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Abstract — In search and rescue applications it is important that
mobile ground robots can verify whether a potential target/victim is
indeed a target of interest. This paper describes a novel approach to
multi-robot target verification of multiple static objects. Suppose a
team of multiple mobile ground robots are operating in a partially
known environment with knowledge of possible target locations and
obstacles. The ground robots’ goal is to (a) collectively classify the
targets (or build models of them) by identifying good viewpoints to
sense the targets, while (b) coordinating their actions to execute the
mission and always be safe by avoiding obstacles and each other. As
opposed to a traditional next-best-view (NBV) algorithm that generates
a single good view, we characterize the informativeness of all potential
views. We propose a measure for the informativeness of a view that
exploits the geometric structure of the pose manifold. This information
is encoded in a cost map that guides a multi-robot motion planning
algorithm towards views that are both reachable and informative.
Finally, we account for differential constraints in the robots’ motion
that prevent unrealistic scenarios such as the robots stopping or turning
instantaneously. A range of simulations indicates that our approach
outperforms current approaches and demonstrates the advantages of
predictive sensing and accounting for reachability constraints.

Keywords: multirobot systems, image manifolds, motion
planning

I. INTRODUCTION

In many robotics applications, including search and rescue,
mobile robots often use sophisticated algorithms to extract
information from sensor measurements. To maximize the
utility of available resources robots need to decide when
and where sensor measurements should be taken and how
they can navigate to positions that offer the most informative
measurements.

We propose a new distributed sensing strategy that exploits
the intrinsic structure of an ensemble of camera measurements
to predict which future measurements may be useful (and worth
navigating the robots to obtain) and which ones are redundant
(and not worth obtaining); this is similar to the next best view
problem (NBV) [1]. We propose a measure of informativeness
of viewpoints based on the predictability of images obtained
at the viewpoints given a set of known images. Our proposed
solution enables the robots to navigate to viewpoints that are
both informative and reachable.

Fig. 1 illustrates the importance of predictive sensing and
reachability for the NBV problem. Traditionally, the cost to
reach the NBV has been ignored, or has been arbitrarily set
to the distance from the current position. For car-like robots
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Fig. 1. Predicting informativeness
of sensor measurements and reasoning
about reachability are both essential for
efficient target classification. While the
best view of a target may be unreach-
able, there may exist multiple informa-
tive views that are easily reachable.

under differential constraints, this is problematic. The robots
cannot simply use a reactive, control-based approach to follow
a gradient based on the cost map. Furthermore, the NBV may
be unreachable, or positions near it may not be informative
at all (due to, e.g., occlusion). On the other hand, there may
exist many reachable positions that are only marginally less
informative than the best view. Since computing the next
best reachable view is generally undecidable, we use an
approximate solution and an online replanning framework to
select informative views and reachable paths.

The contributions of this paper are as follows. We propose
a novel formulation for multi-robot multi-target verification
for car-like robots. We employ image manifolds to represent
the images sensed by the robots which enables predictions
of informativeness. These predictions allow us to avoid
uninformative views, which leads to substantial savings in
power usage, bandwidth, and computation. We use the concept
of cost maps to encode informativeness (and lack thereof) of
viewpoints. These cost maps are used by the motion planning
algorithm along with constraints on reachability. By exploiting
reachability robots are more likely to find short informative
paths rather than potentially long paths to the “best” view point
(and avoid unreachable “best” views altogether).

II. RELATED WORK

The work presented in this paper brings together ideas from
diverse topics in robotics, including NBV selection, motion
planning, and multi-robot coordination.

Next-best-view selection: Computing the NBV is a prominent
area of research (also called “active vision”) that is primarily
concerned with the online 3D reconstruction of target models
[2]–[4] or entire scene environments [5], [6]. Usually, the
problem setup considers one sensor, one target, and motion.
In [7], a sonar-based approach that uses a cost map to
encode the utility of unexplored areas is presented, but
reachability is not considered. An algorithm to find points
with large visibility polygons at frontiers of explored areas of
unknown environments is presented in [5]. While reachability
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is considered, the view point selection and path planning are
treated as separate problems. A similar approach is presented
in [4] for model reconstruction; there, a sampling-based
planner is used to compute collision-free paths to the best
viewpoints, but no differential constraints are considered. The
motivation of using cost maps to characterize informativeness
is similar to a Bayesian formulation [8]. However, our notion of
informativeness is geometrically meaningful as we evaluate it
in the context of an image manifold, while Bayesian approaches
are statistically motivated and do not necessarily capture
the geometric constraints underlying the problem. In [9], a
statistically motivated informativeness measure is combined
with geometric reasoning. By computing the image articulation
manifold, we are directly geometrically motivated. Because of
this, we do not estimate the correlation of images, but compute
it using optical flow.

Kinodynamic motion planning: For systems with second-
order dynamics, such as the car-like robots considered in
this work, it is hard to find optimal solutions for motion
planning problems [10], [11], but many practical approaches
have been proposed. Most relax guarantees on optimality
and provide weaker notions of completeness. Sampling-based
algorithms [11] provide probabilistic completeness guarantees
and have been successfully used for decentralized replanning
for dynamic systems [12]. Such algorithms have also been
combined with cost maps to find paths that minimize some
cost function over paths [13].

Multi-robot coordination: There have been many ap-
proaches to let robots safely operate in the same space.
They range from reactive, control-theoretic approaches to
AI-based negotiation/trading-based schemes (see [14] for a
detailed overview). Here, we focus on coordination with strong
safety guarantees for kinodynamic robots in environments with
obstacles [12]. This scheme is flexible enough to let robots
coordinate on higher level tasks such as mapping unknown
environments or, as in this paper, navigating to informative
viewpoints in a distributed fashion. Unlike [15], we do not
attempt to address the global scheduling problem, but instead
let local decisions tend to drive the system to success. Although
this can lead to live-lock situations, they have not been observed
in simulation, noting that [12] provided results for up to 32
robots in the same relative size environments as in this paper.

III. OVERVIEW OF OUR APPROACH

The primary focus of this paper is the interaction between
sensing and planning. Each robot executes a sense/plan/act loop,
where it obtains a sensor measurement, plans for the next cycle,
and executes the plan computed in the previous cycle. A robot
may choose to not obtain a sensor measurement in a particular
cycle if its location is predicted to be uninformative. At the heart
of this sense/plan/act cycle is a geometric NBV algorithm to
propose novel views to sense. In contrast to conventional NBV
algorithms, we characterize the informativeness of viewpoints
using a cost map to accommodate reachability constraints
(candidate NBV points might be unreachable). We therefore

need to use a planning algorithm to produce dynamically
feasible motions. We assume the robots have a map of the
environment and are able to self-localize on this map.

Our framework has two main parts: an offline model building
effort, where we build manifold models for each of the targets
that we are interested in identifying (see Sec. IV), and an online
real-time processing step wherein the sense/plan/act loop is
executed (see Sec. V).

Offline: The goal of our offline computations is to build a
framework wherein informativeness of views is characterized.
As we will see later, the NBV problem can be mapped to an
elegant maximization of our notion of the informativeness of
viewpoints (see Sec. IV). We characterize the informativeness
of a viewpoint by the size of the neighborhood on the image
manifold that is predicted by the image obtained at that
viewpoint.

Online: The online processing part executes a sense/plan/act
loop. We focus on two processing stages: (a) an image analysis
step where-in we use advances in object detection and pose
estimation to locate target(s) of interest in the sensed image
and suggest potential NBVs using cost maps, and (b) a path
planning process that coordinates the robots to optimize some
desired objective with reachability and inertial constraints. The
image analysis process is non-myopic and does not simply
pick the NBV according to some metric. Instead, a cost map
is created to guide the planning process towards informative
views. The cost map is defined by an informativeness score for
all locations in the workspace and is updated at each iteration
cycle by processing the aggregate set of measurements acquired
by the mobile robots.

The planning process biases the growth of a search tree
containing feasible paths towards areas that have a high
informativeness. This accomplishes the goal of finding in-
formative viewpoints that are also reachable. Whenever robots
are within communication range, robots not only exchange any
information about the targets that they have acquired so far but
also communicate their plans for the next cycle. This process
is explained in [12]. The plans from each neighboring robot
are transformed into another cost map. The robots then use a
composite cost map, formed by combining their own cost map,
as well as cost maps for the neighbors’ plans, to formulate a
plan that balances finding an informative path with staying out
of the way of neighboring robots.

IV. OFFLINE MODEL BUILDING

When the context is clear, we will interchangeably use the
terms “sensor” and “camera”; “sensing” and “imaging”; and
“measurements” and “images”.

Image manifolds: Suppose we consider images as elements
of some high-dimensional space. Under certain conditions it
has been shown [16], [17] that, if we acquire images of a
moving object with K-degrees of freedom of motion, then
the ensemble of N -pixel images obtained can be modeled as
lying on a K-dimensional image articulation manifold I =



Reference Image I0

I2(x)=I0 (x+f2 (x))

f1 : flow from I0 to I1

f2 : flow from I0 to I2

I1(x)=I0 (x+f1 (x))

Fig. 2. Optical flow between a pair of images is defined as the pixel
displacement field that maps one image onto another. Shown above is a
reference image and optical flow to other images belonging to an image
manifold. Note that I0 and I2 are flow predictable from each other. In contrast,
while I1 is flow predictable from I0 the reverse is not true due to occlusion.

{Iθ : θ ∈ Θ} (IAM) embedded in RN , where Θ is the K-
dimensional articulation parameter space and Iθ : Θ → RN .
Manifold models for images have been extensively studied
in the context of semi-supervised classification, information
fusion, and data visualization, among other applications.

Our goal is to build a notion of informativeness of images
belonging to the manifolds. We achieve this by constructing
operators on the manifold that link image pairs; we refer to
such operators as transport operators.

Transport operators: A transport operator f : R2 7→ R2 is a
map that enables us to “traverse” the manifold from one image
I0 to another image I1 as follows:

I1 = f(I0) =⇒ I1(x) = I0(x + f(x)).

We consider the space of all such transport operators denoted
as F . Note that given I0, this space serves as a predictive
model for images on an IAM.

We observe that the optical flow between a pair of images
is a natural instance of transport on an IAM (see Fig. 2);
consequently, optical flow can be used for predicting images
belonging to an IAM. Optical flow computation between a pair
of images is a well-studied problem in computer vision [18]–
[20]. Given two images I0 and I1, the optical flow between
them (if it exists) is defined as the tuple (vx, vy), where vx ∈
RN and vy ∈ RN , such that

I(x, y) = I0(x+ vx(x, y), y + vy(x, y)). (1)

Given two images I0 and I1, we say that I1 is flow predictable
from I0 if there exists an optical flow-based transport operator
such that I1 = f ◦I0. Note that this notion of flow predictability
is not commutative due to self-occlusions (see Fig. 2). When
I1 is flow predictable from I0, then there is no need to sense
both images; indeed, given I0 and the transport operator f , we
can obtain I1 using (1).

We exploit the idea of flow predictability to define a notion of
informativeness of an image. Given an image I ∈ I , we define
B(I) as the largest subset of the IAM that is flow predictable
given I:

B(I) = {Iθ ∈ I | ∃f s.t Iθ = f(I)}.

We call B(I) as the flow neighborhood of I . The cardinality
of the flow neighborhood, |B(I)| is the measure of the
informativeness in the image I . The key idea here is that
images associated with higher cardinality are more desirable
to be sensed as they can predict a larger neighborhood of the
IAM. We exploit this in Section V to build cost maps the reflect
the relative informativeness of sensing at a particular location
given previously sensed data.

Model building: The initial preprocessing phase consists of
building an efficient model of the IAM I for each target from
sufficient training data. Given training images {I1, . . . , IM}
and their articulation parameter values {θ1, . . . , θM}, we first
build an atlas {(I ref

k , B(I ref
k )); k = 1, . . . ,M ref} such that

∪kB(I ref
k ) ≡ Î ⊃ {I1, . . . , IM}. The images I ref

k are denoted
as the reference images. The exact number of reference images
is not critical but more images will produce a more accurate
IAM model at a higher (offline) computational cost. The
reference images should be as close to the expected articulation
parameters that will be seen in the online phase, to help with
image registration. The above atlas can be built using a greedy
algorithm in O(M) time [21]; this algorithm relies on k-means
clustering extended to the IAM. In addition to the atlas, we
also compute and store the optical flows from I ref

k to all images
in their flow neighborhood, as well as the inverse flow from
the images in the flow neighborhoods to their corresponding
reference images. Note that the flow maps may suffer suffer
significantly from occlusion due to obstacles in the scene. In
such cases, we store binary indicator images denoting the
occluded pixels as well; we term these images occlusion maps.

V. ONLINE PROCESSING

The online processing framework consists of a
sense/analyze/act loop. As mentioned earlier in Section
III, there are two distinct processing stages: an image analysis
step and a motion planning step. The main elements of these
two stages are discussed next.

Preprocessing: A series of image analysis algorithms need
to be performed to identify the location and the pose of the
target(s) from the sensed imagery; we assume that state-of-the-
art computer vision techniques for object detection provide us
a bounding box around the target. Typically, such algorithms
use a bag-of-features model [22] to describe target(s) in terms
of their SIFT (or any other) features [23]. The end goal of
these algorithms is to identify the location of the target and
potentially its pose. For our applications, once a bounding box
is obtained around a target, we use our precomputed manifold
models to predict the NBV as follows.

Model validation: Given a set of processed images {Is}
(images of the target separated from the background) and
the precomputed models for the IAM I, the next phase is
to predict the NBV to guide the navigation. We achieve this
using the following procedure: given a sequence of sensed
images {Isk} including the newly sensed images, we compute⋃
k B(Isk), which represents the portion of the IAM that is



flow-predictable from the sensed images. We observe that for
k = 1, . . . ,M ref: (1) If I ref

k is flow predictable from Isk for some
k, then B(I ref

k ) ⊂ B(Is); (2) If Isk is flow predictable from I ref
k ,

then we compute the optical flow and corresponding occlusion
map from Is to I ref

k . The set B(Is) includes all images in
B(I ref

k ) whose occlusion map with respect to I ref
k is a superset

of the occlusion map of B(Is); and (3) If
⋃
k B(Isk)− Î = ∅,

then we have charted the IAM using the sensed images and
declare the target identity as validated.

In our implementation, these steps are done in a decentralized
manner with each robot processing only the images that it has
acquired. Each robot builds the flow neighborhoods B(Is)
over its own images. Computing the union ∪kB(Isk) is done
easily by local communication of the set of image articulation
parameters that each robot has captured; this avoids the need
to exchange the images between the robots.

Online cost map computation: When Bdiff = ∪kB(Isk)−Î 6=
∅, then there are neighborhoods in the IAM that we need to
chart and corresponding neighborhoods in the workspace that
should be explored. To facilitate this, we first define the vector
s ∈ RM such that s(k) = 1 if Ik ∈ Bdiff and s(k) = 0
otherwise, where s(k) is the k−th component of s. Then, we
define a real-valued function C(x, y) on the workspace:

C(x, y) =
∑M
k=1 s(k)c(|B(Ik)−Bdiff|) Ind((x, y) ∈W (θk)),

(2)
where Ind(·) is the indicator function and W (θk) is the set
of physical (workspace) coordinates that correspond to the
articulation parameter θk. The quantity c(|B(Ik) − Bdiff|) is
a payoff term associated with acquiring the image Ik that
depends on the cardinality of the additional portion of the IAM
I that we are able to chart by sensing the image Ik. In this
paper, we use c(k) = k

M , where M is the number of images
in our training ensemble. We have freedom in our choice of
c(·) and any monotonic increasing function can be used.

The above formulation is invariant to the order in which the
images are acquired. Indeed, it does not matter if the images
were captured by more than one camera. Thus, our approach
can be used in the mobile multi-camera setup. Further, the
framework can be extended to the case of multiple targets.
In this setting, the IAM dimension increases linearly with the
number of targets, but all other aspects remain the same.

Online implicit coordination through cost maps: The cost
map derived from the measurements is used to guide the
navigation of multiple robots. Each robot executes a replanning
loop, in which each robot takes a sensor measurement iff the
cost map indicates it is informative. Since the focus of this
paper is on the interaction between sensing and planning,
and not on communication, we will assume that updates to
the cost map can be propagated relatively quickly through
the robots’ communication network. The robots thus have a
consistent view of the world. (Communication delays, dynamic
network topologies, transmission errors, and uncertainties will
be addressed in future work.)

First, each robot analyzes its immediate vicinity to determine

if targets can be seen or if it still needs to navigate to such
an area. It does so by computing the percentage of grid cells
in the cost map in small neighborhood around the current
position that contain informative viewpoints (i.e., B(Is) is
above some threshold value). If this percentage is above a
certain prescribed value p (e.g., p = 20% in our experiments),
then the robot will use the new cost map as-is. On the other
hand, if this threshold is not met, then the robot considers
itself as far away from useful views and switches to using a
slightly different cost map. In this case, the robot identifies
informative areas in the sensing cost map and uses a brushfire
algorithm to compute the workspace distance to these areas.
This brushfire-based cost map is then used to guide the robot
closer to informative areas. Finally, when a robot receives
paths from other, neighboring robots, it will increase the costs
around those paths since there is no need for two robots to
sense the same areas. The computation of the effective cost
map from the sensing cost map is extremely simple and can
be performed just prior to motion planning in each replanning
cycle. The end result is that each robot finds paths that balance
the informativeness of a viewpoint with the cost to reach it.
Simultaneously, the cost map assists with the coordination
among the robots so that they do not compete to get to the
same viewpoint (since the cost to cross paths from nearby
robots causes a robot to navigate to other viewpoints). Note
also that there is no mapping from robots to targets. This is
a huge advantage when multiple targets can be seen from a
single viewpoint, as we will demonstrate in Section VI.

Multi-robot motion planning: Due to the complex dynamics
of the robots, they cannot simply follow a potential based on
the cost map but rather need to plan to obtain controls that
drive the robots through low-cost cells in the cost map. Each
ground robot has second-order, car-like dynamics:

ẋ = v cosφ cos θ, ẏ = v cosφ sin θ,

θ̇ = v sinφ, v̇ = u0, φ̇ = u1,

where (x, y, θ) is the pose of a robot, v is its velocity, φ is its
steering angle, and the control vector u = (u0, u1) controls
the acceleration and turning rate. The velocities and controls
are bounded, so the robots cannot stop or change direction
instantaneously. This makes navigation in environments with
obstacles very challenging; the robots cannot rely on purely
reactive behaviors and need to plan ahead.

Each robot generates a series of candidate paths using a
sampling-based planner [11]. Such planners have been demon-
strated to be effective in finding valid paths for constrained,
dynamic systems [24] and can be guided in their search
for good paths by cost maps. The robots communicate with
their neighbors not only to exchange sensor updates, but also
to exchange proposed plans. We use a motion coordination
framework for car-like robots with the second-order dynamics
described above that enables them to safely operate in the
same space [12]. This framework has many highly desirable
properties. A key guarantee is that no robot will collide with
any other robot or any static obstacle in the environment. This
guarantee holds over an infinite time horizon. During a planning



(a) Sample target template

(b) Robot’s view of a barrier, trees, and a target

(c) The empty environment (d) The outdoor environment

Fig. 3. Simulation setup. (a) Example image from the target (model) manifold. (b) Example image captured by a robot. (c) Top view of the empty scene. (d)
Top view of the outdoor scene. The different colors for the targets denote that the targets are distinct; they do not need to be the same truck.

cycle, a robot computes one or more valid plans and sends
the most informative path to its neighbors, who check whether
this path is compatible with their own paths. If the path is
compatible with all the neighbors’ paths, the robot will execute
it. However, if the robot could not find any valid plan, then it
will fall back on a contingency maneuver (such as braking).

VI. SIMULATIONS

We have constructed a series of environments of increasing
difficulty to test our approach. They are shown in Fig. 3. In the
empty environment (Fig. 3(c)), we used 3 robots to verify k
distinct targets (k = 1, 2, 3). In the more realistic environments
(Fig. 3(d)), there are two targets and two robots. In the simplest
version of this environment, there is only a river separating
the left half of the scene from the right half. The river is
not an occluding obstacle, but only a navigational obstacle.
An additional level of complexity is introduced by adding
trees around the targets, so that the robots cannot get close
to the targets, but still have (partial) views of the target. In
this scenario ( “+trees” below) the robot cannot individually
sense the targets completely, but together they can. In the most
complex version (referred to as “+barriers” below), we have
added some more navigational obstacles in the form of a few
fenced-in barriers that introduce additional occlusion. Fig. 4
shows the cost map C(x, y) (see (2)) for the “+trees” scenario
after the two robots have taken a few measurements.

Simplifications: A ground-based mobile camera is parameter-
ized by 3 degrees of freedom (its 2D location (x, y) and its 1D
orientation φ) and thus characterized by a 3D articulation space
Θ. However, we assume that the target can be centered in the
image whenever it is within the field of view, thereby reducing
the articulation space by one dimension. Second, if we ignore
perspective effects, then translation of the camera towards the
target results in a simple scaling of the target. By scaling
images to a preset canonical size we reduce the problem by an
additional dimension. Thus, we have reduced a 3D articulation
space to a simple 1D articulation space, parameterized by a
circle around the target Θ = S1. Given φ ∈ Θ, the image Iφ

Fig. 4. Sensor cost map for
the “+trees” scenario in figure 3(d).
The robots’ current positions are
indicated by black squares. Blue
corresponds to uninformative, while
red corresponds to highly informa-
tive. Note that areas from which
views are explainable by previ-
ous measurements as well as ar-
eas from which the targets are
occluded by trees are both marked
as uninformative.

corresponds to a camera located at (r cosφ, r sinφ) viewing the
target. We leverage this simplification in the computation of the
cost map (2) of each robot at every time step as follows: we can
redefine Ind((x, y) ∈ W (φ0)) = 1 provided atan y−ytx−xt

= φ0
and zero otherwise, where (xt, yt) is the location of the target.
In addition to this, we add a penalty term to account for loss
in resolution due to scaling of the form e−κ((x−xt)

2+(y−yt)2).

Comparison with other approaches: We analyze the perfor-
mance of our algorithm using two metrics: (a) time necessary
to verify all targets, and (b) number of sensing measurements
taken. We use the following stopping criterion: when 75% of
the IAM is charted, we declare success in target verification. Our
approach is compared to two simpler approaches. In the “naı̈ve”
approach the robots simply need to get a view of the target
from every angle. In other words, the robots do not compute
B(Is) to predict images from nearby viewpoints. In the other
approach (called NBV below) the robots are repeatedly trying
to navigate to the k next best views. For the NBV approach we
compute the k next best views from the sensing cost map and
let those be targets for k robots (without assigning targets to
robots). Here, the effective cost map is defined by the sum of
Euclidean distances to the k views. In all cases the planning
algorithm that is guided by the cost map remains the same.
The comparison with the naı̈ve approach shows the advantage
of predictive sensing, while comparing with the NBV approach
will highlight the importance of exploiting reachability.

Fig. 5 summarizes the results from all simulations. In the
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Fig. 5. Simulation results. (top) The mean time to verify the identity of all
targets using the three different approaches for the two different scenes. For
each scene there are three variations of increasing complexity, as indicated
along the X-axis. For each variant we computed the mean over 10 runs. The
error bar corresponds to one standard error of the mean. (bottom) A similar
plot for the mean total number of measurements taken.

outdoor scene, the naı̈ve and the NBV algorithms fail to
complete the validation tasks; in these cases occlusion and
navigational obstacles causes the robots to get stuck trying
to get to unreachable positions. As one would expect, the
NBV approach is competitive in terms of completion time with
our approach in the empty scene, but it cannot handle more
complex scenes. From the measurements plot in Fig. 5 we
see that our approach requires fewer measurements in almost
all cases. Also, the number of measurements decreases with
the complexity of the outdoor scene variations. This is due
to occlusion: there are simply fewer unobstructed informative
views available along a path. In contrast, our approach is still
able to find all the necessary viewpoints to verify the targets.

VII. CONCLUSIONS

We have presented a novel approach to multi-robot target
verification of multiple static targets. This problem was cast as a
distributed next-best-view problem with differential motion con-
straints on the robots. By reasoning about the image manifold
we can predict which measurements are expected to be useful.
Through simulations we demonstrated substantial savings in
both the time required and the number of measurements needed
when compared with alternative approaches. Through the use of
cost maps the approach achieves both tight integration between
sensing and planning as well as implicit coordination among
the robots. The coordination is used to avoid collisions and to
distribute the robots over multiple areas of interest. In future
work we plan to extend the current work to experimentation
on hardware platforms, opportunistic model building, pursuit-
evasion games, and stealthy sensing.
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