dataset 4, the four cross-reactive peptides

and four non-cross-reactive peptides are separated into different

clusters with 100% accuracy. In dataset 5, again HEV-1527

and MYH9-478 are not separated into a different cluster from

the negative decoys, but they are on the same branch of

the dendrogram.
Discussion

T-cell cross-reactivity can cause devastating side effects in T-

cell-based cancer immunotherapy, therefore it is of vital importance

that we predict cross-reactivity when choosing immunotherapy

targets. Here we proposed a scoring method to determine the

similarity between peptide-HLA complexes to predict T-cell

cross-reactivity. The metric we used here incorporates several
Frontiers in Immunology 10
methods of comparing peptides and peptide-HLAs including

sequence, structure, and biochemical analysis. Peptide-HLAs that

are more similar to each other are more likely to trigger an immune

response from the same T-cell (7–9), thus our score can be used to

predict T-cell cross-reactivity.

When we run our method on dataset 1, the agglomerative

clustering accurately separates the cross-reactive peptides from the

decoys with 1 false negative and 4 false positives. In this case, the

decoys have not been experimentally validated, so what we call a

false positive may actually be cross-reactive and is a good candidate

for further experimentation. We successfully separate most of the

cross-reactive peptides from the negative decoys that are similar in

sequence to the cross-reactive peptides. We have partial success

when we use dataset 2. We are not able to reproduce the previous

results of Mendes and colleagues (8), but their method was

specialized for dataset 2. They had previous knowledge of the

TCR-interaction contacts, so specific areas of the peptide-HLAs

were selected for analysis. Our method is designed to work on any

dataset of class I peptide-HLAs. As shown in our results on dataset

2, the peptides from genotype 6 are clustered together, and the

peptides from genotype 1that trigger a T-cell response are also

clustered together. Interestingly, when we use only the structural

and biochemical analysis in the score, we get one cluster of peptides

from multiple genotypes that are all cross-reactive and the other

cross-reactive peptides are spread out in the other cluster. This

clustering of different genotypes does not occur when we use only

sequence analysis or when combining the sequence and structure

analysis. Therefore, we can assume that the structural and

biochemical analysis is recognizing similarities between peptide-

HLAs that the sequence analysis is missing. Our KNN analysis has

high sensitivity and specificity regardless of the score composition.

In dataset 3, an expansion of dataset 2, we successfully separate the

HCV-derived peptides from the negative decoys. Lastly, in the small

datasets 4 and 5, the cross-reactive peptides are clustered together,

showcasing how our method works on smaller datasets.

In this paper, we have presented a comparison to a previous

method of predicting T-cell cross-reactivity via statistical analysis of

the peptide-HLA structural features (8). This previous method has

better results compared to our score, but each is only presented on a
TABLE 3 Accuracy of leave-one-out KNN cross-validation on Dataset 2.

k
Complete score Only sequence Only structure/biochemical

sensitivity specificity sensitivity specificity sensitivity specificity

1 1.000 1.000 1.000 1.000 1.000 1.000

2 0.929 1.000 1.000 1.000 0.929 1.000

3 1.000 1.000 1.000 1.000 0.929 1.000

4 1.000 1.000 0.929 1.000 0.714 1.000

5 1.000 0.929 1.000 0.929 1.000 0.929

6 1.000 0.929 1.000 0.929 0.929 1.000

7 1.000 0.857 1.000 0.857 1.000 1.000

8 1.000 0.929 1.000 0.929 0.857 1.000
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single dataset and specialized to that dataset. It is also based on 2D

image analysis, and therefore only partially accounts for the

structural and biochemical features of the pHLA complexes. The

structure is simplified from 3Dto a 2D image, whereas in our

method we use the 3D structure. We have also analyzed the

effects of structural and biochemical information on the accuracy

of our tool. We find that structural and biochemical analysis is

useful in determining the similarity between peptide-HLA

complexes, but peptide sequence analysis is also vital to

accurately determining peptide-HLA similarity.

There are other methods of cross-reactivity prediction that can

be potentially compared to PepSim. JanusMatrix is part of EpiVax’s

proprietary immunogenicity screening kit and thus cannot be freely

compared to PepSim. In the original study, JanusMatrix is used to

find potential cross-reactivity to defined T-cell epitopes (one from

HCV and one from influenza), but the authors only provide the

number of cross-reactive hits and not the peptides that are

potentially cross-reactive (12). Therefore, a comparison is

difficult. Expitope 2.0 is available as a web server where the user

inputs a single peptide and receives a calculated cross-reactivity

index chart. In the original study, the authors show that Expitope

successfully predicts the cross-reactivity between MAGEA3 and the

Titin-derived peptide (15). In this paper, we have shown that

PepSim successfully predicts cross-reactivity to MAGEA3.

RACER is an energy model for predicting TCR-pMHC binding

affinity and can be used to predict T-cell cross-reactivity. RACER is

shown to accurately predict TCR recognition rates when tested on

datasets of class II MHCs, and thus we cannot compare PepSim,

which was designed for class I MHCs.

As we have shown, our method applies to datasets of different

sizes and content. Dataset 1 includes cancer peptides and self-

peptides, and the other datasets consist of different viral peptides.

Each dataset is also of a different size, but each experiment produces

an accurate clustering of the peptides. Also, our method is T-cell

independent, meaning no information on the TCR including

sequence or structure is necessary to compute the similarity score.

Our score provides a likelihood of triggering a cross-reactive

response, based on the driving impact of the pMHC similarity.

However, experimental measurements of cross-reactivity between

these pHLAs might provide different results depending on the

specific T-cell clone that is used in the experiments. Our ability to

perfect the methods presented in this paper is limited by data

availability, as we are achieving high classification performance on

the presented datasets. Thus, it is likely that similar methods will be

able to build on this work to achieve greater performance as more

T-cell cross-reactivity data becomes available.

In terms of usability, Pepsim is available as a web server. PepSim

takes the PDB files of each pHLA structure. The input files can be

from multiple different sources, such as experimentally determined

structures from the Protein Data Bank (11) or computational

modeling software such as APE-Gen (16) or DockTope (17).

With modeling software, researchers can generate structures for

any number of peptide-HLA pairs. Given computational cost, we

recommend using a dataset of at most 500 peptide-HLAs. PepSim is

designed to be TCR independent, so it can be used when the peptide

residues that are important to TCR recognition are unknown.
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However, we recognize that knowing the important residue

positions would potentially improve PepSim’s predictions, so a

user of the web server has the option of specifying weights for the

different peptide residue positions. In addition, although PepSim

performs well in this study without needing to change the weights of

the different sub-scores, the web server user can input their own

sub-score weights. Additionally, the user defines a “target” pHLA,

and PepSim outputs a ranked list of the input pHLAs in order of

likelihood of cross-reactivity with the target pHLA. PepSim also

generates the 2D score matrix that the user can use for further

analysis, including clustering, and PepSim generates a dendrogram

with the results of hierarchical clustering.
Conclusion

PepSim helps to fill a gap in the existing methods for predicting

T-cell cross-reactivity. Previous attempts to incorporate structural

features into cross-reactivity analysis were hindered by the lack of

structures and the high computational demand of sampling

methods, but we can overcome these limitations by relying on

fast modeling through APE-Gen, and efficient algorithms for

geometrical comparisons. In a large dataset (Dataset 1), we were

able to accurately separate cross-reactive from non-cross-reactive

peptides. Our method can also be generalized, as demonstrated in

other smaller datasets (Datasets 2-5). Additionally, our method

does not depend on the size and content of datasets and can be used

in a T-cell-independent manner. PepSim is available as a webserver

at pepsim.kavrakilab.org.
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