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Abstract

STAT3 is a transcription factor that has been found to be constitutively activated in a number of human
cancers. Dimerization of STAT3 via its SH2 domain and the subsequent translocation of the dimer to the
nucleus leads to transcription of anti-apoptotic genes. Prevention of the dimerization is thus an attrac-
tive strategy for inhibiting the activity of STAT3. Phosphotyrosine-based peptidomimetic inhibitors, that
mimic pTyr-Xaa-Yaa-Gln motif and have strong to weak binding affinities, have been previously inves-
tigated. It is well-known that structures of protein-inhibitor complexes are important for understanding
the binding interactions and designing stronger inhibitors. Experimental structures of inhibitors bound
to the SH2 domain of STAT3 are, however, unavailable. In this paper we describe a computational study
that combined molecular docking and molecular dynamics to model structures of 12 peptidomimetic
inhibitors bound to the SH2 domain of STAT3. A detailed analysis of the modeled structures was per-
formed to evaluate the characteristics of the binding interactions. We also estimated the binding affinities
of the inhibitors by combining MMPB/GBSA-based energies and entropic cost of binding. The estimated
affinities correlate strongly with the experimentally obtained affinities. Modeling results show binding
modes that are consistent with limited previous modeling studies on binding interactions involving the
SH2 domain and phosphotyrosine(pTyr)-based inhibitors. We also discovered a stable novel binding mode
that involves deformation of two loops of the SH2 domain that subsequently bury the C-terminal end of
one of the stronger inhibitors. The novel binding mode could prove useful for developing more potent
inhibitors aimed at preventing dimerization of cancer target protein STAT3.

Introduction

Development of effective therapeutics is the ultimate goal of cancer research [1–6], but it is a time-
consuming and expensive process [7–10]. Structure-based computational techniques [11,12] such as virtual
screening [13–15], docking [16,17], and molecular dynamics [18,19] have proven useful in the development
of drugs. Even if there have not been many successful drug discovery stories based on computation
alone, the use of structure-based computational techniques has helped gain better understanding of how
a putative drug compound binds to its target receptor, and has reduced the drug development time
and costs [20–22]. In this paper, we discuss computational modeling of binding interactions between
a specific set of peptidomimetic inhibitors [23–26] and the Src-homology 2 (SH2) domain of STAT3 or
Signal Transducer and Activator of Transcription 3 [27] (Figure 1). STAT3 is constitutively activated in a
number of human cancer types such as lung cancer, breast cancer, multiple myeloma, and others [28–30].
The Jak-STAT pathway [31,32] describes the mechanism of action that leads to the transcription of anti-
apoptotic genes. Upon extracellular signaling, a series of phosphorylations of cell surface receptors and
Janus kinases (JAKs) inside the cell results in the phosphorylation of STAT3. A phosphorylated STAT3
then forms a dimer via its SH2 domain and the dimer translocates to the nucleus where it is involved in
the transcription process.

Our focus in this work is on 12 peptidomimetic [23–26](mimic pTyr-Xaa-Yaa-Gln motif) inhibitors
that target the SH2 domain of STAT3 with the aim of preventing the dimerization of STAT3, and
subsequent translocation and transcription. The experimental structures of the peptidomimetics bound
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to the SH2 domain are unavailable. However, the experimental binding affinities, which measure the
thermodynamic stability of binding interactions between the peptidomimetics and the SH2 domain, have
been derived using fluorescence polarization [33]. Our goal is to computationally model the binding
modes which define how a conformation of a peptidomimetic binds to the conformation of the SH2
domain, analyze the binding interactions, estimate the binding affinities, and calculate the correlation
between the estimated and the experimental binding affinities.

Our computational modeling approach combines molecular docking and molecular dynamics and
derives inspiration from previous work [18,24,34–39]. Given a protein and an unbound ligand, molecular
docking computes the preferred conformation and location of the ligand in the binding pocket of the
protein. Many molecular docking programs exist (see representative examples [40–48]) and several docking
studies have been performed with varied amount of success (e.g., [49–57]). Three major limitations
however remain.

• A docking program typically computes the best conformation and placement of the ligand such that
it minimizes an energy function specific to the docking program. The energy function approximates
the free energy of binding and, in general, accuracy of the binding energy is sacrificed so that
the computation of energy can be performed in minimal time. The approximate energy functions,
therefore, may result in conformations that are not accurate [58–60].

• Most docking programs treat the protein as a rigid molecule or, at the very best, a molecule with
limited flexibility. Thus, most of these programs perform what is known as flexible ligand docking
to a rigid receptor. However, it is well known that more accurate modeling of binding interactions
between a ligand and a receptor requires accounting for the flexibility of the receptor [61, 62].

• Docking of small ligands with 5 or 6 rotatable bonds is fairly accurate and computationally fast.
However, docking of large ligands with many rotatable bonds, such as the peptidomimetic inhibitors
in our dataset, is inaccurate and computationally expensive. A large number of rotatable bonds
increases the dimensionality of the conformation space of the ligand which makes searching for the
docked conformation extremely challenging and time-consuming [57,63,64].

Our modeling approach addresses the above limitations in the following way. Docking of a pep-
tidomimetic is first done with an AutoDock [44,65]-based incremental docking protocol that we have de-
veloped recently [66]. A molecular dynamics simulation of the docked conformation of the peptidomimetic
in complex with the SH2 domain is then performed. Using molecular dynamics, we are able to treat both
the ligand and the receptor as flexible and, more importantly, we analyze deformations in the structure
of the complex in a simulated solvent environment. The physics-based force field used in the molecular
dynamics simulations is more detailed and accurate as compared to the energy functions used in molecu-
lar docking. Molecular dynamics simulation thus also lends itself to calculation of more accurate binding
affinity estimates [67, 68].

Using our modeling approach, we show that we were able to obtain various binding modes for the
peptidomimetics. Not only did we obtain previously proposed binding modes [24, 69], but we also ob-
tained a novel binding mode. The estimated binding affinities and the experimental binding affinities are
well correlated which validates our modeling approach. By using the estimated binding affinities and con-
formational analysis of the molecular dynamics trajectories, we are able to differentiate between strong
and weak binders. In the following section, we present details of our peptidomimetic dataset, explain
our computational modeling approach, binding affinity calculations, and data analysis techniques. This
is followed by a description of the results from the computational modeling of the peptidomimetics in
complex with the SH2 domain. Finally we conclude with an overall discussion of our work.
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Methods

Dataset

The 12 inhibitors used in this study were obtained from a series of 142 peptidomimetic compounds
[23–26]. These 142 peptidomimetics mimic pTyr-Xaa-Yaa-Gln motif and were developed to bind to the
SH2 domain with the purpose of inhibiting the activity of STAT3. The binding affinities (measured as
IC50 values) of the 142 peptidomimetics were evaluated using fluorescence polarization [33]. The IC50

value gives the concentration of the peptidomimetic that is required to competitively inhibit the binding
of FAM-Ala-pTyr-Leu-Pro-Gln-Thr-Val-NH2 (FAM=5-carboxyfluorescein) to Stat3 by 50% [23]. The
binding affinities of the 142 peptidomimetics were found to range from weak (IC50 = 100,000nM) to
strong (IC50 = 39nM).

The molecular dynamics simulation, which is part of our modeling approach, and the method used
for the estimation of binding affinities (see sections below) are computationally expensive. Therefore,
we limited our modeling study to 12 peptidomimetics. The 12 peptidomimetics used in this study were
chosen such that they represent a range of values of the experimental binding affinities as shown in Figure
2 and also represent a range of sizes varying from 9 torsional degrees of freedom to 22 torsional degrees
of freedom. Each peptidomimetic was named such that the compound number represents the order in
which the peptidomimetic appears in the original publications [23–26] where the 142 peptidomimetics
were first described.

The structure of STAT3 was obtained from the Protein Data Bank [70] (PDB ID 1BG1). The structure
contains residues 136 to 716 of Stat3, half a DNA duplex, and 127 water molecules per asymmetric
unit [27]. Since we are interested in the modeling of the peptidomimetics bound to the SH2 domain, the
structure of the SH2 domain corresponding to residues 585 to 688 (Figure 1) was isolated. The water
molecules and the DNA duplex were ignored. Using the molecular builder of the Maestro software [71]
(version 9.1), the 2-D chemical representations of the 12 peptidomimetics (Figure 2) were converted to
3-D structures of the unbound peptidomimetics.

Modeling Approach

Our two-step computational modeling approach combined molecular docking and molecular dynamics.
Molecular docking of a large ligand such as a peptidomimetic with many rotatable bonds is challenging. A
large ligand spans a high-dimensional conformation space which makes exploration of docked conformation
of the ligand challenging. Our recently developed Autodock-based incremental docking protocol has been
shown to improve docking of large ligands [66]. Therefore, we first docked the 12 peptidomimetic inhibitors
in our dataset to the SH2 domain of STAT3 using our incremental docking protocol [66], and subsequently
performed molecular dynamics simulations of the docked conformations of the peptidomimetics in complex
with the SH2 domain.

Starting from a fragment of the ligand, at each incremental step, our docking protocol explores a few
rotatable bonds, then selects a small number of best partially docked fragments, grows the fragments
by adding few more rotatable bonds and atoms, and docks again. The dock-select-grow-dock process is
repeated until all the rotatable bonds in the ligand are explored. AutoDock [44, 65] is used in each step
to explore only a few rotatable bonds and this makes the docking operation fast and accurate.

Each peptidomimetic in our dataset was docked to the SH2 domain of STAT3 using our incremental
docking protocol. Since the phosphate group of the pTyr residue in each peptidomimetic is known to
bind to the sub-pocket formed by residues Lys591, Arg609, Ser611, Glu612, and Ser613 [24, 69], at each
incremental docking step we selected conformations with the lowest values of scoring function S, where

S = 0.25(Pd) + SAD, (1)

Pd is the squared distance of the phosphorus atom (in pTyr) from coordinates (−8.42, 4.50,−6.09) that
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represent approximate center of the sub-pocket, and SAD is the binding affinity estimated by AutoDock’s
energy function. The scoring function S, thus, penalizes large distance between the phosphate group and
the sub-pocket. The details of the incremental docking of peptidomimetics and scoring function S are
available in the Supporting Information (Section S1).

After all the rotatable bonds in a peptidomimetic were explored and all its atoms were docked, the
docked conformation of the peptidomimetic with the lowest value of S (see, equation (1)) was selected.
For each peptidomimetic in our dataset, molecular dynamics simulation of the selected docked conforma-
tion, in complex with the SH2 domain of STAT3, was performed. The sander module in the AMBER11
software package [72] was used for the simulation. The peptidomimetic inhibitor was described with gener-
alized amber force field [73] (GAFF), and point charges were calculated for the atoms using antechamber

module (from AmberTools software package [74] version 1.5) and AM1-BCC charge model. The protein
was described with AMBER’s ff99SB force field. The complex was solvated in a 15Å octahedral box
of TIP3P water and the whole system was neutralized by adding Na+ counterions according to the net
charge of the peptidomimetic. Table S1 lists the number of atoms in each of the 12 molecular dynamics
systems.

The complex was first minimized using 100 cycles of steepest descent minimization followed by 1900
cycles of conjugate gradient minimization. This was followed by 50ps of temperature equilibration where
the temperature was raised from 100K to 300K using Berendsen [75] control with coupling parameter
set to 2ps. Pressure equilibration was then performed for 200ps using Berendsen control with pressure
relaxation time set to 2ps. Finally, a production simulation of 10ns was performed at constant temperature
and pressure, and the trajectory was output at every 10ps. During the molecular dynamics simulation,
SHAKE algorithm was used to constrain bonds involving hydrogen atoms and therefore forces for the
bonds involving hydrogen atoms were not calculated. For computing electrostatic energies, Particle
Mesh Ewald [76] (PME) method was used with the non-bonded cutoff set to the default value of 8Å.
Plots showing variation of system properties (total energy, potential energy, temperature, and pressure)
during the production simulation are available in the Supporting Information (Figures S1-S12) and reveal
equilibrated and stable systems.

To evaluate the accuracy of our modeling approach, we performed a study where we compared the
structures modeled using our approach with experimentally-derived structures. Since experimentally
determined structures of the peptidomimetics in complex with the SH2 domain of STAT3 or any other
protein from the STAT family are unavailable, the validation was done using a dataset of similar complexes
derived from the PDBbind database [77]. The details and analysis of the validation study are available
in the Supporting Information (Section S2). The analysis (Figures S13-S22, Table S2) shows that the
modeled structures and experimental structures are spatially close and therefore we conclude that our
modeling approach is well-suited for modeling of peptidomimetic-SH2 complexes that are described in
this paper.

Binding affinities

Trajectories obtained from molecular dynamics simulations were also used to estimate binding affinities.
The binding affinity of each peptidomimetic in complex with the SH2 domain was obtained using Molecu-
lar Mechanics Poisson Boltzmann (or Generalized Born) Surface Area (MMPB/GBSA) calculations [78].
The binding affinity is given by

∆Gbind = ∆EMM +∆GPB/GB +∆GSA − T∆S (2)

where, T is the temperature, ∆EMM represents the molecular mechanics energy, ∆GPB/GB represents
the polar part of solvation energy, ∆GSA represents the non-polar part of the solvation energy, and T∆S

represents the energetic penalty due to loss of entropy upon binding.
To compute ∆Gbind, values of ∆EMM , ∆GPB/GB , and ∆GSA were computed averaged over the

snapshots of the molecular dynamics production trajectory. The T∆S value was computed from a
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normal mode analysis of the system using nmode module of the AmberTools [74] package. For entropy
computation, every 10th snapshot of the molecular dynamics trajectory was used. Calculations of all of
the above ∆Gbind components were done using MMPBSA script provided by the AmberTools package.
For computing the polar part of solvation energy using Poisson-Boltzmann calculations, the ionic strength
was set to 0.1 mM. All other parameters needed by MMPBSA script were kept at their default values.

Data analysis

Trajectory data obtained after the 10ns molecular dynamics simulation was analyzed in a variety of ways.
Prior to analyzing the data, however, the following processing was done. Water and counterions were
removed from the trajectory data. All atoms were moved such that the center of mass of the complex
moved to the center of the simulation box and imaging was done to bring all atoms inside the primary
unit cell. All conformations of the complex contained in the snapshots of the trajectory were then fitted
to the conformation in the first frame of the production simulation. Mass-weighted root mean squared
distance (RMSD) fitting was done. Note that since we output trajectory at every 10ps, we obtained 1000
snapshots or conformations of the complex from a 10ns molecular dynamics simulation.

Average (mass-weighted) root mean square fluctuations (RMSF) were computed for each peptidomimetic
bound to the SH2 domain. The RMSF value represents the average value of the RMSD between the pep-
tidomimetic conformation in the first frame of the molecular dynamics trajectory and the conformations
in the subsequent frames. Thus, the RMSF value is indicative of the time-averaged fluctuation of the
peptidomimetic conformation. Clustering of conformations of the peptidomimetic was done and confor-
mations that are representative of the clusters were identified. Clustering was done using k-means [79] (k
was set to 5) algorithm with RMSD as the similarity metric. Hydrogen bonds are critical for stabilizing
the binding interactions [80–83] and were identified between each peptidomimetic and the SH2 domain.
If a hydrogen bond was present in less than 50% of the conformations in the trajectory, it was ignored.
For each peptidomimetic in complex with the SH2 domain, we computed the hydrogen bond occupancy
of the residues of the SH2 domain. Hydrogen bond occupancy of a residue is defined as the fraction of
conformations in the molecular dynamics trajectory that contain at least one hydrogen bond involving
that particular residue. Computation of RMSF values and k-means clustering was done using ptraj mod-
ule from the AmberTools [74] package. Hydrogen bonds were identified using hbond tool in the Chimera
software package [84] version 1.6.

Results

Conformational analysis

Figure 3 shows the best docked conformation, of each of the 12 peptidomimetics, computed using the
incremental docking protocol. These docked conformations were then solvated and subjected to 10ns of
molecular dynamics simulations. Snapshots of the trajectories were output at every 10ps and therefore we
obtained 1000 conformations for each of the 12 pepetidomimetic-SH2 domain complexes. The RMSF value
for each peptidomimetic is shown in Figure 4. The RMSF value quantifies the average spatial fluctuation
of the peptidomimetic conformation in the 1000 snapshots. A low RMSF value is thus indicative of spatial
stability of the conformation of the peptidomimetic bound to the SH2 domain. The RMSF values for
weak binders such as comp13, comp15, and comp60 are higher as compared to the RMSF values of the
strong binders such as comp70, comp121, comp134, comp135, and comp136. As an exception, comp140,
another strong binder, shows surprisingly large RMSF value (1.82Å) that is comparable to the RMSF
values of the weak affinity peptidomimetics.

Through clustering of the 1000 conformations, we obtained 5 representative conformations of each
peptidomimetic-SH2 complex (Figure 5). All representative conformations have the phosphate group of
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the pTyr residue or its surrogate in the location of the corresponding pTyr705 in the crystal structure of
STAT3 [27]. The representative conformations of the strong binders such as comp70, comp121, comp134,
comp135, and comp136 are spatially similar, while those of weak binders such as comp13, comp15, and
comp60 show more spatial variation.

Hydrogen bonds

Hydrogen bonds are critical to the binding interactions between the peptidomimetics and STAT3. Figure
6 shows all the residues that are involved in hydrogen bonds with at least one peptidomimetic. Residues
Lys591, Arg609, Ser611, Glu612, and Ser613 are involved in the hydrogen bond interactions and form the
phosphate-binding pocket (sub-pocket-1) where the phosphate group of pTyr residue (or its surrogate)
in each peptidomimetic binds. Three sub-pockets in the binding site of the SH2 domain are also involved
in hydrogen-bonding interactions. Residues Glu638, Tyr640, and Gln644 form sub-pocket-2, residues
Gly656, Lys658, and Tyr657 form sub-pocket-3, and residues Trp623, Ile659, and Met660 flank sub-
pocket-4.

The residues of the SH2 domain which participate in hydrogen bonds with a specific peptidomimetic
and the hydrogen bond occupancy involving those residues and the peptidomimetic are shown in Figure
7. The occupancy plots in Figure 7 also show that the strong binders such as comp70, comp121, comp134,
and comp136 form hydrogen bonds with more than 5 residues of the SH2 domain, and the weak binders
such as comp13 and comp15 form hydrogen bonds with 3 and 4 residues respectively. Another weak-
affinity peptidomimetic comp60 forms hydrogen bonds with 6 different residues but all of these residues
surround the phosphate-binding pocket (sub-pocket-1). This means that, in the case of comp60, while
the pTyr residue binds tightly to the sub-pocket-1, the rest of the peptidomimetic is not involved in stable
hydrogen bond interactions. A couple of strong binders, comp135 and comp140, form hydrogen bonds
with 4 residues each. Since the conformation of comp140 is unstable (as evident by the RMSF value)
and we ignore hydrogen bonds if they are present in less than 50% of the conformations in the molecular
dynamics trajectory, hydrogen bond interactions with fewer residues of the SH2 domain is expected. In
the case of comp135, however, the RMSF value is low (1.22Å). We postulate that comp135 may have an
alternate and more stable bound conformation similar to the conformation of comp134.

Binding affinity

The binding affinity value reflects the thermodynamic stability of the binding interactions between a
peptidomimetic and the SH2 domain of STAT3. In a computational modeling study such as this, a large
positive correlation between the experimental binding affinities and estimated binding affinities is de-
sired. A high correlation allows accurate prediction of strong and weak binders. We used binding energy
function described by equation (2) to estimate the binding affinity values in four different schemes: A.
entropic component (T∆S) was ignored and the non-entropic component was computed using MMG-
BSA, B. entropic component (T∆S) was ignored and the non-entropic component was computed using
MMPBSA, C. entropic component (T∆S) was included and the non-entropic component was computed
using MMGBSA, and D. entropic component (T∆S) was included and the non-entropic component was
computed using MMPBSA. The experimental binding affinities were calculated from the IC50 values
using the function

∆Gexp = R× T × logKi (3)

where, Ki = log IC50×10
−9

1.066 mol, R (Gas constant) = 0.001986 kcal K−1mol−1, T = 298K, and IC50 values
are in nM. The Cheng-Prusoff estimation [85] of Ki from IC50 was done using a Kd of 150nM for FAM-
Ala-pTyr-Leu-Pro-Gln-Thr-Val-NH2 [86] and a concentration of 10nM in the fluorescence polarization
assay used to evaluate the binding affinities of the 12 peptidomimetics [23].
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Figure 8 (top) plots Pearson’s correlation coefficient (R), that measures the correlation between the
experimental and estimated binding affinities, versus the length (2ns, 4ns, 6ns, 8ns, and 10ns) of molecular
dynamics simulation. Note that the binding affinities are computed averaged over the snapshots of the
molecular dynamics simulation. From the figure, it is clear that, for all four affinity estimation schemes,
the value of R increases with the increase in the length of molecular dynamics simulation. Out of the four
schemes, the best correlation coefficient values were observed for the scheme D (cyan) which estimates
affinity as a sum of the entropic component and the MMPBSA-based non-entropic component of the
energy function. The maximum observed value of R is 0.63 which was computed using scheme D and
10ns molecular dynamics simulation trajectories.

The estimated binding affinities, for the 12 peptidomimetics, obtained using scheme D are shown in
Figure 8 (bottom). For each peptidomimetic, multiple values of the binding affinities that correspond to
different lengths of molecular dynamics simulation are shown. It is clear that the affinity values converge
as the length of simulation increases. The affinity values, derived from the 10 ns molecular dynamics
trajectories, correspond to the R value of 0.63 as described above. Since the R value is large, not
surprisingly, weak binders such as comp13, comp15, and comp60 have higher estimated affinity values,
the value for comp15 (IC50 > 100,000nM) being the highest (-18.22 kcal/mol). Similarly, the binding
affinity values for strong binders such as comp70, comp121, comp134, and comp136 are low, the value
for comp70 (IC50 = 190nM) being the lowest (-45.40 kcal/mol).

Binding modes

The conformations in Figure 5 show the presence of two binding modes that have also been described in
previous computational modeling studies [24,69]: the bent mode and the extended mode. All or some of
the representative conformations for comp70, comp135, comp140, and comp142 display the bent mode
where the phosphate group sits in sub-pocket 1 and the peptidomimetic bends such that the Gln (or its
derivative) residue of the peptidomimetic sits in sub-pocket 2. In the extended mode, as seen in all or
some of the representative conformations for comp134, comp136, comp140, and comp142, the phosphate
group sits in sub-pocket 1 and the backbone extends such that Gln (or its derivative) residue of the
peptidomimetic sits in sub-pocket 3. Apart from the bent and the extended modes, a novel binding mode
was observed. The five representative conformations of comp121 display what we term a wedged mode.
In this mode, while the phosphate group binds to the sub-pocket-1, the other end of the peptidomimetic
is wedged in a groove formed by two loops of the SH2 domain described by residues 623-629 and residues
656-668.

The binding modes are shown in detail in Figures 9, 10, and 11. Both cartoon and surface represen-
tations of the SH2 domain are shown. The labeled yellow residues of the SH2 domain are involved in
hydrogen bond interactions and the hydrogen bonds are shown with dashed black lines. The surface of
the SH2 domain is colored using the Coulombic surface coloring scheme in the Chimera software pack-
age. The surface is characterized by electrostatic potentials ranging from positive electrostatic potential
(blue surface) to a negative potential (red surface). The bent mode is displayed by the peptidomimetic
comp70 (Figure 9), the extended mode is displayed by comp134 (Figure 10), and the wedged mode is
displayed by comp121 (Figure 11). The binding affinities of the three peptidomimetics, experimental as
well as computed, are high (low ∆G and IC50 values) and, as shown in Figure 4, the RMSF values for
comp70 (0.98Å), comp134 (0.95Å), and comp121 (0.91Å) are the lowest out of the RMSF values for the
12 peptidomimetics. Thus, these three compounds present a strong evidence that there are three possible
modes in which peptidomimetics can tightly bind to the SH2 domain.

As expected, all three binding modes include multiple hydrogen bonds connecting the phosphate group
to sub-pocket-1. The amino acids forming sub-pocket-1 create a strong positive electrostatic potential
which thus tightly binds the negatively charged phosphate group in all peptidomimetics. In the bent mode
(Figure 9), the Gln residue of comp70 binds to the sub-pocket-2 and forms multiple hydrogen bonds with
residues Tyr640 and Gln644 of the SH2 domain that flank sub-pocket-2. The binding interactions are
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also stabilized by the hydrogen bonds formed between the carbonyl oxygen of the Haic group and residue
Tyr657 of the SH2 domain. A similar interaction was observed between a carbonyl oxygen of pTyr-Asp-
Lys-Pro-His and Tyr651 in the crystal structure of STAT1 [87]. In the extended mode (Figure 10), the
carbonyl oxygen of the Leu at pTyr+1 position forms hydrogen bond with Tyr657 and the side chain
amide group of the Gln-mimic residue at the C-terminus of the peptidomimetic forms hydrogen bonds
with the main chain C=O of Gly656 and the backbone NH groups of Lys658 and Ile659. In the newly
discovered wedged mode (Figure 11), the carbonyl oxygen of the Leu residue forms hydrogen bond with
Trp623 which lies on the loop formed by residues 623-629 and the carbonyl oxygen of methanoproline
is involved in a hydrogen bond with the side chain OH of Tyr657. The driving force for this binding
mode appears to be hydrophobic contact between the C-terminal benzene ring and residues of loops
623-629 and 656-658 as well as a hydrogen bond between the benzylamide NH and the main chain C=O
of Met660. Interestingly, the side chain amide group of Gln does not appear to interact directly with the
protein.

Discussion

Transcription factor STAT3 is an important target protein that is involved in a multitude of human
cancers. In this work, we focused on a specific set of 12 peptidomimetic compounds that mimic the pTyr-
Xaa-Yaa-Gln recognition motif and were designed to bind with the SH2 domain of STAT3 and prevent its
dimerization which is a critical event leading up to the transcription of anti-apoptotic genes. Experimental
binding affinities of the peptidomimetics were measured using fluorescence polarization and a range of
affinity values were observed for the 12 peptidomimetics. Binding affinities for the peptidomimetics,
expressed as IC50 values, range from 39nM for a strong binder to over 100,000nM for a weak binder. Since
experimental structures of the complexes formed between the peptidomimetics and the SH2 domain are
unavailable, we used a computational strategy to model the complexes.

Our modeling strategy proceeded in two steps. In the first, we generated docked conformations of the
peptidomimetics using a computational AutoDock-based incremental docking protocol that was developed
by us for docking large compounds in a fast and accurate manner [66]. The peptidomimetics in our dataset
are all large compounds with the number of rotatable bonds ranging from 9 to 22. In the second step
of our modeling strategy, we selected the best docked conformation and then ran molecular dynamics
simulations of the complex in a solvated box. Molecular dynamics simulations served multiple purposes.
The flexibility of the SH2 domain was taken into account, fluctuations of the bound conformations
over the length of molecular dynamics simulation were computed, and finally, rigorous estimates of
binding affinities, as a sum of normal-mode analysis based entropic component and MMPB/GBSA based
non-entropic component, were computed. Accurate estimates of binding affinities are very important
for differentiating strong binders from weak binders, and therefore, a positive correlation between the
experimental binding affinities and estimated binding affinities is desired. Our two-step modeling strategy
resulted in a high positive correlation (R=0.63) between the experimental and estimated affinities.

For each of the 12 peptidomimetics, we performed molecular dynamics simulations for a production
length of 10ns. The trajectory data for each simulation was output at 10ps. Thus, we obtained 1000
conformations for each peptidomimetic in complex with the SH2 domain. The average fluctuation of the
conformations of each peptidomimetic was measured as RMSF (root mean square fluctuation) values.
The weak binders displayed larger fluctuation as compared to the strong binders. A clustering of the
conformations showed the preferred binding modes of the peptidomimetics. Three strong binders, with
IC50 values equal to 190nM (comp70), 83nM (comp134), and 68nM (comp121), displayed three different
but stable binding modes: the bent mode, the extended mode, and the wedged mode respectively. The
peptidomimetics in these three binding modes showed very small (< 1.0Å) conformational fluctuations
in the molecular dynamics simulations, a large number of stable hydrogen bond interactions with the
residues of the SH2 domain, and the estimated binding affinities value were low in accordance with the
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experimental binding affinities.
Previous modeling studies related to SH2 domain binding have proposed the bent and the extended

binding modes [24,69]. In this paper, we propose a new binding mode which we term the wedged mode.
In the wedged mode, the peptidomimetic (comp121) binds to the SH2 domain such that the negatively
charged phosphate group of the pTyr residue sits inside a pocket which has a positive electrostatic
potential and the C-terminal benzyl group gets wedged in a cavity formed by two loops of the SH2
domain described by the residues 623-629 and 656-668 respectively. Apart from the stable hydrogen
bond interactions with the residues in the phosphate-binding pocket, hydrogen bonds also exist between
the peptidomimetic and residues on the two loops. The RMSF value for the 1000 conformations of the
comp121 is 0.91Å and is the lowest among the RMSF values for the 12 peptidomimetics.

Despite the overall success of modeling strategy as described in this paper, there were exceptions to
the observed trends. For example, in the case of comp140 which is a relatively strong binder (IC50 =
105nM), we obtained a large RMSF value and estimated binding affinities that are comparable to those
of weak binders. This anomaly could be attributed to an inaccurate starting docked conformation of
the peptidomimetic. In the molecular dynamics simulation, an inaccurate starting docked conformation
would result in trajectory that leads to inaccurate estimation of binding affinity. It should be noted that
computational docking of large ligands such as peptidomimetics in our dataset is extremely challenging.
Although our incremental docking protocol improves docking of large ligands, more work needs to be
done in this area.

The computational modeling strategy described in this paper and the subsequent data analysis,
nonetheless, reveals important aspects of the peptidomimetic binding to the SH2 domain of STAT3.
Not only were we able to estimate binding affinities that were well correlated with experimental binding
affinities, we were also able to identify binding modes, including a novel wedge mode, that result in stable
binding interactions. A typical peptidomimetic drug design process that is based on a specific motif
involves designing peptidomimetics with diverse chemical modifications. Accurate estimation of binding
affinities using our method could help in predicting which modifications could lead to strong binding. The
knowledge gained by this study could also be used to improve the design of the peptidomimetics by better
targeting the sub-binding-pockets identified in this paper with structural modifications or conformational
restraints. The proposed novel wedge binding mode could prove very useful in this regard.
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Figure 2. 12 peptidomimetics. 2-D chemical representations of the 12 peptidomimetics that form
our dataset are shown. IC50 value represents the experimental binding affinity of each peptidomimetic
derived using fluorescence polarization and N represents the number of rotatable bonds in each
peptidomimetic.
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Figure 3. Docked conformations. Docked conformation of each peptidomimetic that was obtained
using our incremental docking protocol is shown. The peptidomimetic conformation (in green) is shown
in complex with the SH2 domain of STAT3 (in surface representation). The surface coloring shows the
Coulombic electrostatic potential in different regions of the surface of the SH2 domain. The potential
ranges from positive (in blue) to negative (in red). IC50 value represents the experimental binding
affinity of each peptidomimetic derived using fluorescence polarization and N represents the number of
rotatable bonds in each peptidomimetic.
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Figure 4. Root mean square fluctuations. Root mean square fluctuation (RMSF) of the 12
peptidomimetics in complex with the SH2 domain of STAT3 is shown. Each RMSF value was computed
using 1000 conformations of the peptidomimetic derived from the 10ns molecular dynamics trajectory.
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Figure 5. Representative conformations after clustering. For each peptidomimetic, 5
conformations in complex with the SH2 domain (in gray) of STAT3 are shown. The 5 conformations are
the representatives of the 5 clusters obtained after k-means clustering of the 1000 conformations that
were derived from 10ns molecular dynamics trajectory of each peptidomimetic-SH2 domain complex.
IC50 value represents the experimental binding affinity of each peptidomimetic derived using
fluorescence polarization and N represents the number of rotatable bonds in each peptidomimetic.
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Figure 6. Residues involved in hydrogen bonds. The residues (labeled) of the SH2 domain that
form hydrogen bonds with at least one of the 12 peptidomimetics are shown. The top figure shows a
cartoon representation of the SH2 domain and the bottom figure shows a surface representation. The
surface coloring shows the Coulombic electrostatic potential in different regions of the surface of the SH2
domain. The potential ranges from positive (in blue) to negative (in red). Note that a hydrogen bond is
ignored if it is present in less than 50% of the conformations in the 10ns molecular dynamics trajectory.
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Figure 8. Correlation between experimental and esimated affinities. The top figure shows the
variation of the Pearson correlation coefficient (R), computed between the experimental binding
affinities and the estimated binding affinities of the 12 peptidomimetics, with the length of molecular
dynamics simulation. The binding affinities were estimated using 4 different schemes. ∆GMMGBSA and
∆GMMPBSA represent non-entropic contribution to the binding affinity computed using the MMGBSA
and MMPBSA methods in AmberTools software package. T∆S represents the entropic contribution
computed using the nmode method in AmberTools. The bottom figure shows, for each peptidomimetic,
the estimated binding affinity value computed using ∆GMMPBSA − T∆S scheme. Because the values
computed using MMGBSA, MMPBSA, and nmode methods are averaged over the snapshots of the
molecular dynamics trajectory, we also plot the variation of estimated binding affinity values with
increasing length of the molecular dynamics simulation.
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Figure 9. Bent binding mode. The bent binding mode of peptidomimetic comp70 (in green) is
shown. The peptidomimetic is in complex with the SH2 domain of STAT3 which is shown in cartoon
(top) and surface (bottom) representations. The residues of the SH2 domain which participate in
hydrogen bonds are labeled. The top figure also shows the hydrogen bonds (dashed lines) that the
residues (in yellow) participate in. The surface coloring shows the Coulombic electrostatic potential in
the different regions of the surface of the SH2 domain. The potential ranges from positive (in blue) to
negative (in red). The IC50 value for comp70 is 190nM.



24

Figure 10. Extended binding mode. The extended binding mode of peptidomimetic comp134 (in
green) is shown. The peptidomimetic is in complex with the SH2 domain of STAT3 which is shown in
cartoon (top) and surface (bottom) representations. The residues of the SH2 domain which participate
in hydrogen bonds are labeled. The top figure also shows the hydrogen bonds (dashed lines) that the
residues (in yellow) participate in. The surface coloring shows the Coulombic electrostatic potential in
the different regions of the surface of the SH2 domain. The potential ranges from positive (in blue) to
negative (in red). The IC50 value for comp134 is 83nM.
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Figure 11. Wedged binding mode. The proposed novel wedged binding mode of peptidomimetic
comp121 (in green) is shown. The peptidomimetic is in complex with the SH2 domain of STAT3 which
is shown in cartoon (top) and surface (bottom) representations. The residues of the SH2 domain which
participate in hydrogen bonds are labeled. The top figure also shows the hydrogen bonds (dashed lines)
that the residues (in yellow) participate in. The surface coloring shows the Coulombic electrostatic
potential in the different regions of the surface of the SH2 domain. The potential ranges from positive
(in blue) to negative (in red). The IC50 value for comp121 is 68nM.


