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Abstract

Proteins are at the root of many biological functions, often performing complex tasks as the result of large changes in their
structure. Describing the exact details of these conformational changes, however, remains a central challenge for
computational biology due the enormous computational requirements of the problem. This has engendered the
development of a rich variety of useful methods designed to answer specific questions at different levels of spatial,
temporal, and energetic resolution. These methods fall largely into two classes: physically accurate, but computationally
demanding methods and fast, approximate methods. We introduce here a new hybrid modeling tool, the Structured
Intuitive Move Selector (SIMS), designed to bridge the divide between these two classes, while allowing the benefits of both
to be seamlessly integrated into a single framework. This is achieved by applying a modern motion planning algorithm,
borrowed from the field of robotics, in tandem with a well-established protein modeling library. SIMS can combine precise
energy calculations with approximate or specialized conformational sampling routines to produce rapid, yet accurate,
analysis of the large-scale conformational variability of protein systems. Several key advancements are shown, including the
abstract use of generically defined moves (conformational sampling methods) and an expansive probabilistic
conformational exploration. We present three example problems that SIMS is applied to and demonstrate a rapid solution
for each. These include the automatic determination of ‘‘active’’ residues for the hinge-based system Cyanovirin-N,
exploring conformational changes involving long-range coordinated motion between non-sequential residues in Ribose-
Binding Protein, and the rapid discovery of a transient conformational state of Maltose-Binding Protein, previously only
determined by Molecular Dynamics. For all cases we provide energetic validations using well-established energy fields,
demonstrating this framework as a fast and accurate tool for the analysis of a wide range of protein flexibility problems.

Citation: Gipson B, Moll M, Kavraki LE (2013) SIMS: A Hybrid Method for Rapid Conformational Analysis. PLoS ONE 8(7): e68826. doi:10.1371/
journal.pone.0068826

Editor: Chandra Verma, Bioinformatics Institute, Singapore

Received January 24, 2013; Accepted June 3, 2013; Published July 23, 2013

Copyright: � 2013 Gipson et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work has been supported in part by The Texas Higher Education Coordinating Board (NHARP 01907), The John and Ann Doerr Fund for
Computational Biomedicine at Rice University, NSF DUE 0920721, NSF IIS 0713623, NSF ABI-0960612 and Rice University funds. BG is also supported in part by a
training fellowship from the Keck Center NLM Training Program in Biomedical Informatics of the Gulf Coast Consortia (NLM Grant No. T15LM007093). Experiments
were run on (i) equipment of the Shared University Grid at Rice funded by NSF under Grant EIA-0216467, and a partnership between Rice University, Sun
Microsystems, and Sigma Solutions, Inc., and (ii) equipment funded by NSF CNS-0821727 and by NIH award NCRR S10RR02950 and an IBM Shared University
Research (SUR) Award in partnership with CISCO, Qlogic and Adaptive Computing. The funders had no role in study design, data collection and analysis, decision
to publish, or preparation of the manuscript.

Competing Interests: This study used equipment owned by a partnership between Rice University, Sun Microsystems, and Sigma Solutions, Inc. and equipment
funded from an IBM Shared University Research (SUR) Award in partnership with CISCO, Qlogic and Adaptive Computing). There are no patents, products in
development or marketed products to declare. This does not alter the authors’ adherence to all the PLOS ONE policies on sharing data and materials.

* E-mail: kavraki@rice.edu

Introduction

Proteins lie at the root of nearly all biological processes and

often accomplish functions through conformational changes in

their structure. An understanding of conformational variability

therefore would provide valuable insight into protein function, in

addition to aiding pharmaceutical drug design – given that drug

binding sites often become exposed as the result of conformational

changes. The development of computational methods for the

analysis of protein flexibility has a long history [1–3], with several

broad classes of analytical frameworks having been developed over

the years. Rigorously accurate, yet computationally demanding

physics-based methods were among the first and best attempts to

address such questions by solving equations of motion defined by a

particular protein system. While definitive for high-resolution and

physically accurate interpretations, such methods have typically

been limited by protein size due to computational complexity

[4,5]. More recently, a class of methods has been developed that

use approximations to quickly provide analytical insight into key

biological processes. This class includes a broad range of methods,

such as coarse-grained energy calculations [6], multi-scale models

[7] and alternative representations of flexibility, such as Normal

Mode Analysis [8–11] and Dynamic Elastic Networks [12–14],

among others.

Recently, a hybrid class of mechanistic approaches has gained

traction for the analysis of molecular structures, inspired by the

field of robotic motion planning [15,16]. Such methods attempt to

bridge the divide between the above classes and are capable of

using highly accurate energetics for representation, while addi-

tionally employing long-range moves for conformational explora-

tion. In the motion planning inspired approach, molecules can be

regarded as long articulated chains with atoms as links and bonds

as joints. Using this representation, the energy of a particular

protein conformation (computed using any available method) is

used as a selection criterion during conformational exploration.

PLOS ONE | www.plosone.org 1 July 2013 | Volume 8 | Issue 7 | e68826



Exploration can occur by sampling new conformations through

the perturbation of known ‘‘good’’ conformations using any

available move. The resulting conformation is checked for

feasibility by the provided energy function. If it is feasible, it is

added to the set of ‘‘good’’ conformations.

The central strength in motion planning-inspired approaches

lies in their ability to adaptively guide exploration based on

estimates of the density of known conformational samples.

Typically, they use some notion of coverage to ‘‘push’’ the

exploration away from well-explored conformations (i.e., redun-

dant and highly similar sampled states) and towards unexplored

parts of conformational space. This process can rapidly lead to an

increasingly accurate approximation of the local conformational

flexibility of a protein and typically operates orders of magnitude

faster than a random thermodynamic walk [17].

While motion planning-inspired methods are not designed to

specifically model physically accurate molecular motions, they are

capable of rapidly producing a representative approximation of the

local conformational variability of a protein under study. Motion

planning has recently been applied to a wide range of biologically

important subjects including RNA folding [18], protein loop

modeling [19–22], protein folding/binding [23–25], conforma-

tional flexibility [17,26] and conformational transitions [27,28],

among others.

This paper introduces a highly general framework, the

Structured Intuitive Move Selector (SIMS), used for the automatic

or expert-guided discovery and analysis of the conformational

variation of arbitrary protein molecules. We demonstrate several

key advances that allow us to revisit and significantly improve

upon results obtained by earlier robotics based methods. We show

that SIMS can identify and use ‘‘active’’ residues (i.e., residues most

likely to be involved in conformational transitions) in the

exploration of hinge-based systems such as Cyanovirin-N. SIMS is

also shown to be capable of identifying significant, long-range,

correlated changes in Ribose Binding Protein and is shown to

discover a ‘‘hidden’’ (experimentally unobserved) conformation of

Maltose-Binding Protein, at a fraction of the computational cost of

Molecular Dynamics (MD) simulations.

The contributions of SIMS as a method can be summarized as

follows. It adopts a state-of-the-art motion planning algorithm for

conformational sampling. It also introduces structured local move

selection: a unified approach to intelligently perturbing conforma-

tions to obtain new conformations that combines loop sampling,

energy minimization, and dihedral angle sampling. Thanks to the

level of abstraction the approach provides, other moves can easily

be added. The moves are applied to protein ‘‘fragments,’’ groups

of possibly non-contiguous residues meant to approximate

functional, structural or dynamically correlated regions of the

protein. The decomposition of a protein into fragments can be

done automatically, but allows an expert user to define fragments

as well. Finally, SIMS is designed to run in parallel and requires only

minimal communication, allowing it to be run on a large scale.

Generic planning algorithms for conformational
sampling

The initial ideas regarding the application of robotic motion

planning to proteins were introduced in [29] and used the

Probabilistic Roadmap Method (PRM) [30] to build a roadmap for

the motion of a small ligand around a protein. The roadmap is a

graph representation of conformational transitions, where each

node represents a conformation and each edge a transition

between two conformations. During the construction of such

roadmap, an energy function is used to verify whether a

conformation or transition is biophysically plausible. If a

conformation or transition is not feasible, it is simply discarded.

These initial results followed from significant advances in motion

planning around the same time. Rather than developing

algorithms for exact, optimal solutions (which is, computationally,

prohibitively expensive), motion planning research shifted in the

1990s to the development of sampling-based planning algorithms,

which have been very successful in practice and are currently the

main way to plan paths for complex robots. Subsequent work on

applying sampling-based motion planning to conformational

sampling [31] introduced the stochastic roadmap simulation,

established the connection with Monte Carlo methods and dealt

with problems involving conformations of much larger protein

molecules. prms for the computation of folding pathways given the

3D structure of the protein have also been investigated at length in

a series of papers that span a decade (see [32] for a detailed

discussion). This line of work has provided important insights into

the order of formation of secondary structures that agree with

experiments [24]. Two recent surveys [33,34] provide an extensive

overview of geometric and kinematic modeling of protein

structures as well as the application of motion planning techniques

for modeling protein motion. Below, we give a brief overview of

such algorithms. The algorithm used in this paper will be

described in more detail in Methods.

In recent years, specific motion planning algorithms have seen

significantly increased use with regard to the protein flexibility

problem. In particular, the application of the Rapidly-exploring

Random Tree (RRT) algorithm [35] to molecular simulations has

expanded dramatically. This algorithm attempts to explore protein

conformational variability by growing a tree of conformations,

starting from a known structure. The algorithm iteratively samples

a uniformly random conformation, finds the most similar

conformation in the tree, and extends the tree from this

conformation towards the random conformation. The transitions

between conformations are typically obtained by simple interpo-

lation of the Degrees of Freedom (DOFs). Protein loops have been

successfully analyzed using this method [19] (though generating

the ‘‘random’’ loop conformations required special attention).

More recently, long-range protein conformational analysis has

been performed [27]. To reduce the computational cost, the

authors used a priori information in the form of ‘‘predicates’’ to

solve certain highly constrained planning problems (see Results).

This work highlighted that RRT-based approaches are difficult to

scale up to proteins with hundreds and hundreds of thousands of

DOFs. Perhaps this is to be expected as protein conformations with

uniformly random backbone angles almost always represent an

unfolded protein, often with many steric clashes. Moving toward

random conformations may therefore not represent an ideal

method for efficiently exploring conformational changes. In our

implementation we use a recently proposed alternative to RRT

called Kinodynamic Planning by Interior-Exterior Cell Explora-

tion (KPIECE) [36] which is a member of a class of expansive

planners [37]. This specific algorithm will be described in more

detail in Methods. Like RRT, expansive planners grow a tree of

conformations. Unlike RRT, these planners use estimates of local

state density to push tree growth towards unexplored regions of the

conformational space (i.e., regions with low density). While RRT

and expansive planners may seem somewhat similar, they exhibit

markedly different behavior in practice, especially as the number

of DOFs increases.

The mechanism that expansive planners use to create a new

conformation in a neighborhood of a previously generated

conformation can incorporate techniques that increase the

probability of sampling energetically feasible conformations. In

this work, we define a library of moves that each individually has

A Hybrid Method for Rapid Conformational Analysis
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been used in prior work for conformational sampling, but not in an

integrated way as is done here. This library includes: energy

minimization, loop sampling [22], random dihedral angle

perturbation, and ‘‘natural moves’’ similar to [38]. An expansive

planning algorithm thus grows a tree of conformations that

preferentially expands away from a set of starting states towards

less-explored regions of the energetic landscape.

Proteins and energy functions
Typically, important biological functions are performed by

folded, compact proteins existing in one of a few stable

conformations available at cellular conditions. Stable conforma-

tional ensembles represent groups of protein states at low free

energy and are typically associated with basins about the minima

of the potential energy field [39,40]. An understanding of protein

stability therefore requires an accurate notion of potential energy.

Many potential energy functions have been proposed (see [41,42]

for detailed discussions), typically for md simulations. Energy

calculation typically represents the largest computational cost

when modeling changes in proteins, and the use of the above

models can prove prohibitively expensive. While SIMS is not

restricted to any particular energy function, in this paper we rely

on the Rosetta [43] library, which contains efficient implementa-

tions of many full-atom energy models, striking a good balance

between accuracy and speed of computation.

As in earlier work, ‘‘active’’ DOFs are limited to the w and y
backbone angles [17,27,28,44] and side-chain positions are

automatically determined by Rosetta’s side-chain minimization

protocol [27]. We used the Rosetta ‘‘score12_full’’ energy function

for the experiments, which provides an atomic representation of all

atoms, implicitly modeling solvation and related energetic terms.

At the end of the paper we show energy validations against the

Amber99 [45] force field as implemented by the software package

MMTK [46], showing excellent agreement for all results and

demonstrating that Rosetta energy calculations were sufficiently

accurate for the studies in this paper.

Motivating problems
To demonstrate the range and generality of analysis that SIMS

can provide, we present three important problems often encoun-

tered in computational biology. Below, we introduce protein

systems that are shown to characterize these problems and in later

sections present results for each. The first two problems have been

previously studied by a related robotic motion planning-inspired

method [27], and were specifically chosen to enable a direct

comparison. These problems involve the use and determination of

active DOFs, especially in the context of previously defined (and

possibly incomplete or inaccurate) expert knowledge. By active DOFs

we mean a set of dihedral angles from a range of residues that

represent the minimal set of angles that must change in order to

allow a particular type of conformational transition to occur. The

final problem has been investigated primarily by MD and, though

SIMS is not designed as an alternative to such methods, is presented

as a case where SIMS can be used to replicate valuable

conformational insights quickly and automatically.

Cyanovirin-N (CVN) is a two-domain bacterial anti-viral protein,

capable of binding to the surface sugars of a range of viruses

including HIV. CVN is known to occur in monomeric [47] and

domain-swapped [48] forms, with the domain-swapped confor-

mation found to posses higher anti-viral affinity than the monomer

[49]. It is known that these two conformations co-exist in solution

[49] and transitions between them were previously computed [27],

but depended on expert knowledge.

Ribose-Binding Protein (RBP) is part of a ribose transport system in

bacteria and is additionally involved in chemotaxis. It is composed

of two domains connected by a hinge formed by three well-

separated loops. Both closed [50] and open [51] forms of RBP are

known for this system. While the active DOFs in this system are

known to occur almost exclusively in the hinge region, domain

movement can only occur as a result of coordinated motion

among the three loop regions. The two forms of RBP are separated

by just over 4Å, and the required domain transition seems

deceptively simple; a visually convincing transition between the

forms can be quickly computed with, e.g., UCSF Chimera [52].

However, solving this problem in an energetically feasible manner

that preserves the kinematic bond structure of the protein is quite

challenging. As a result, prior work [27] relied on artificial distance

restraints to maintain ‘‘reasonable’’ structures during sampling.

Maltose-Binding Protein (MBP) is a well-studied bacterial protein

involved in chemotaxis, biosensing, the maltose/maltodextrin

system of E. coli and is also often used as an affinity tag in protein

purification and expression. MBP is important for biological and

experimental reasons. Though many structures have been

determined for MBP by X-Ray crystallography and other methods,

most of these fall into the classes of ‘‘open’’ and ‘‘closed’’ states, as

determined by the degree of bending between the C and N

terminal domains. A third ‘‘hidden’’ semi-closed intermediate was

recently determined by accelerated MD [53], though it had been

previously indicated by NMR [54] and earlier computational studies

[55]. While ligand binding is known to drive conformational

change, NMR [54] studies have shown that MBP exists in solution in

a mixture of these states. An analysis of the available set of MBP

proteins [56–84] shows a high degree of spatial and torsional

variation for essentially all residues, excepting several short

stretches in core helical regions. Further, the difference between

open and closed forms is one of tightly constrained long-range

‘‘bending’’ occurring across the entire molecule, as opposed to

simple rigid body changes in sub-domains, producing extensive

side-chain interactions. This system represents a difficult challenge

in that no clear set of active DOFs exists and the motion is

extremely coordinated.

Methods

The central problem we address here is of how to vary the DOFs

of a protein in such a way that the energy never exceeds

biologically feasible bounds when attempting to find low-energy

conformational transformations between known states. As was

done in prior work [17,27,28,44,85], we represent a conformation

of a protein by just the backbone angles. The positions of side-

chain atoms for any given conformation are determined by side-

chain optimization and bond angles and lengths are always

idealized. This representation significantly reduces the computa-

tional difficulty of the problem.

Below we first describe the primitive ‘‘moves’’ that will be used

to perturb conformations. These moves typically do not affect the

entire structure, but instead correspond to local changes. We

propose a way to automatically define a collection of residue

subsets called a schema on which the moves operate. Finally, the

high-level planner maintains state density estimates which it uses

to apply moves to conformations in relatively sparsely sampled

parts of the conformational space.

Structured move selection
Computationally generating new conformations based on

known states involves applying some type of perturbation of the

DOFs of the system. We call such a perturbation a move. Many
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different types of moves have been proposed, including dihedral

perturbations [86] and Normal Modes [8–11], as well as moves

based on Dynamic Elastic Networks [12–14,87], to name a few. In

our method, moves can be applied to both small protein fragments

(such as loop regions) and the whole structure. We use a schema to

define subsets of DOFs on which moves operate. Such a schema can

automatically be constructed based on the structure of a protein.

For example, one can define a subset for each domain, each

secondary structure element or even each residue. Each residue

can be part of multiple subsets. Often, an expert may wish to

define additional subsets. For example, the three loop regions in

RBP that connect two domains can form an additional subset, since

motions of the DOFs within that subset are highly coordinated.

Note that a subset of residues does not need to correspond to a

contiguous sequence of residues. Associated with each subset is a

probability for selecting that subset for a move. These probabilities

can be defined heuristically based on what is known from the

literature about the relative flexibility of, e.g., secondary structure

elements: flexible loop fragments will be sampled with a higher

probability than more rigid alpha helices.

Associated with each subset is a probability distribution over the

‘‘allowed’’ moves. In our experiments described below we used the

following moves:

Dihedral angle sampling. This is simply a uniformly

random perturbation (up to 60) of each dihedral angle within a

subset.

Loop sampling. Here, a random conformation of a loop

region (or collection of loop regions) is generated, subject to the

constraint that the endpoints of each loop are kept in the same

position.

Rigid body movements. This type of move corresponds to a

small displacement of one loop endpoint relative to another while

maintaining the kinematic constraints of the loop. This move

enables fast sampling of whole domain rearrangements.

Energy minimization. This move is applied with low

probability to the entire protein since it is computationally

expensive.

A schematic overview of a schema and move selection is shown

in Figure 1. Although the figure shows a hierarchical decompo-

sition, this does not have to be the case (unlike [88]). As

mentioned, a default schema can be automatically computed from

the primary structure, but expert knowledge can easily be

incorporated as well. Not only can extra subsets be defined, also

the types of moves and the probabilities of selecting a move can be

changed, if there exists prior knowledge about a suspected

mechanism underlying some conformational change.

Rosetta
The Rosetta Library [43] has been applied to a considerable

number of protein systems and problems in recent years [89–93],

due to its powerful algorithmic flexibility and extensive library of

protocols for protein modeling. While not strictly dependent on

the library, SIMS is able to take advantage of Rosetta for structure

representation and modification as well as minimization and

energy analysis. This allows any experiment performed with SIMS

to be run in centroid mode or with the full atom representation

mode, along with user-specified weightings to energy terms as

needed (though the ‘‘score12_full’’ scoring function was used for

all simulations presented here). Moreover, conformational sam-

pling can be performed by taking advantage of the extensive

library of moves available in Rosetta’s sampling protocols,

including minimization, CCD loop closure [94], and loop-sampling

[95]. The SIMS moves described above have been implemented

using Rosetta’s moves. It is important to note, however, that any

alternative representation or energy calculation library could have

been used in its place.

Efficient conformational sampling using a motion
planning algorithm

The moves described above can be used by an expansive

motion planning algorithm to grow a tree of conformations, where

each conformation is derived from its parent through a move.

Many robot motion planning algorithms have been proposed over

the years, and many of them are implemented in a very abstract

way in the Open Motion Planning Library (OMPL) [96]. This level

of abstraction makes it possible to adapt them for conformational

exploration. While in robotics, a collision checker is often used to

decide whether a robot configuration is valid, here we use an

energy threshold as a criterion for accepting sampled conforma-

tions. We used OMPL’s default high-dimensional planner, called

KPIECE [36], for all experiments presented in this paper. KPIECE has

previously been shown to be very effective in high-dimensional

spaces, including kinematic chains of rigid bodies – systems similar

to proteins. We will give a brief description of KPIECE algorithm

below; for details see [36].

KPIECE approximates the density of sampling of the conforma-

tional space through a projection of all the DOFs. High-dimensional

systems are often constrained to move on a low-dimensional

manifold embedded in a high-dimensional space. Proteins are no

exception: once proteins are folded the DOFs are often very

constrained. Using a low-dimensional projection allows for

efficient estimation of sampling density. The default projection

we have defined is a random, linear 2D projection of the cosines

and sines of the dihedral angles. This projection is computed as

follows. For a conformation with n dihedral angles, a vector of size

2n is computed with the cosines and sines of all angles. This vector

is projected to a 2D point with a matrix P of size 2|(2n). The

matrix P is constructed by first drawing its entries from a normal

distribution with mean 0 and variance 1. Next, the first row is

normalized to be of length 1. Finally, the second row is made

orthogonal to row 1 and then also normalized. This process can be

generalized to any m|(2n) projection matrix. The projection is

chosen randomly because (a) there is no natural choice of

projection in general and (b) prior work has shown that a random

projection often captures sample density quite well compared to an

optimal or expert-chosen projection [97]. Given a 2D projection,

all conformations can (for the purpose of density estimates) be

represented by 2D points. kpiece defines a 2D grid and maintains

a count of the number of conformations per grid cell. It then (1)

samples a grid cell with probability inversely proportional to its

density, (2) samples a conformation uniformly at random from that

cell, (3) applies a random move selected in the manner described in

the previous section, and (4) checks if the conformation’s energy is

below a user-specified threshold. If the new conformation is

accepted, it is connected to its parent conformation and inserted

into the grid. This process continues until a desired conformation

is reached or a time limit is reached.

The sampling of grid cells is actually slightly more complicated

than described above. For each grid cell the algorithm also keeps

track of the number of neighboring grid cells that are empty (i.e.,

ones that contain no conformations). Non-empty grid cells with at

least one empty neighbor grid cell are called exterior cells while the

other non-empty grid cells are called interior cells. The sampling of

grid cells is heavily biased towards exterior cells to improve the

expansiveness of the conformational search. Note that the

sampling bias towards low-density and exterior cells does not

A Hybrid Method for Rapid Conformational Analysis
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preclude exploration of higher-density and interior cells, albeit

with a lower probability.

The overall behavior of the algorithm can be summarized as

follows. The conformational sampling algorithm requires as input

one or more known structures and a schema that defines the

subsets of residues and associated moves. It then performs an

expansive conformational search by iteratively applying a random

move to a previously generated conformation. Conformations are

selected inversely proportional to the local conformation density.

This process can be considered an undirected search: the algorithm

attempts to expand the tree of conformations equally in all

directions. It is also possible to provide a goal conformation and

have the search bias sampling with a small probability towards this

goal conformation. This is called a directed search. (In robot motion

planning, this is in fact the more common use case.) These modes

of operation, directed and undirected search, can also be

combined: a directed search can be performed first to find a

transition between two conformations, and a transition envelope

can be subsequently (or simultaneously) explored using an

undirected search. Such generality allows for rapid exploration

of conformational variability, both between and near known

structures, as well as into unknown regions where experimentally

unobserved (yet energetically stable) conformations may be

hidden.

To enable analysis of extremely large systems, SIMS has been

written to take advantage of all available computational resources

(clusters, desktops, laptops) simultaneously and without special

configuration. This is achieved by having each computational core

perform a small run of SIMS and write the generated conformations

back to a central database. The density estimates are then updated

and a core can pick a random starting conformation from the

database in a sparsely sampled part of the conformational space.

Storing all generated data in a database also permits real-time

analysis during a run.

Results

In our computational experiments we explore how well SIMS

performs with different schema s. The automatically-generated

schema is defined as follows. There is a subset for each secondary

structure element and one set containing all residues. Each loop,

sheet, and helix has a sampling weight of 1.0, 0.2, and 0.1,

respectively. With 9% probability the set with all residues is

selected, while the remaining probability mass is distributed over

the secondary structure elements proportional to their weight. The

set of moves and their relative probabilities for each subset are the

same: dihedral angle sampling, loop sampling, and rigid body

movements are all sampled with equal probability. Note that loop

sampling and rigid body movements are also applied to sheets and

helices to allow these secondary structure elements to dissolve.

However, since the sampling weight of loops is much larger, most

of the conformational sampling is focused on loop changes. The

energy (as a function of all backbone angles) is minimized 1% of

the time. The expert-informed schema s described below either

limit the degrees of freedom by only allowing moves for a small

number of subsets or define additional subsets for residues whose

motion need to be coordinated. In the first case, we can potentially

explore the conformational space faster, but we risk eliminating a

motion that is necessary for some conformational transition. In the

second case, we simply encourage sampling particular degrees of

freedom but do not sacrifice completeness of the algorithm.

In this work, all experiments were run on a multi-core cluster,

typically using 200 cores. Though the times described in this

section are measured in hours (assuming 200 cores) it should not

be assumed that the problems necessarily represent 200|

Figure 1. Example of a structured schema for an arbitrary molecule. Subsets of DOFs are defined, along with the associated weighting
(shown here as percentages) defining the relative probability of selection. Though this example is non-overlapping and hierarchical, any combination
of possibly non-contiguous subsets are allowed in our implementation. In this example, a move is generically requested, and subsequently sampled
probabilistically from the set containing all loop regions in the top (blue) region of the structure. The yellow circles represent possible moves.
doi:10.1371/journal.pone.0068826.g001
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(number hours) CPU-hours of work. For small proteins, using many

cores will lead to many parts of conformational space being visited

independently by several cores, since the density estimates are

updated infrequently when conformations are written in batches to

a database. As we apply SIMS to larger protein complexes, this

redundancy will become less of an issue as the probability of two

cores exploring the same part of conformational space goes to 0 as

the size of the conformational space increases. For the proteins

below, it is still feasible to run SIMS on a standard desktop (and use

less CPU time). For example, running an experiment from the

Cyanovirin-N section on 16 cores (instead of 200) required a wall-

time of 140 minutes (instead of 29 minutes), yielding essentially

5| the compute time. Rigorously benchmarking and tuning the

parallel performance would be a computationally intensive study

and is beyond the scope of this work. In general, the actual wall

time required in the experiments was slightly shorter than the

estimated times reported here.

Cyanovirin-N
It has been previously reported [27] that in Cyanovirin-N (CVN),

primary flexibility arises from a central hinge spanning residues 45–

55 and two secondary flex regions required for ‘‘breathing’’

flexibility that help overcome steric constraints in transitions

between conformations. Based only on this preliminary expert

knowledge we performed three separate experiments to further

investigate the conformational flexibility of CVN, using schema s

where backbone angles are allowed to change in (1) only the hinge,

(2) the hinge and flex regions, or (3) all residues, respectively. In all

three experiments the goal is to find a low-energy conformational

transition between the monomeric (PDB:2EZM ) and domain-

swapped (PDB:1L5E ) forms of CVN. We are interested in how fast

SIMS can find paths with the different schema s, qualitative

differences between the paths found and in identifying biophysi-

cally plausible paths in a neighborhood of the paths identified by

SIMS.

The first experiment performed exploration exclusively in the

central hinge region, with active DOFs restricted to residue range

45–55 as in [27]. The schema used consisted of the default moves

for residue range 45–55 and only a minimization move for the set

of all residues. Though previous work [27] found this problem

unsolvable when planning in the restricted residue range, a typical

run in our setup was able to determine a transition between the

monomeric and domain-swapped states in around 26 minutes.

Analysis of the transition (see Figures 2A and 3A) shows essentially

constant torsions outside of the range of 45–55, with insignificant

changes in the ranges of 36–40 and 87–91 (previously [27]

described as flex regions). However, as described later, one other

region, 26–35, played a mildly significant role in this experiment,

despite the fact that they were not explicitly used during the search

as active DOFs.

Though a feasible transition was determined using only the

hinge region, subsequent analysis showed that restricting DOFs

strictly to the hinge region likely over-constrained the flexibility of

the system, resulting in a long (qualitatively rough) transition

between the start and goal states. It had also previously been

shown [27] that, though the addition of DOFs increases the size of

the search space, planning with flex regions might ease the

difficulty of this problem. The second CVN experiment therefore

attempted planning on the expanded residue range, including both

the central hinge and the previously described flex regions, residues

36–40 and 87–91. The schema used in this experiment comprised

five subsets of residues, with sample probabilities in parentheses:

the hinge region (0.16), each individual flex region (0.16 each), a

subset containing the hinge region and both flex regions (0.50),

and the set of all residues (0.01). Each subset has the default moves,

except for the set of all residues, which only has a minimization

move. This experiment took approximately 1.3 hours and showed

almost identical torsional activity in the hinge region to the

previous experiment, including 26–35 (see Figures 2 and 3). The

flex regions, however, were very active in this run, though the

expanded conformational freedom in these regions produced a 3-

fold computational increase relative to the first experiment. The

increase in computation time, combined with the findings from the

first experiment – that the flex regions were not strictly required

for solving this problem – appears to imply that the flex regions in

fact do not play a significant role in the transition between

monomeric and domain-swapped forms of CVN. This conclusion

was reinforced by the results of the final experiment for CVN.

The final experiment for CVN involved a case where no expert

knowledge was assumed. In this case, the automatic schema of

DOFs was applied to the system, alongside a second, overlapping

subset of DOFs composed of all residues – moves for this subset

were sampled at 10% the rate of the automatically partitioned

subset. This resulted in searching the full 198 DOFs for CVN. Again

a transition was determined, this time in around 30 minutes, a

similar time to the first experiment, despite searching with a

number of DOFs nearly an order of magnitude greater than before.

That is, though the hinge region performed a search using 20

dihedral angles and this experiment used 198, computation times

were nearly identical. In this case, the transition determined

employed nearly all torsional dofs, with the exception of those

found within rigid sub-regions and, surprisingly, the flex regions

(see Figures 2C and 3C).

All three runs were qualitatively similar at their start and end

points, with the beginning of the paths defined by slow progression

away from the highly-constrained starting state, and the end of the

path characterized by alignment with the final position and a slow

counter-rotation of the first and second half of the central hinge.

The middle of the paths were relatively unconstrained with

rotation mostly about the hinge. Qualitative transition smoothness

was clearly the best for the auto- schema experiment, likely due to

the availability of full conformational freedom.

Figure 2. Plots of total angular change for each residue over
the determined transition. (A) Central hinge only. (B) Hinge+flex
region. (C) Automatic. (D) shows active residues explicitly used in
planning for hinge (red), hinge+flex (green) and automatic (blue) runs.
doi:10.1371/journal.pone.0068826.g002
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Analysis of residue level torsional changes (Figure 2) for the

three experiments revealed a number of common and unique

features. Here, cumulative, residue-wise torsional change for

residue i was calculated according to
Xn

j~1
Dwi,j{wi,j{1Dz

Dyi,j{yi,j{1D, where j is the index of the conformation along the

path. Unsurprisingly, the hinge region was active for all runs,

though significantly less motion occurred in this region in the

automatic run. As shown in the experiments, 26–35 represented

secondarily important residues in all runs. More generally, the

most active regions outside of the hinge for the auto- schema

experiment were residue ranges 26–35 and 75–87, representing

anti-complementary halves of sub-domains A and B respectively

(i.e., one half of the b-sheets defining these domains). It is clear

from this analysis that the hinge region of CVN plays a dominant

role in driving conformational transitions though, based on the

results (and combined with the relative smoothness of the final

experiment), there is also a large-scale sub-domain flexing that

appears to aid this process.

Finally, all conformational transitions were analyzed using the

Amber99 force field to calculate energies for the entire transition

(Figure 4). Energies calculated for the raw output of SIMS were

occasionally quite high, likely indicating some level of steric

overlap between neighboring atoms. Using 100 steps of energy

minimization always yielded an extremely low-energy structure,

however. Further, the difference between the input and minimized

structures were always less than 0.1Å full atom RMSD, essentially

identical conformations. In fact, Figure 4 represents a typical plot

for all subsequent experiments in this paper (i.e., including results

for RBP and MBP ), with no minimized transition deviating

significantly from the SIMS output.

In summary, SIMS was used in experiments above to investigate

possible low-energy transitions between the monomeric and

domain-swapped-versions of CVN. It was able to automatically

determine active DOFs and showed that, though expert knowledge

can be used to rapidly determine solutions (as in the hinge

experiment), incomplete knowledge (as in the flex experiment) can

deleteriously bias results.

Ribose-binding protein
RBP is known to exist in bound (PDB:1URP ) and unbound

(PDB:2DRI ) states, reflected by the relative distance of two

domains and the volume of the ligand binding space between

them. Movement between the domains occurs via coordinated

changes in three non-sequential loop regions connecting the two

domains. The transition between the two forms of RBP seems

relatively simple, given that the two conformations are only 4Å

apart, but computationally producing energetically feasible tran-

sitions presents a formidable challenge (described more fully in the

section Motivating Problems). Similar to the previous example, the

goal is to compare an expert-determined schema with the default

one. The expert-determined schema consist of two subsets of

residues: one composed of the three loop regions and one with all

residues. The former has the default moves associated with it

(dihedral angle sampling, loop sampling, and rigid body move-

ments, all sampled with equal probability) while the full set of all

residues (sampled 1% of the time) only has an energy minimization

move associated with it. This schema makes it possible to directly

compare against results in a previous investigation [27]. While in

[27] artificial distance constraints were required to prevent

dissolution of the structure, we will demonstrate that SIMS can

find a feasible transition with both the expert and the automat-

ically-generated schemas.

The application of a modern planning algorithm for confor-

mational exploration in this experiment led to extremely fast

runtimes (on the order of seconds), producing energetically feasible

transitions for all energy thresholds used by SIMS with both schema

s. The final energetic threshold in the experiment presented was

very close to the native energies of the start and goal states,

yielding highly stable structures along the entire resulting

conformational transition.

Both domains remained coherent through the run, with only

slight relative movements occurring in many of the b-sheets and

near the end of several helices in each domain observed relative to

one another. Somewhat surprisingly, the transition determined by

the expert guided run was essentially identical to the automatically

guided run, with slightly more domain level variation occurring in

the expert run (see Figure 5). Given the large differences in the

number of DOFs used and tightness of the energy constraint, it is

very likely that both transitions represent slight variations of the

minimum energy transition between these two states.

This experiment demonstrated that in spite of the significant

kinematic challenge of making coordinated changes to non-

sequential hinge residues using torsional DOFs, SIMS is able to

rapidly determine solutions using only unbiased energetic

constraints, requiring no a priori knowledge.

Maltose-binding protein
In [53] it was shown that a ‘‘hidden’’ energetically semi-stable

conformation of MBP likely exists as an intermediate between

known open and closed forms that has been only indirectly

observed experimentally. Described as ‘‘semi-closed’’, this distinct

state is characterized by changes in the so-called balancing interface, a

loop region that acts as a ‘‘spring’’ between the C-terminal and

Figure 3. Plots of angular change in DOFs for hinge (A), hinge+flex (B) and auto (C) experiments. Residues are colored by absolute total
angular change, with blue indicating a small change and red a large change. Hinge and Flex (A, B) experiments show relatively low activity outside of
the planning regions. The automatically guided experiment (C) shows high activity in the hinge and b-sheet regions of both subdomains.
doi:10.1371/journal.pone.0068826.g003

A Hybrid Method for Rapid Conformational Analysis

PLOS ONE | www.plosone.org 7 July 2013 | Volume 8 | Issue 7 | e68826



N-terminal domains. The goal of the experiments described here

was to see if this hidden state could be determined using SIMS,

when searching for a direct transition between open and bound

forms of MBP. Changes between known open and bound forms of

MBP represent a dominant bending deformation across the entire

protein that involves changes in nearly all residues. As a result, no

expert-determined set of active DOFs was available for this system

and an automatic schema was used. However, we will demonstrate

that an initial run of SIMS can be used to determine active DOFs.

This is in itself may provide useful insight into the mechanism of

MBP’s function, but we will show that this can also be used to create

a new schema that enables for a more rapid exploration of

conformational space.

The first experiment used the default schema to find a transition

from the unbound form (PDB:1OMP [73]) to the bound form

(PDB:3MBP [84]). The search took approximately 15 hours to

complete, coming to a state less than 1Å away from the goal – after

which progress became significantly slower. The differences

between the final state and the goal state were observed to occur

Figure 4. Energies as calculated by the Amber99 forcefield for a typical automatically guided run. All experiments produced similar
plots. Energies are plotted against the transition coordinate (the amount of progress between start and goal for the transition). (A) Amber energies
for the raw output of the automatically guided run (B) Amber energies after 100 rounds of minimization (C) Distance between raw output and
minimized structure. All structures are determined to be of low energy, post-minimization, according to the Amber forcefield, with only mild (much
less than 0.1Å full-atom RMSD) differences between the two structures.
doi:10.1371/journal.pone.0068826.g004

Figure 5. Plot of active DOFs for expert (A) and auto (B) experiments. Color bar indicates cumulative per-residue torsional change over the
entire determined transition. The two experiments show comparable activity in torsional DOFs, largely confined to central loops through which much
of the bending occurs.
doi:10.1371/journal.pone.0068826.g005
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almost exclusively around the end of the balancing interface loop

region (Figure 6).

To visualize how SIMS has explored the conformational space,

we computed a low-dimensional embedding of all conformations

using Principal Component Analysis (PCA) [98]. Specifically, pca

was applied to the Cartesian coordinates of all conformations

generated during the search. By plotting each conformation as a

point with coordinates given by the first two principal components

we obtain a low-dimensional embedding of the conformations (see

Figure 7). Similar to the results of [53], the open and bound forms

of MBP were observed to cluster into two relatively tight groups,

with the conformational transition (the red path in Figure 7)

tracing a nearly direct transition between the two groups. Almost

identical to the md results of [53], a large, relatively stable basin of

intermediate conformations was observed almost directly between

the bound and unbound groups. Calculating the centroid state of a

representative set of low energy conformations from this basin

yielded a structure that matched a known NMR structure [80]

(PDB:2H25 ) for the ‘‘semi-closed’’ state of MBP to within the

resolution of the experiment (Figure 8). Moreover, the low-energy

conformational transition determined in this experiment was also

found to pass extremely close to this state (to within less than 1Å

full atom RMSD ), lending likelihood to the proposition that the

semi-closed state of MBP represents a necessary transition

intermediate between open and bound forms. These results were

quickly determined using only an automatically generated schema,

producing both a low-energy conformational transition between

known states of MBP as well as a model for the semi-closed

transition intermediate.

As is clear from energetic analysis of the input conformations

(and basic biological intuition), the bound forms of MBP represent

relatively high-energy conformations if the ligand is removed. The

first piece of expert knowledge for the final experiments therefore

involved reversing the start and goal states, starting instead at the

bound form of MBP with a goal of reaching the unbound state –

essentially removing the ligand and observing the energetic

consequences. Using the same schema as before, the reversed

search took approximately 5 hours to get within 1Å of the goal

state (whereas the first took 15 hours). As in the previous case, the

primary difference between the final state and the goal lay in the

tip of the balancing interface (Figure 6), possibly due to energetic

stabilizing factors in this region in the two forms, or an

insufficiently resolved loop sampling schema in this region.

Further, as before, the transition also passed within 1Å of the

Figure 6. Comparison of the final state of the reverse transition (blue) and the direct transition (red). Structures are nearly identical save
for a 10 residue relaxation of a loop region in the balancing interface. Both transitions come to within 1Å of their goal.
doi:10.1371/journal.pone.0068826.g006

Figure 7. PCA landscape of all conformations generated in the
MBP experiments. Each point represents a unique conformation. The
color indicates energy with darker colors representing more energet-
ically stable states. The red path shows the path found with the default
schema, starting from the open state with the bound state as the goal.
The green path represents the reverse case, with the default schema,
starting at the bound state and moving toward the open state. The
purple path was produced using the expert- schema, moving from the
bound state towards the open state. The yellow star indicates the
position of a known NMR structure (PDB:2H25) of the semi-closed state.
The aqua star indicates the centroid conformation of the energetic
valley between the open and bound states and falls extremely close to
all paths, as well as the NMR structure. The circular pattern in the green
path was automatically generated and seems to arise from a slight
bending reversal that occurs near the semi-closed state.
doi:10.1371/journal.pone.0068826.g007
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semi-closed state and traced an essentially direct transition

between the bound form of MBP and the open group (green path

in Figure 7).

For the final experiment we determined the active residues as

measured by total torsional change per residue along the path

found in the first experiment. The active residue ranges identified

were: 101–104, 234–236, and 261–262. The schema we used,

based on this information, included two subsets of residues: one

with all the active residues (with the default set of moves) and the

set of all residues (with only energy minimization, selected 1% of

the time). With this schema it took approximately 2.5 hours to find

a path from the bound to a state within 1Å of the unbound form.

This path showed identical features to the previous two transitions

(see purple path in Figure 7).

This collection of experiments demonstrated that, even absent

expert knowledge about a protein system, SIMS can rapidly

generate detailed information about low-energy conformational

transitions. The conformational information generated during the

search was also shown to be useful for conformational analysis,

producing results typically requiring experiment or long-running

MD simulation. Finally, expert knowledge was generated from the

initial investigation and subsequently used to generate information

for new experiments. Besides dramatically improving experimental

run times, this expert knowledge serves as a result in itself that

could be applied as a constraint in future computational

investigations by alternative methods.

Discussion

In this work we have introduced a hybrid method for rapidly

analyzing the conformational variability of proteins that combines

all-atom energy calculations with abstractly defined long-range

moves for conformational sampling. SIMS allows for rapid

conformational exploration of input protein systems, producing

an increasingly accurate sampling of the energetic landscape.

While this method is not a replacement for MD or approximate

methods such as Normal Mode analysis, SIMS represents a

powerful intermediate tool that benefits from aspects of both.

Moreover, output from SIMS can easily be used as a launching

point for more rigorous investigation using physics-based methods,

reducing the substantial computational cost such investigation of

long-range conformational variability would typically require.

We applied SIMS to three common classes of problems in

computational biology: a hinge system, a non-sequential long-

range correlated motion problem, and the discovery of a ‘‘hidden’’

conformational state of a protein. The demonstrated solutions to

these problems were found rapidly and with minimal information

as the result of a number of key features of the presented

framework. The inclusion of a powerful schema based on

collections of subsets of dofs, to aid successful move selection,

simultaneously allowed the incorporation of expert knowledge

while allowing likely active DOFs to be rapidly explored.

We have shown that while this framework can benefit from

expert knowledge when available, it is also capable of investigating

systems about which little is known. In such cases automatic

generation of a schema, as described earlier, can be used to

perform initial explorations and, subsequently, determine active

DOFs from initial results. In the case of CVN, we showed a key

example of how incomplete expert knowledge could negatively

influence results and how automatic partitioning was used to refine

this information.

Finally, we showed through the MBP experiments that, while not

a replacement for MD, SIMS can provide insight into a number of

problems that have been traditionally studied by such methods.

The ability to rapidly discover transient conformational interme-

diates (or at least to characterize a range of nearby neighbors), with

minimal user input, presents a powerful extension to the range of

analytical tools available to researchers.

Future directions
Relative to the available computational power provided by the

Rice University clusters (and eventually larger national computing

clusters), the systems investigated here are likely far smaller than the

limit of computationally tractability for this framework. Future

studies will likely focus on significantly larger systems, or more

complex problems (such as docking and protein-protein interaction).

While Rosetta proved both powerful and efficient for energy

calculation and move generation, the move protocols used here

were not necessarily tailored to the protein systems presented here.

As the community continues to generate increasingly powerful

move types, we hope to continuously extend the exploratory

power of SIMS by including such developments into the framework.

Finally, the analysis performed on the datasets presented in this

work, while extensive, only hints at the full range of options that

could be used. Analyzing the graph-structure of the conforma-

tional exploration and casting the network as a Markov Process

has previously demonstrated useful theoretical results [25,31,99–

101]. Though PCA was used for analysis of the conformational

states generated, non-linear analysis of the energetic landscape

[102] is another obvious direction for investigation. Most

importantly for usability, however, will be a range of visualization

output options, possibly benefiting from real-time (i.e., during data

generation) interaction with intermediate results. It is expected

that this improvement will likely provide the most important

development for the computational biology community at large.

Conclusions

The work has demonstrated the power and flexibility of a

hybrid method for the investigation of protein conformational

variability. Naturally integrating expert knowledge with automatic

exploration allows both ease of use and the ability to account for

Figure 8. Comparison of a computationally identified interme-
diate state and NMR structure PDB:2H25. The identified intermediate
state (dark blue) corresponds to the centroid of the low energy region
shown in Figure 7. The NMR structure is known to be close to the semi-
closed conformation of MBP, showing excellent agreement at the
resolution of the ensemble. The closest state along a direct transition
between known open and bound forms (aqua structure) of MBP to
PDB:2H25 shows almost perfect agreement with the centroid structure.
doi:10.1371/journal.pone.0068826.g008
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partially known or uncertain information. This was demonstrated

on a range of problem types for an array of commonly studied

protein systems, showing SIMS’ ability to rapidly provide answers

for difficult problems related to conformational variability. Finally,

SIMS represents both a tool for analysis and a launching point for

further investigations by other methods, both theoretical and

experimental.
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