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Extending the Applicability of
POMDP Solutions to Robotic Tasks
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Abstract—Partially-Observable Markov Decision Processes
(POMDPs) are used in many robotic task classes from soccer to
household chores. Determining an approximately optimal action
policy for POMDPs is PSPACE-complete, and the exponential
growth of computation time prohibits solving large tasks.

This paper describes two techniques to extend the range of
robotic tasks that can be solved using a POMDP. Our first
technique reduces the motion constraints of a robot, and then uses
state-of-the-art robotic motion planning techniques to respect the
true motion constraints at runtime. We then propose a novel task
decomposition that can be applied to some indoor robotic tasks.
This decomposition transforms a long time horizon task into a
set of shorter tasks.

We empirically demonstrate the performance gain provided by
these two techniques through simulated execution in a variety of
environments. Comparing a direct formulation of a POMDP to
solving our proposed reductions, we conclude that the techniques
proposed in this paper can provide significant enhancement to
current POMDP solution techniques, extending the POMDP
instances that can be solved to include large, continuous-state
robotic tasks.

Index Terms—Robotics, Autonomous Vehicles, Uncertainty,
Plan Execution, POMDP

I. INTRODUCTION

PARTIALLY-Observable Markov Decision Processes
(POMDPs) [1] represent a planning problem where an

agent performs actions and obtains sensor observations with
the goal of maximizing total long-term reward. POMDPs can
address noise in both the sensors and actuators of a robotic
agent. Solving a POMDP is the process of computing an action
policy that maximizes the total accumulated reward from an
arbitrary reward function. The optimal action policy consists of
the optimal action for any possible sequence of observations,
such that the expected total reward is maximized under the
POMDPs model of sensing and action uncertainty. POMDPs
have been established as a tool to solve a variety of tasks in
robot soccer [2], household robotics [3], coastal survey [4],
and even nursing assistance [5].

Although POMDPs have been successfully used and are
relatively well understood, they are not the de-facto solution
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for robotic planning. This is because the twin curses of history
and dimensionality make solving a POMDP PSPACE-complete,
even for ε-optimal solutions [6]. Robotic tasks must be very
carefully designed and defined to reduce the size of the resulting
POMDP as much as possible so that a solution can be found.
Traditionally, the applicability of POMDPs to robotics has
been limited by the fact that they can only be solved for small
tasks. We increase the applicability of POMDPs by investigating
techniques to extend the size of the task that can be considered.

Recent advances in POMDP solvers, particularly the in-
troduction of belief point-based solvers (e.g., [7], [8]), have
extended the size of solvable POMDP instances. Point-based
solvers have an anytime property, so that a partial solution
is returned even if the solution is not optimal. These solvers
can successfully solve some robotic tasks involving action and
sensing noise. Their primary limitation is the size of their
reachable state spaces (from an initial belief). In the literature,
the world tends to be described by 10× 10 discrete grids to
solve tasks only requiring 10–20 actions (e.g., [9], [10]). The
POMDP’s relatively small state space and short time horizon
(number of actions required) restrict the classes of robotic tasks
that can be solved. Although anytime solvers provide partial,
near-optimal solutions for an increased number of tasks [7],
[8], they cannot successfully solve some large robotic tasks
within the time limits of our empirical evaluation.

Consequently, this paper proposes two reduction techniques
to increase the size of robotic tasks that can be solved
using POMDPs. Our reduction techniques are orthogonal to
advances in POMDP solvers, although our evaluation relies
on the anytime property. Both proposed reductions of the
input POMDP typically improve the runtime of the POMDP
solver, as the POMDP itself is simpler. After the reduced
POMDP is solved, any simplifications made in the reduction
must be addressed. The output of the solver, a policy, cannot
be executed as-is and must be modified to lift the reduced
policy to be a solution on the input problem. Although both
techniques we present cannot guarantee theoretical optimality,
our empirical evaluation shows that, with a fixed time budget,
our reductions provide superior solutions compared to solving
the more complex input POMDP.

This paper is a significant extension of the preliminary
findings presented in [11]. We show the applicability of
the algorithm introduced in [11], POMDP+Online, to task
classes more complex than navigation. POMDP+Online can
address more complex task classes because it reduces the
complexity of the state space given to the POMDP solver.
We will additionally present a task decomposition and subtask
composition algorithm, MDP+POMDP, that is designed to
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attack the computational complexity caused by a long time
horizon. MDP+POMDP will be applied to larger and longer
tasks than could previously be addressed.

In Section II, we cover relevant research into related
techniques. Then, in Section III, we describe the details of
our two proposed techniques. We describe the task classes our
techniques are applied to in Section IV. The specification of
parameters and environments for the instances of the tasks
we use are given in Section V. The performance data in
these environments and comparison to a POMDP without our
reduction techniques will be presented in Section VI. Finally,
we summarize our findings and provide an evaluation of areas
for future research in Section VII.

II. RELATED WORK

Hierarchical POMDP methods [5], [12], [13] utilize many
smaller POMDP policies at multiple levels. The time horizon
is made relatively short for each subtask by splitting an input
task into smaller subtasks combined with a top level POMDP.
The MDP+POMDP method has significant computational
benefits because it uses a fully-observable Markov Decision
Process (MDP) on top of many smaller POMDPs. Although
our framework shares some common ideology with hierarchical
methods to improve computational speed, it is clearly separate.

Point-Based Policy Transformation (PBPT) [14] and online
POMDP methods [15], [16] propose methods to decrease
the amount of computation by considering low-probability
events, and by fixing missing parts of the policy later. The key
difference between the methods proposed in this paper to PBPT
and online POMDP techniques, is that both POMDP+Online
and MDP+POMDP break out of the POMDP framework
entirely to avoid the exponential computation cost. Unlike the
online POMDP which modifies the policy during execution,
our online execution applies replanning to a reduced, static
POMDP policy. Online POMDP methods do not capture the
reduction in dimensionality that our motion model reduction
takes advantage of. Finally, PBPT cannot apply to the reduction
we propose because it requires a bijection between the original
and reduced state spaces and a bijection between the original
and reduced action spaces. The motion model reduction we
propose uses state spaces that differ in dimensionality and our
action spaces have very different constraints.

Recently, significant contributions have been made to prob-
lems for which all beliefs are approximately Gaussian [17],
[18]. In general, however, the belief state of the world cannot
effectively be collapsed into a unimodal distribution. However,
we investigate examples that have a binary selection of
obstacle/observer locations not captured well by a Gaussian.
Therefore, although these Gaussian methods are effective, they
are not applicable to the task classes we are presenting here.

Other POMDP solvers that might seem applicable include
the popular POMCP [19], DESPOT [20], and MCVI [21]
algorithms. The algorithm we chose to use, Monte-Carlo Value
Iteration (MCVI) [21], was explicitly designed to operate in
continuous state spaces, which is more broadly applicable to
robotic systems. However, any discrete solver could be used on
a continuous space with an appropriate sampling strategy, and

likewise, a sampling-based continuous solver could be used
for a discrete system, and thus the algorithms we will present
in this paper are not restricted to using MCVI. More detail on
MCVI is presented in Section VI.

A navigation task with explicit reward for belief variance
minimization has been proposed as a basis for increasing the
size of robotic tasks in the POMDP formulation [22]. User-
designed policies that decrease uncertainty in the current belief
or drive the system to a goal state are required as input policies.
The policy computed switches between these input policies.
Although high-level abstract actions such as these input policies
could be used, we prefer not to require complex user defined
input policies. These abstract actions are sometimes called
macro-actions when composed of other, more basic actions. In
our evaluation of the MDP+POMDP algorithm in Section V,
we did implement very simple macro-actions as described
in Section IV-C, and could also incorporate more complex
expert-defined policies if they were available.

The MDP+POMDP algorithm is representationally similar
to using a Dynamic Bayesian network (DBN) representation
of hierarchical POMDPs [23]. The task solved in the cited
paper is to build a model using inference of the world model
using exogenous inputs. The algorithms in this paper are for a
given model, and the problem at hand is to produce an action
policy that the robot will execute. The fundamental difference
with a DBN as compared to an MDP is that a DBN assumes
inference is required to determine the current state, while the
MDP is guaranteed to know the (in the terminology of the
cited paper) abstract state.

Finally, we note several recent methods to improve POMDP
solution times by decreasing the size of the state space [24]–
[26] and action space [27] through variable resolution decom-
positions. Although these decompositions are relevant to our
goal of decreased computation time without sacrificing total
accumulated reward, the decomposition we propose in this
paper is across both the state space and time as opposed to the
state space alone or the action space. Each of these methods
is orthogonal to our proposed algorithms and could potentially
be combined to further improve on our results. In particular,
FIRM [24] is philosophically aligned with MDP+POMDP
in breaking the problem down into smaller belief sets and
computing an MDP solution over this small discrete set of
beliefs. FIRM is designed to generate a policy specifically
for a task where the goal is necessarily a region of the state
space around a particular point in state space. This goal point
assumption is a critical part of FIRM: associated with every
point in the FIRM roadmap is a belief stabilizing controller
that can drive the system near that state with high probability.
MDP+POMDP, rather than finding a policy to get to a specific
state with high probability, uses the general MDP objective of
optimizing a reward function that could yield, e.g., an infinite
patrolling strategy. Additionally, FIRM selects controllers to
drive between beliefs using a roadmap, while our algorithm
solves a full POMDP between predefined beliefs. Not requiring
a belief-stabilizing controller makes modifications to the robot
model simple to test, particularly for cases where it may be
difficult or impractical to write such a controller.



3

III. ALGORITHMS

Both of the two algorithms we propose will reduce an
input problem specified as a POMDP before it is run through
an off-the-shelf POMDP solver to reduce the computational
complexity. The computed solution to this reduced prob-
lem is then used to solve the original input problem. In
POMDP+Online, the input motion model is reduced to that of
an unconstrained holonomic robot. The policy for a holonomic
robot cannot be executed on the true, car-like robot model,
and online replanning is used to address this reduction and
approximately follow the solution policy. The second algorithm,
MDP+POMDP, requires a decomposition of the input POMDP
into a set of POMDP subtasks. After solving each subtask,
an MDP is constructed using empirically simulated transition
probabilities for each subtask. The MDP policy, combined
with the POMDP subtask policies, comprise a global solution
policy. Our proposed methods do not apply to every general
POMDP. Instead, they apply to and exploit the structure of
several classes of robotic POMDPs to improve solution speed.
These classes of tasks may be quite broad, but it is not clear
how to characterize exactly which classes of robotic tasks
are amenable to our algorithms. Although we will consider a
car-like robot model, the algorithms presented are not specific
to this model. There are restrictions on the robot model due
to our choice of approximation as a holonomic point robot;
however, the precise restriction depends on the merits of the
planning system.

A. POMDP+Online

The first algorithm we propose, POMDP+Online, operates
in two phases and is detailed in Algorithm 1. The input, a
POMDP model of the robotic task denoted P , has the motion
model reduced to that of a holonomic robot in Line 1. For
example, a car-like model for P can be replaced with a rigid
body that can move in a grid along the cardinal and ordinal
directions. Line 2 takes this reduced POMDP model and
computes an approximately optimal policy. This approximation
is due to the reduction introduced in the motion model as
well as the limited offline planning budget. In Lines 3–5, the
robot online replanning system is initialized. As discussed
in the Experimental Evaluation section, we use OMPL [28]
for planning, but other robotic planning systems could be
substituted. The loop on Lines 6–11 continues replanning until
the sensor returns a terminal observation. Line 7 plans from
the current observed state to the target policy state, where the
current state is inferred from observation in a robot-dependent
fashion. In our experimental evaluation, we have chosen to
simply plan from the state inferred by the last observation
without implementing a robust state estimator to simplify the
analysis of the output as well as the implementation of the
experimental platform. In line 8, we update the state variable to
be the expected state after following path. We will assume the
policy is a deterministic decision tree, where each node is the
current optimal action to execute, and an edge is selected based
on an observation. Thus the observation generated on Line 9
informs the policy node update on Line 10. An observation is
sampled from the true underlying world state as a simplification

Algorithm 1 POMDP+Online
Require: P is a POMDP encoding a robotic task

1: P ′ ← MakeHolonomic(P )
2: policy← Solve(P ′) # Offline Planning
3: state← SampleInitState(P ′) # Initialization
4: policyNode← policy.root(P ′)
5: obs← SampleObs(state, policyNode, P ′)
6: repeat # Online replanning loop
7: path← Plan(obs.state(), policy, policyNode, P ′)
8: state← path.endPoint()
9: obs← SampleObs(state, policyNode, P ′)

10: policyNode← policyNode.child(obs)
11: until TerminalObservation(obs)

of a sensor inference. Although in a physical implementation, a
state estimator would need to be implemented, we preferred to
use an abstract model with specifically controllable, predictable,
and reproducible noise. It is very important to note that the
true state is in fact only partially-observable, for otherwise
the task at hand is not a POMDP. The online planning does
not explicitly use the reward model to plan motion (as this
depends on modeling stochastic observations/actions and would
amount to solving the POMDP), but, instead, follows the highly-
rewarding policy that was computed on Line 2. During the
online operation, the task is implicitly encoded in the policy.
Therefore, the online planning system must follow each step of
the policy as closely as possible (Line 7). This requirement is
due to the fact that the online planning system in this algorithm
addresses each discrete time segment (action) from the POMDP
model as a separate and independent planning task, without
concern for reward. Only the POMDP policy encodes a plan to
maximize reward, so if the online planner does not approximate
the actions specified in the POMDP policy, the robot cannot
hope to achieve a high reward except in trivial cases.

The comparisons in Section V will show the performance
benefits of reducing the input POMDP and fixing the output
policy with replanning. POMDP+Online, by using a simpler
robot model in the offline computation, reduces the time
required by the POMDP solver.

In particular, a simpler robot model reduces the size of
the state space and action space, both of which contribute
exponential terms in the worst-case solve time. Additionally,
the simpler dynamics model is chosen to reduce the complexity
of the system motion, so a shorter execution time is required
to get between state space points, which allows us to search
for solutions with a shorter time horizon. The time horizon
is present as another exponential term in worst-case solve
time, so the overall effect from this simplification can be
very large. However, this simplification comes at the cost
of additional computation online because the robot motion
model being executed is not the same as the reduced motion
model used in the resulting policy. The reduced models that
will work for a given online execution model are hard to
characterize in advance, however it is a topic worth investigating
in the future. Although the dynamics simplification provides
significant computational benefits, this algorithm can only
be applied to systems that can be approximated well with
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Fig. 1: A task that requires passing through well-observed
boundary regions can be naturally decomposed into smaller
subtasks. In this example, the task is to navigate from region
1 to region 2, passing through an intermediate region. The
solution to the global task can be approximated through a
subtask from region 1 to the intermediate region, followed by
a subtask from the intermediate to region 2. The intermediate
region is assumed to be a small region where additional sensing
information is available.

simpler ones. In particular, we have not constructed adversarial
environments where there exists no solution for the simplified
system but a solution for the full system exists (or vice versa).
In general, if the obstacles are assumed to be conservatively
defined in the simple system such that the complex system
is guaranteed to be able to track each simple action without
hitting an obstacle, then this algorithm will be applicable.
Small-time local controllability is sufficient to satisfy this
assumption, however, it is not necessary, and small violations of
this assumption may be acceptable for some specific problem
instances. This assumption is relatively easy to check on
the bounded-curvature models we will be using, though it
is admittedly intractable in the general case.

B. MDP+POMDP

Some tasks with a long time-horizon may be intractable even
using the reduced robot model proposed in POMDP+Online.
If we assume that the sensor model samples observations from
a bounded distribution in some regions of the state space
(as opposed to the common Gaussian or other unbounded
distributions), we can build a decomposition of the task into
subtasks based on these well-observed boundary regions. We
propose that an MDP can connect these regions into a solution
to the global task. Our proposed decomposition into subtasks
is orthogonal to the reduction of the motion model used
by POMDP+Online which reduces the complexity of the
state space. Decomposition into subtasks has the benefits
of reducing the time horizon required for each policy and
achieving performance improvements, but the tradeoff is that
we will solve many smaller POMDPs and necessarily sacrifice
global optimality.

Combining small POMDP subtasks into a global solution
will allow the consideration of sensor noise during robot
execution (as each subtask policy is still a POMDP policy),
while directly attacking the curse of history (as the history is
discarded in between the subtasks). The combination of the
resulting POMDP policies is accomplished through an MDP
in an algorithm we call MDP+POMDP (Algorithm 2). The
decomposition into subtasks using a natural set of boundary
regions is illustrated by Figure 1.

If the task is comprised of several rooms joined by bounded
localization regions, as in Figure 1, then we can decompose
the task into natural subtasks. Doors could provide bounded
observability easily, as a doorframe is an easy to recognize
separator. A separation by bounded observability is critical
because an MDP is assumed to have perfect knowledge of
which state it is in. At a high level, the task is approximated
as an MDP between the bounded observability regions. This
MDP is defined as (SMDP, AMDP, TMDP, RMDP, γMDP). SMDP is
the discrete set of bounded observation regions that our sensor
model described above can perfectly observe. AMDP consists
of one action per state adjacency pair. That is, if two bounded
observation regions are connected at the POMDP subtask level,
the MDP will contain an action to traverse between the bounded
observation regions. There is an additional implicit assumption
that the global POMDP can be well approximated by a sequence
of POMDPs that can each be solved independently.

The instantiation of each MDP action is a policy computed
by one of the POMDP subtasks. The start region in this
POMDP subtask is uniformly sampled, discarding any history
of previous actions or observations that could inform this
distribution. The transition probabilities, TMDP, are empirically
derived from simulations of the policy.

Algorithm 2 MDP+POMDP
Require: P is a POMDP encoding a robotic task

1: # Offline policy computation .
2: Decompose P into subtasks Pi,j

3: for all Pi,j ∈ P do
4: πPi,j

= POMDP.Solve (Pi,j)
5: end for
6: Construct M , an MDP with actions given by πPi,j

7: πMDP = MDP.Solve (M)
# Policies πMDP, πPi,j compose a global policy .
# Online execution: current region is denoted by i, initial
state is sampled from initial region

8: repeat # Subtask update & execute loop
9: # MDP policy selects next destination region .

10: j ← πMDP(i)
11: # Execute pre-solved POMDP policy to go from i to j
12: execute(πPi,j

)
13: i← estimate(obs) # Determine MDP region
14: until TerminalMDPRegion(i)

Line 1 of Algorithm 2 is inherently vague because the
decomposition process is problem dependent. The exact form
of the decomposition varies by problem, but we assume
there exists some natural decomposition where the boundaries
between elements in the decomposition can be perfectly
observed. Lines 2–3 solve all subtasks and store the resulting
policies. Simulations of these policies are used in Lines 5–
7 to construct and solve the high-level MDP using policy
iteration [29]. At this stage, we have built a two-level policy
composed of πMDP and all the πPi,j

’s.
Lines 8–13 correspond to execution of the two-level policy.

The current region where the robot is located is denoted by i. At
the start of execution the initial state is sampled from region i
(in simulation) or estimated from sensor data. The MDP policy



5

determines which region the robot should navigate to (line 10).
The precomputed POMDP policy πPi,j is executed to navigate
the robot to neighboring region j (line 12). Due to uncertainty,
the robot might actually end up in region j′(j′ 6= j), but since
the policy already contains the optimal actions to reach the
goal, this is merely a delay rather than a failure. Execution
of the POMDP policy continues until a region other than i is
entered. At that point the current region is updated based on
sensor observations (line 13). This process repeats until the
robot reaches the terminal MDP region (line 14).

We have presented two algorithms to reduce the computa-
tional complexity of robotic tasks specified as a POMDP. Each
algorithm “reduces” the input problem before it is run through
an off-the-shelf POMDP solver. After the reduced problem is
solved, the algorithms also specify the appropriate method to
lift the reduced policy to solve the original input task. Each
algorithm works for only a subset of general POMDP tasks,
which can still be quite general. We will proceed by specifying
three task classes and applying the appropriate algorithm to
each.

IV. TASK CLASSES

This paper presents three classes of robotic tasks. Each task
can be represented directly as a POMDP, however, it may
be unsolvable within a reasonable amount of time. Given the
exponential growth of the required computation, it is reasonable
to think that even as computation power grows, techniques to
reduce the input task will always be useful. Although our time
limit is arbitrary, memory capacity will present a hard barrier
to simply allowing for longer run times. Our tasks vary greatly
in memory use, but generally range in the gigabytes per hour
of computation. In this section, we will describe the classes
of input POMDPs considered in our experimental evaluations
before reduction.

A. Exposure Minimization

The class of exposure minimization tasks are defined as
navigating a robot through a known environment without being
seen. This task is inspired by a stealth transport mission, where
a robotic truck would prefer to arrive at the destination unseen,
but being seen does not terminate the mission. Several locations
exist that may contain an observer. Each observer induces a
visibility polygon, which the robot will consider as a region
with additional cost to navigate. The number of observers are
known but not which of the possible locations they are in. Only
noisy sensing is available for observer location.

This task is considered successful when the robot reaches the
goal location. When the robot is successful, a large reward is
achieved. If the robot hits an observer, crashes into an obstacle,
or exceeds the planning time horizon, the task is aborted and
a large penalty is incurred. The POMDP framework builds a
policy to maximize expected reward. Because the only positive
reward available in this task is at the goal, the policy is expected
to balance success rate, time to goal, and time spent in the
visibility polygons of the observers.

B. Search and Rescue
The search and rescue (SAR) task class requires the robot to

navigate to a goal, however, the goal location is not known and
must be sensed. Imagine an ejected pilot with an active radio
but the signal is too weak to directly communicate. In this
case, the robot must use noisy sensing of the radio signal to
estimate range to the pilot and determine the true location from
a set of probable locations. There are also terminal obstacles
with unknown positions that must be sensed with another,
independent sensor. This task adds a uniform cost of motion
throughout the workspace.

The SAR task is harder to solve than exposure minimization
because the goal is no longer a single location but, instead,
is selected from several possibilities. The location selection is
done from a uniform distribution, as are the obstacles.

The reward structure for SAR task is ‘binary’, that is, either
a large reward is achieved at the (unknown) goal location,
or a large penalty is incurred at either known or unknown
obstacles. Unlike in the exposure minimization task, there is
no intermediate level of reward.

C. Indoor Navigation
We will investigate both a single task and the ability of

MDP+POMDP to handle many tasks defined on the same map.
An indoor navigation task class requires the robot to navigate to
a goal region under action and sensing noise. One example of
indoor navigation, wheelchair navigation, may require solving
many tasks in the same environment. The smart wheelchair may
be overridden by the user at any time. Therefore, deviations
from the expected motion model are expected but very difficult
to characterize in advance. Given an un-modeled deviation
from the expected outcomes, the robot could observe a sensor
value that was never seen during computation of the POMDP
policy. An unexpected observation is not accounted for in a
traditional policy. However, our proposed top-level MDP policy
addresses this as MDP policies return an action based only on
current state, and can therefore recover from a user taking an
un-modeled transition.

The known map of the environment provides the locations of
non-terminal obstacles. The cost of motion is zero throughout
the state space; the only reward is a terminal reward of one at
the goal. Furthermore, as physical implementation cost could
be an issue, we operate with minimal sensing: the robot only
uses 4 obstacle sensors and a doorframe sensor (e.g., perhaps
an upwards looking camera).

The indoor navigation class of tasks is designed explicitly to
test the ability of our proposed decomposition to extend the time
horizon that can be addressed with a current POMDP solver.
The decomposition is orthogonal to the robot model reductions
made in POMDP+Online, and our discussion will focus on
the effect of the decomposition and MDP+POMDP algorithm
in this task class. We have also applied the POMDP+Online
algorithm to the policy computed with MDP+POMDP to verify
that these algorithms can work together.

V. EXPERIMENTS

In this section, we will describe the specific environments
that are used to instantiate the task classes we have specified,
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while experimental results are deferred to Section VI. The first
two tasks, exposure minimization and SAR, are not designed
with regions of bounded-observability. Therefore, they are used
to test only the POMDP+Online algorithm in isolation. The
indoor navigation task is more structured and has distinct
regions separating subtasks that can be used for bounded-
observability. This task is used primarily to test MDP+POMDP
in isolation, though is also run with POMDP+Online to show
that these two algorithms can be easily combined.

A. Exposure Minimization

We evaluated the exposure minimization task class in two
distinct environments called L and Branched (see Figure 2).
The input POMDP is a discretized-action version of the true
robot model, where the true model is a Reeds-Shepp car [30].
The reduced POMDP will remove the kinematic constraints
imposed by this robot model and, instead, model a holonomic
point robot. This reduced robot model is simpler in state space
(R2×S vs. R2) and system dynamics (bounded-curvature paths
vs. holonomic), thereby decreasing two exponential factors in
the computational cost.

For each action we compute the percentage of time that the
robot is observable in order to differentiate between actions
that are observed for varying amounts of time. The cost of
being observed increases linearly with the number of observers
that can see the robot. The overall behavior should find a near-
optimal tradeoff between time spent navigating to the goal
(discount factor making it worth less over time), and the cost
of being observed. Because the locations of the observers are
not known at the outset, and the sensor has Gaussian noise,
it may take time to determine the appropriate action. If there
exist multiple observers/obstacles or goals, only the closest
one is sensed. This can lead to significant perceptual aliasing
between possible observer positions and adds to the difficulty
of this task class. Perceptual aliasing is always a significant
factor in the environments used.

Some important characteristics of the POMDPs in this task:
• Sensor noise σ = 0.2·range
• Sensor discretized at a resolution of .1
• Reward of achieving goal location = 1000
• Reward of hitting (terminal) obstacle = −1000
• Reward of motion = 0
• Reward of being observed (per action) = −10
• Known obstacles
Prior work has shown that the size of the action space directly

affects the solution time [27]. For more complex examples with
limited time, this translates into decreased policy reward. The
robot vehicle model we have chosen models the state space as
rigid body car position and orientations, SE(2), and imposes
bounded-curvature path constraints. As required in MCVI, a
discrete action set is used in the POMDP, therefore the action
space A is discretized into 5 constant-speed actions: turning
in either direction 180◦ or 90◦, and proceeding straight ahead.

Sensor observations are (x, y, range) tuples, discretized to
integer values as necessary (or a subset of these variables as
relevant to the task at hand). T is noise-free, so we can focus all
computation and discussion on the sensing. The sensor model,
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Fig. 2: Environments used in the exposure minimization tasks.
In L, one observer location is selected out of two (blue dots),
while in Branched, two are selected out of six. X denotes
starting location, green circle denotes goal region.

Ω, implements a range-dependent Gaussian noise model for the
range measurement. The reward function R (characterized in
the list above) is independent of A and only depends on robot
position. The action and sensing models from the exposure
minimization tasks are also used in the search and rescue tasks.

B. Search and Rescue

In the SAR tasks, some circular regions are unknown
obstacles. The sensor model for these obstacles is the same as
described above for the observers. In addition to the unknown
obstacles, the goal location is now also unknown. Each task
instance has several goal possibilities that are randomly sampled
to select one goal. Range sensing of the goal is identical to,
and independent from, the sensing of the obstacles. Neither of
these sensor models can provide bounded localization, and so
cannot be easily decomposed into subtasks. The action model
is the same as before. Three environments tested in this task
class are shown in Figure 3, called Empty, Symmetric, and
Line.

Similar to the previous tasks, we list some of the crucial
characteristics of the POMDPs used in this task class:
• Sensor noise σ = 0.2·range
• Sensor discretized at a resolution of .1
• Reward of achieving goal location = 1000
• Reward of hitting (terminal) obstacle = −1000
• Reward of motion = −1
• Independent, identical goal range sensor added
• Unknown, circular obstacles
The Empty environment, depicted in Figure 3(a), is a useful

starting point to see the best case scenario. The robot must
utilize sensing to disambiguate the 10 possible goal locations.
Analyzing the failures in this example shows that they are due
to observation histories seen during execution that were not
part of the policy.

The Symmetric example is difficult because only the closest
obstacle can be sensed. Only after significant motion can the
obstacle and goal locations be determined with any significant
confidence. A long path exists around the obstacles, but the
particular reward structure makes this path sub-optimal. The
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Fig. 3: Environments used for the SAR tasks. In the Empty
environment, one goal (solid green circles) is selected from the
10 shown locations. In the Symmetric and Line environments,
one goal is selected from the five possible locations, and three
out of the five obstacles (transparent grey circles) are present.
In all environments, the robot starts at the small X at the top.

optimal policy uses sensing and takes a more direct route while
incurring a small expected percentage of collision.

Finally, the Line environment is similar in construction to
the Symmetric environment except there is no guaranteed safe
path. At the outset, it is unclear if the Line environment will be
harder or easier than the Symmetric example. Although there
is no safe path, the robot has more free space to maneuver and
gather information.

C. Indoor Navigation

The navigation task class will be used to evaluate the
proposed decomposition in MDP+POMDP, because it is natural
to define a decomposition using features of the workspace of
an indoor environment. Specifically, we will use the door
frames as our bounded-observability regions that can provide
improved localization estimates. The start and goal regions
are also assumed to be bounded-observability regions, that is,
we assume the robot knows exactly when it has successfully
completed a navigation task. The high-level MDP will navigate
from start to goal by passing through a sequence of door frames.
Each transition at the high-level is instantiated on the robot by
executing a low-level policy.

The robot state will be a continuous (X,Y ) position, so
|S| =∞. The actions in A used in both the global POMDP and
all POMDP subtasks are motion in the four cardinal directions
for length L. Each of these motions also includes Gaussian
noise in the final location. Because we wish to solve large
problem instances, macro actions (additional actions composed
of several ‘normal’ actions) were implemented as repetitions
of motion in these 4 directions of motion until an obstacle or
a region of bounded observability is detected in the direction
of motion. See [31] for more information on macro actions.
These 8 actions, plus an option to stay still, yield an overall
|A| = 9.

Observations are very different from the previous task classes.
The first sensor detects if there exists an obstacle within a
distance equal to one motion step plus noise in a given direction.
With 4 directions and 2 possible results per direction (on/off),
there are 16 possible observations from this sensor. The second
sensor returns a region number if the robot is within a region
of bounded localization, and a null value in the rest of the

space. In addition, a special value is set if the robot is in an
invalid state, or if the robot has reached the goal. This second
sensor provides information as is needed to split the overall
POMDP into smaller POMDPs joined by a fully-observable
MDP. This fully-observable MDP does not suffer from the
curse of history; it is the partial-observability of the POMDP
that requires considering historical observations. The MDP can
be optimally solved in PTIME, so the MDP is computationally
trivial compared to the PSPACE-complete subtasks.

The observation model Ω defines noisy obstacle sensing as
well as a perfect region sensor. Given the current state of the
robot, s, o = Ω(s, a) returns a value described above, where
the range of the obstacle sensor is sampled from N (L, σ).
As mentioned above, L is the length of a single action from
the action model. We observed in our initial experimental
evaluations that when the standard deviation is too high, then
the optimal policy will be to ignore all noisy observations.
Therefore, the standard deviation used in this sensor is relatively
low but still significant, at σ = L

10 . The action model (T ) for
this task class also includes Gaussian noise along the direction
that the robot is moving.

The MDP model has the following characteristics:
• SMDP is the set of bounded observability regions plus a

failure state
• The goal and failure states are terminal
• Actions are POMDP subtasks between adjacent states
• POMDP policy failure leads to the failure state
• Reward at the goal state is 1, 0 elsewhere
And for each POMDP subtask for noisy navigation:
• Sense x, y position and bounded observability region
• Position sensor noise σ = 0.1
• Obstacles are not terminal (action execution just stops)
• Reward of achieving goal location = 1000, 0 elsewhere
• Known obstacles
This task class is designed to push the limits of the POMDP

solver not in sensing, but in time horizon. As we will see in
the Experimental Results section, these tasks can provide a
significant challenge due to the long time horizon.

The first environment will be a set of rooms with one start
region (uniformly sampled) and one goal region, depicted in
Figure 4 and referred to as “Rooms.” There are 11 regions of
bounded observation: 9 door frames between rooms, the start,
and the goal. Assuming a fixed start to goal task, 21 local
policies between these regions are needed for this environment
(given the particular adjacencies in this task). Rooms that are
exact duplicates (three across the bottom) can re-use policies
between them. This is why only 21 policies are needed even
though there are 33 pairs of adjacent regions.

The second environment, denoted “Office” and depicted in
Figure 5, is recreated from existing planning literature [32]
and was selected to highlight a potential benefit of the
MDP+POMDP algorithm in a multi-query example. There
are seven non-doorframe, bounded observability regions (e.g.,
visual fiducials [33]). Start and goal locations are selected from
these seven regions, yielding a total of 7 · 6 = 42 possible start
and goal combinations. In Figure 5, only one start and goal
combination is shown. This is the particular task instance we
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Fig. 4: The Rooms environment for indoor navigation from
a single start region to a single goal region. The start region
is marked 1 and colored purple. The goal region is marked
11 and colored yellow. All other regions that support bounded
observation are marked in green. Each action moves the agent
an expected distance equal to the smallest region width. This
task can be naturally decomposed into 7 rooms with 11 labeled
regions. 3 rooms are exact duplicates of each other. The 5
unique rooms require computing 21 distinct policies from
region to region.

will focus on. In this environment, there are 15 regions with
bounded observability and 59 adjacent pairs of these regions.
Unlike the Rooms example, there are no duplicated rooms
that allow policy re-use. This is the worst-case for the number
of subtasks that need to be solved. Computing the 59 local
policies will include policies to and from every possible start
and goal. Therefore, the MDP+POMDP solution can solve
all start and goal combinations without solving any additional
POMDPs. The high-level MDP has a well defined start and goal,
however, and must be re-defined for each of the 42 possible
task definitions in this environment. However, as discussed
in Section VI-C, the time to construct and solve all 42 MDP
instances is negligible.

The expected upper bound on the number of actions that
might be required for a good solution, called the planning
horizon, is an input to the POMDP solver, MCVI. The
maximum planning horizon for each of the small rooms in both
problems is estimated as L = l+w

m · 2 ≈ 40 time steps, where l
and w are the length and width of the environment respectively
and m is the nominal motion length. This approximation is
from the knowledge that in a navigation task, we are unlikely
to need to travel longer than twice the width plus the length
of the room. The larger room is thus given L = 80 time steps,
and the whole environment uses L = 200 time steps. As the
number of reachable belief points are upper bounded by the
number of possible histories, for each of the three task sizes,
the number of reachable belief points is at most

|B| = (|A| · |O|)L ≈


10110 for L = 40

10220 for L = 80

10552 for L = 200

This can be intuited as the maximum number of possible histo-
ries that can be observed. Clearly, 9·10110+12·10220 � 10552

(using the “Rooms” environment as an example), indicating
that we expect to see significant performance benefit from this
two-stage approach.

Fig. 5: The Office environment for navigation between multiple
start and goal regions. One such combination of start (region 1,
purple) and goal (region 5, yellow) is shown. All other regions
that support bounded observation are marked in green as in the
prior example. This task can be naturally decomposed into 9
rooms with 15 regions, where all rooms unique. The 9 rooms
require computing 59 distinct policies from region to region.
The square regions (1,5,6,8,9,12,15) are the possible start and
goal regions.

VI. EXPERIMENTAL EVALUATION

For each problem instance presented in Section V, we
solve two POMDPs. The first POMDP directly describes the
tasks as the tasks are discussed in Section IV. The second
POMDP is a reduction of the direct description using our
proposed algorithms. The two policies computed are compared
to evaluate the effectiveness of the proposed reductions.

Both POMDP+Online and MDP+POMDP utilize a POMDP
solver; the particular solver we used for our experiments is
Monte-Carlo Value Iteration (MCVI) [21], as mentioned in
Section II. MCVI is a recent point-based solver that uses the
extremely successful particle filter to represent a non-Gaussian,
potentially multi-modal distribution over the possible states
the robot is in (a belief state). The experiments we perform
represent challenging tasks at the limits of MCVI’s solution
ability. Pushing MCVI to its limitations emphasizes the ability
of the reduction techniques we have proposed to extend the
size of problem instances that can be solved.

Although many methods to drive a car-like robot to a specific
goal without hitting obstacles can be used, we use the Open
Motion Planning Library (OMPL) [28] for online planning in
our experiments. Specifically, we use an implementation of
Transition-based Rapidly-exploring Random Trees (TRRT) [34]
as available in OMPL. TRRT extends the popular RRT [35]
algorithm with rejection sampling. Rejection of collision-free
connections is based on a Metropolis criterion for connections
that increase cost; connections that decrease cost are always
added. This simple change effectively searches for low-cost
paths. An increasing ‘temperature’ parameter (nomenclature
taken from simulated annealing literature) slowly raises the
effective maximum cost increase after a number of failed
expansions. The regions of space near the expected execution
of the policy are decreased in cost, while the rest of the space
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is left at 0 cost. This has the effect of encouraging the planner
not to leave the policy, or, when it must, it will prefer regions
that are part of the policy where possible. The POMDP reward
function is not used in the TRRT cost function because TRRT
does not know about the discrete actions and sensing; the robot
needs to follow the solution policy as computed as closely as
possible and not head myopically towards the goal.

TRRT is assumed to be run in an interleaved fashion during
execution of the prior plan, so the robot performs a continuous
motion. We assume the actions in the POMDP each take
enough time to execute that the TRRT planner can run, and
that an observation taken shortly before the end of the current
POMDP action is sufficient to infer with (equivalent noise) the
state from which TRRT should plan the next cycle from. For all
experiments presented here, we will use 10s as a hard limit on
TRRT time in each replanning cycle and assume that execution
of the prior action took at least that long. TRRT is simply an
instance of the Plan function that can return an approximate
solution within the time limit; many other instances could be
applied here. The choice of a sampling-based planner was
influenced primarily by the desire for a robot-agnostic solution
for fast experimentation. For any specific system, a controller
could be used to navigate between states. Alternatively, a
plan could also be produced by D*Lite [36] (optionally, post-
processed by a trajectory optimization algorithm).

For the tests with online replanning, each data point will be
plotted as the mean and 95% confidence interval calculated
over 500 runs of the online phase. Both the POMDP directly
describing the task, denoted P , and the reduced POMDP we
propose, denoted P ′, are solved using MCVI and the policies
are executed with online planning. Many runs are necessary
not only because the true world states are sampled, but also
because TRRT is a randomized algorithm. When simulating
the transition probabilities in the MDP, similar to the tests with
MDP+POMDP, 500 trials of the policy are executed to find an
approximation of the true transition probabilities in the MDP
problem specification. Solving the global MDP is deterministic,
and therefore it is only run once.

A. Exposure Minimization
The online planner, OMPL, needs to respect the additional

constraints in P , causing the online replanning time (Figure 6,
top) to be higher than when the policies computed with P ′

are executed with OMPL. The online planner cannot choose
to ignore constraints given in the POMDP policy, otherwise
the policy update step may fail. While the policies computed
for P fail to achieve positive reward, the reduced POMDP,
P ′, achieves greater reward even though it is defined for a
holonomic motion model far removed from the true bounded-
curvature constraints (see Figure 6, center). The improved
reward shows that replanning can successfully bridge the gap
between the reduced solution and the true Reeds-Shepp [30]
kinematics. This is consistent with our expectation that this
reduction allows MCVI to generate a better solution given the
same amount of time as a non-reduced POMDP. The POMDP
solution time is 10,000 seconds (approximately 2.7 hours) for
both P and P ′ as MCVI did not converge to optimal in either
case.
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Fig. 6: Experimental results comparing the solution of a direct
description of the task (P , solid) with the solution of our
reduction of the task (P ′, striped) in the exposure minimization
tasks, with γ = 0.99 over 500 trials each. Policies from both
P and P ′ were run in replanning with a Reeds-Shepp car.

Note that, in the Branched environment, a lower percentage
of time observed (Figure 6, bottom) is not correlated with
higher reward as might be expected. This is because the
dominant factor in this task is if the robot gets to the goal
in the end. The observers play a significant role; however,
being observed is less important if the policy cannot reach
the goal a significant percentage of the time. The dominant
reward factor is task-dependent, based on the particular values
given to the reward for the goal and the penalty for being
observed. Similarly, in the L environment, although the time
observed is approximately equal, the rewards achieved are
very different. Another factor to consider is exactly how the
percentage of time observed is calculated here. We have taken
the average over all successful runs, with different path length
solutions being equally weighted. The reward for our reduced
model is significantly higher; if we wanted the percentage of
time observed to be guaranteed to be negatively correlated
we could incorporate this in our reward function. However,
the task we have proposed is to get to the goal at any
cost, minimizing that cost when possible. The upper bound
on possible reward in the Branched environment, given the
minimum time to the goal of 10 actions, is γ10 · 1000 ≈ 904
when γ = 0.99. If we assume that applying the success rate in
that environment, 69%, will account for the noise present in
the system, the analysis has an expected maximum reward to
(1000 · 0.69 + (−1000 · (1− 0.69))) · γ10 ≈ 343. We consider
the achieved reward of ≈ 310 to be near optimal, given that
the maximum reward analysis assumed the robot takes the
shortest possible path (which is not optimal due to the observer
penalty). This simple evaluation in one environment is purely to
show evidence that the method is not too far from optimal, and
makes no attempt to rigorously account for the noise present.

The initial evaluation of the L environment showed that
the robot was able to quickly use sensing to determine which
topologically distinct path to follow. The Branched environment
increases the number of distinct paths, as well as introducing
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γ=.90

γ=.99

γ=.95

Fig. 7: Qualitative visualization of the different path classes
executed by the policies generated in the Branched environment.
Only a discount factor of γ ≥ 0.99 matches the human-
expected policy. Observer locations and vision polygons
omitted here.

harder sensing conditions due to selecting two of the six
locations for observers. The Branched environment introduces
significant masking of any observers farther away because the
sensor model only observes the closest one.

Testing with the discount factor γ = 0.90 showed that only
one path was ever taken in the Branched environment. Different
levels of γ and the different path classes the policy executed
in the Branched environment are shown in Figure 7. Further
analysis showed that the time necessary to determine which of
the two corridors to traverse was long enough to be suboptimal
at γ = 0.90. Increasing γ to 0.95 still did not split the policy
across the two corridors based on sensing, however, it did
cause the action policy to choose a longer path in the right
hand corridor. This avoided a costly double-exposure region.
Finally, increasing γ to 0.99 computed the human-expected
policy. The policy with γ = 0.99 includes the four distinct
paths in Figure 7. Because the human-expected policy was
found with γ = 0.99, this value was used throughout all other
experiments.

The initial evaluation of γ under different conditions
prompted a full set of experimental results for three experimen-
tal conditions of γ, shown in Figure 8. In the L environment
(Figure 8, left columns), only very minor changes are seen in
the exact paths taken. It is important to note that, although
the reward is useful to compare these different policies, the
reward evaluation in Figure 8 is computed with γ = 0.99. Each
policy is, of course, optimal with respect to the γ that was
used during the offline planning.

As seen in our evaluation of γ, determining the correct
parameters for a POMDP model is in itself difficult if there is
an expected policy to compare to. Careful analysis of the values
involved can disambiguate between an error in the modeling
of the tasks, or if the POMDP simply did find the optimal
policy given the input parameters.

B. Search and Rescue

In our results for the search and rescue tasks, it is clear
from overall reward (Figure 9, center row) and success rates
(Figure 9, bottom row) that the policies computed by MCVI for
both the direct description of the task (again, P ) and the reduced
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Fig. 8: Experimental results comparing three levels of the
discount factor, γ, for the exposure minimization tasks. (500
trials each.)
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Fig. 9: Evaluation of POMDP+Online applied to the SAR tasks
in three environments over 500 trials each.

POMDP (P ′) had only moderate success in solving the tasks.
MCVI was given the same 10,000 seconds as in Exposure
Minimization. The increased variance in online replanning
time (Figure 9, top row) is due to some instances being
fast to solve and others being solvable but requiring more
discrete actions. The policies computed for P do not exhibit
this increased variance because only the simpler instances
could be solved. Overall, however, the reduced POMDP, P ′,
significantly improved mean reward in these tasks.

The Empty environment serves as a baseline for the maxi-
mum expected success rate, and is less than 100% due to some
observations being received that did not appear in the computed
policy. It is possible that increasing the time allowed and the
number of particles used to approximate belief in MCVI will
help. In fact, we increased the allocated solution time several
times and decided to stop at 10,000 seconds. It is unclear if
there would be any benefit of performing these comparisons
after a longer runtime.

The Symmetric and Line environments contain unknown
obstacles, which pose an additional sensing challenge. As can
be seen from the success rates and rewards in Figure 9, the
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Fig. 10: The time to compute each of the 21 POMDP subtask
policies for the Rooms environment, sorted by computation
time. The line marks the timeout time. The x-axis is an arbitrary
numbering of each unique policy.
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Success Rate Comparison for the Rooms Environment

Fig. 11: The success rate of the MDP+POMDP solution
compared to the single, global POMDP. The global POMDP
was not able to find even an approximately optimal solution,
having a 0% success rate and is therefore not visible.

policies were often inadequate to be successful in the task.
That said, we note that the policy using our reduction (P ′)
was approximately twice as successful as the policy generated
using the direct representation of the task (P ).

C. Indoor Navigation

In the indoor navigation tasks, the sensor model is only
measuring the obstacles and if the robot is in a special bounded-
observability region. This task class was designed to support
a task decomposition in time, allowing the consideration of
extremely long time horizon tasks. Our initial discussion will
assume, P = P ′, that is, the online replanning is not necessary
because the true underlying robot model is assumed to be
identical to the one that was used to construct the policy. This
will ensure that all computational differences can be attributed
to the MDP+POMDP algorithm. We will then validate that
the POMDP+Online algorithm can still follow the computed
policy using a car-like model.

We will evaluate our proposed MDP+POMDP run on the
decomposition of the task as compared to solving one large,
global POMDP that directly describes the task with a longer
time horizon. The subtask POMDPs are run through a simulated
execution (using the simple holonomic robot model) 1000 times
to estimate the transition probabilities in the MDP. As the MDP
is deterministic, we do not require multiple runs to evaluate
the success percentage of the high-level policy.
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Fig. 12: The time to compute each of the 59 POMDP subtask
policies for the Office environment, sorted by time. The line
marks the timeout time (only checked once per iteration,
therefore some times are longer). The x-axis is an arbitrary
numbering of each unique policy.

In the Rooms environment, a time limit of 10,000 seconds
(≈ 2.7 hours) was provided to each small policy. Although
the 21 policies each get 2.7 hours, meaning the maximum
computation time is 21 · 2.7 = 56.7 hours, the small policies
often take much less than the time limit, as shown in Figure 10.
The total computation time for all 21 policies was 12.4 machine-
hours. An added benefit of this approach is that the 21 policies
can be computed in parallel; the total time (assuming 21
computers were available) would be only 2.7 hours. To compare
to a traditional solution, a single global POMDP instance was
constructed and given 27 machine-hours. The global POMDP
cannot take advantage of multiple computers with the current
implementation of MCVI (though it is multi-threaded). The
global POMDP was given a time limit of 27 hours, 10 times
the computation time of a single policy, and well over the total
time spent on all smaller policies. The MDP only has 12 states
(the 11 regions described above, plus one failure state), and
takes less than one second to solve for an optimal policy, so
is negligible and not included in the time comparison.

The MDP+POMDP policy success rate in the Office en-
vironment is compared to the global POMDP solution in
Figure 11. Although in theory, the global POMDP should
be able to achieve higher overall success rates, the exponential
complexity of the computation requires so much time that the
policy computed over 27 hours is still insufficient to find a
policy with a non-zero success rate; MDP+POMDP, by contrast,
provided a very good success rate using a composition of local
policies that took 12.4 hours to compute.

In the Office environment, many similar trends are seen.
As in the prior results, Figure 12 shows that some policies
are computationally difficult, but many are easy. The overall
solution time is much less than the maximum 59 · 2.7 ≈ 160
hours. The total time to compute the 59 small POMDP policies
in this environment was 44 hours. For a fair comparison, the
global POMDP was given 45 hours to solve this task.

As illustrated in Figure 13, the success rate of the solution
computed by MDP+POMDP was significantly higher than
the success rate of the global POMDP solution. Unlike the
rooms example, the global POMDP did find a reasonably
successful policy. Although the environment is more complex,
the particular start/goal pair (the one depicted in Experiments,
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Fig. 13: The success rate of the MDP+POMDP solution
compared to the single, global POMDP. The MDP+POMDP
framework used 44 hours to compute a solution with 94%
success rate; given 45 hours, the global POMDP policy had
an 86% success rate.

Figure 4) does not require as long of a time horizon to solve.
The existing, general heuristics present in MCVI are enough
to avoid exploring the significant areas of the belief space that
would never be entered under an optimal policy that only passes
through 5 out of the 9 rooms. Even though the maximum time
horizon specified was the same, MCVI was able to find that it
was unnecessary to plan that far into the future.

The global POMDP solution is only for the particular
start/goal combination depicted previously. This global POMDP
solution does not provide any information to decrease the time
to solve any other start/goal pair. Because of the excessive
time required (80 machine-days) and the low expected utility
of doing so, a global POMDP was not run for 45 hours per
each of the 42 start/goal pairs. Rather, we report only the
MDP+POMDP success rate for each of these possible tasks in
Figure 14. The time to run all 42 tasks at the MDP level was
under one half of a second, and the success rate for each task
was never below 80%. Computing the solution of all possible
tasks may be unnecessary in many applications; however, we
expect that for indoor navigation tasks, there may be many
queries for a variety of tasks and precomputing all solutions
is a significant benefit. To restate this result, MDP+POMDP
required 44 hours to solve all 42 task instances and even
provided a better solution than the global POMDP given similar
total solution time per task instance.

Having determined that the MDP+POMDP algorithm can
provide significant computational benefits, we applied the
POMDP+Online algorithm with the same Reeds-Shepp robot
model used previously. The proof-of-concept evaluation of
applying both algorithms in the Rooms and Office environments
are shown in Figure 15; for the Office environment only the task
depicted in Figure 4 was tested. The success rate is very close to
the expected success rates computed with the holonomic model;
the improvement occurs because the online replanning system
can recover from rare, but large, disturbances in position.

VII. DISCUSSION

The proposed techniques for reduction of POMDPs and
execution of policies generated using these reduced POMDPs
have been successfully applied to three robotic task classes in
this paper. Each task uses navigation toward a goal location,
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Fig. 14: The success rate of the MDP+POMDP solution across
each of the 42 possible start/goal combinations, sorted by
success rate. The x-axis is an arbitrary numbering of the
possible start/goal combinations that define different tasks.
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Fig. 15: The expected success rate of the MDP+POMDP
solution assuming a holonomic robot, compared to the success
rate of the Reeds-Shepp robot using online replanning. The
success rate improves because small deviations can be fixed
in the online replanning step and hitting an obstacle is non-
terminal.

and two task classes extend navigation to more complex task
classes requiring additional sensing. Our results over a variety
of environments and task classes support our supposition that
the reduction of a robotic task in the POMDP formulation can
be effectively used for a variety of robotic tasks, which are often
constructed from a combination of sensing and navigation. We
presented two algorithms, POMDP+Online and MDP+POMDP,
which perform a reduction to the input POMDP and provide a
method to use the reduced solution in the original problem.

In our evaluation of the POMDP+Online algorithm, we
see that the reduction of the motion model considered at
the POMDP stage produces a superior policy. The online
replanning stage can effectively support execution of the
policy, even though it was computed for a different state space
with significantly simpler constraints. Although planning
on a simplified dynamics model required additional online
computation, the time is negligible compared to the offline
time savings that, in many cases, allows us to find a significantly
better offline policy than was otherwise possible.

In particular, the exposure minimization tasks showed excel-
lent performance improvement when using the POMDP+Online
algorithm. For the exposure minimization tasks, we also
analyzed the significant effects of varying the discount factor,
γ. This type of parameter sweep is rarely seen in POMDP
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literature although occasional reference to the difficulty of
choosing γ can be found.

The experimental results in the SAR tasks were less suc-
cessful in absolute terms, though the reduced model continued
to provide significant relative improvements. Analysis of the
failures pointed out the need for more robust policies. A
possible area of future investigation is a more robust policy
execution strategy. One possibility may be coupling replanning
with an online POMDP process and/or a true state estimator
that can fix the policy. There is promising active research in
online POMDP planning [37]. However, this robotic POMDP
application is at a short-term reactive cycle stage, only looking
forward in time at most 4 actions in the examples provided.
In this paper, even the smallest tasks we investigated had a
discrete time horizon an order of magnitude greater. Therefore,
we suspect that a fundamentally different mechanism from the
one presented in [37] will be required for these tasks, and
believe that the approximation algorithms presented in this
paper may serve as a starting point for a new approach.

In our experiments the model reduction in the
POMDP+online algorithm was applied to a first-order
car. We expect that similar reductions can be created for other
small-time locally controllable systems. How well this would
work in practice is the subject of future work. It would be
interesting to see what the tradeoffs are between solution
quality and computation time as the complexity of dynamics
(both in the task and in the simplification) increases. For
systems with more complex dynamics (such as second-order
dynamics) a reduction to a completely holonomic system
might result in policies that are difficult to execute. In such
cases a reduction to a first-order system with a discrete
number of actions might provide a reasonable tradeoff between
solution quality and computation time. Furthermore, as the
underlying system becomes more complex, there exists the
distinct possibility of pathological regions of the state space.
For example, a system with complex legs may be able to fold
up and fall over such that it cannot escape the local region
of the state space and can no longer move effectively, like a
turtle on its back. A simplified model may not capture these
pathological regions accurately and the policy may require
passing through one of them, making the offline solution an
infeasible one.

Finally, our proposed MDP+POMDP algorithm showed
huge performance benefits in the indoor navigation tasks.
MDP+POMDP requires the addition of a sensor that bounds
localization relatively tightly so that the prior history can be
forgotten without significant degradation in overall performance.
We propose a doorframe sensor as a model of how this might
be accomplished in indoor environments. This sensor, and the
subsequent application of an MDP to construct a high level
policy together allow the consideration of multi-query POMDP
tasks, a problem domain that, to the authors knowledge, has
very little existing work outside of reinforcement learning.
Given the extreme performance benefits in the multi-query
POMDP tasks, this is a very interesting idea to pursue. A
natural question that arises is if the state space can always
be assumed to have obvious bounded-observable regions.
Determining such regions is likely to be at least as hard

as solving a POMDP on the underlying state space, but an
automated sensor model analysis and studying how much
the requirement of bounded-observability can be softened or
broken are promising directions for future research. A natural
generalization to explore would be if the MDP was formulated
as a Semi-Markov Decision Process (SMDP) instead. The
SMDP allows us to consider the expected time to execute
a policy, which is a random variable, in a principled way,
instead of only optimizing for overall success. Future work
would also investigate additional task classes. For example, in
object manipulation there is a natural subtask decomposition
(grasp, transfer, release) in the time domain that seems with
clear boundaries between these subtasks, or other tasks that are
solved with more complex reward functions than just entering
a particular region of state space (or sequence thereof such as
grasp/transfer/release).
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