
On modeling peptidomimetics in complex with the SH2 domain of Stat3

Ankur Dhanik, John S. McMurray, and Lydia Kavraki

Abstract— Signal transducer and activator of transcription
3 (Stat3) plays a role in human cancers. One of the main
approaches towards inhibiting its activity is the development
of phosphopetides or peptidomimetics that competitively bind
to the SH2 domain of Stat3. This work reports, to the best
of our knowledge, the first computational molecular docking
study to model all of the 142 peptidomimetics that mimic the
Stat3 inhibitory pTyr-X-X-Glu motif. We used the docking
programs AUTODOCK and VINA to model SH2 domain-
peptidomimetic complexes and estimate their binding affinities.
We obtained better screening accuracy using AUTODOCK
which ranked the most potent inhibitor as second highest.
Experimental binding energy values and scores from docking
programs correlated poorly, confirming the limitations of many
current docking programs when dealing with ligands that have
a large number of rotatable bonds. Nevertheless, for close to
65% of peptidomimetics, the structures of complexes computed
by AUTODOCK are in agreement with current understanding
of the structures. Modeling of the SH2 domain-peptidomimetic
complexes is essential to better understand and design drug
compounds for curing cancer. Our study is an important first
step forward towards that goal.

I. INTRODUCTION

According to the World Health Organization, cancer is
the leading cause of human death worldwide [1]. Design of
drugs for curing human cancers is, thus, a major goal for the
medicinal research community as well as the pharmaceutical
companies. Signal transducer and activator of transcription
3 (Stat3) is a target for drug design as it is constitutively
activated in human cancers such as breast cancer, lung
cancer, multiple myeloma, leukemia and others [2], [3]. Upon
extracellular signaling, Stat3 (inside the cell) is recruited to
interleukin-6 or growth factor receptors via its SH2 domain
where it is phosphorylated on Tyr705. The phosphorylated
Tyr705 (pTyr705) then interacts with the SH2 domain of
another Stat3 leading to dimer formation. Subsequently
the dimer is translocated to the nucleus, resulting in the
expression of cancer-associated genes. Blocking the SH2
domain to prevent the dimerization is an attractive strategy
for designing drugs that inhibit Stat3 activity [4].

Computational molecular docking plays an important role
in the drug discovery process. It is widely accepted that
docking computations provide invaluable understanding of
the interactions between the target protein and putative drug
candidates (ligands) [5]. Medicinal chemists use this infor-
mation to design new drug compounds or refine compounds
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in their existing drug discovery pipeline. A typical molecular
docking program computes the preferred pose of the ligand
when it binds to the target protein to form a stable protein-
ligand complex. It also computes a score that estimates the
binding affinity, i.e., a measure of how well the ligand binds
to the target. The binding affinity estimates help identify
the more potent putative drug compounds out of large sets
of ligands. There are a plethora of commercial and non-
commercial docking programs available, each of which differ
mainly on the strategy used for exploring the poses of the
ligand and the scoring function. Some of the major programs
are DOCK [6], ICM [7], GOLD [8], FlexX [9], AUTODOCK
[10], SURFLEX [11], and VINA [12].

In this paper, we describe a computational molecular dock-
ing study to model SH2 domain-peptidomimetic complexes
and estimate binding affinities so that we can identify the
most potent ligand. We have chosen 142 phosphopeptide
analogs that mimic Stat3 inhibitory pTyr-X-X-Glu motif.
This choice is due to two reasons: (1) the 142 peptidomimet-
ics form a complete set of compounds that mimic a particular
motif, and (2) we have access to a laboratory that is working
on synthesizing such compounds. To our knowledge, there is
no known experimental (X-ray Crystallography or Nuclear
Magnetic Resonance) structure available for any of the
SH2 domain-peptidomimetic complexes. Our docking study
employed AUTODOCK [10] and VINA [12], two of the most
popular non-commercial programs.

II. METHODS

Our molecular docking study was performed on the SH2
domain of Stat3 and a set of 142 peptidomimetics using
AUTODOCK (version 4.2) and VINA (version 1.1.1). A
typical docking study requires three computational steps
before running the docking program: (1) preparation of the
receptor, (2) preparation of the ligand, and (3) setup of
the parameters of the docking program(s). The following
subsections describe these three steps in detail.

A. Receptor preparation

The three-dimensional structure of Stat3 was obtained
from the Protein Data Bank (PDB ID 1BG1). The structure
contains residues 136 to 716 of Stat3, half a DNA duplex,
and 127 water molecules per asymmetric unit [13]. For
preparing the receptor, we used residues 586 to 688 that
form the SH2 domain (Fig. 1). The water molecules and the
DNA duplex were ignored. The receptor was subsequently
prepared using a python script called prepare receptor.py
from the MGLTools package (version 1.5.4) [14]. The script
adds hydrogen atoms in the receptor structure and then adds
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Fig. 1: 4 domains of Stat3: a N-terminal four-helix bundle (residues
138-320, blue), an eight-stranded β-barrel (residues 321-465, red),
an α-helical connector domain (residues 466-585, green), and a
SH2 domain (residues 586 to 688, magenta).

gastegier charges to all the atoms. All non-polar hydrogens
are removed and the charge of each removed hydrogen is
added to the carbon to which it is bonded.

B. Ligand preparation

The ligands for the docking study were obtained from a
comprehensive literature survey ([15], [16], [17], [18], [19]).
Along with the 2-D (chemical) representations of the phos-
phopeptide analogs, binding affinity (IC50) values, obtained
from fluorescence polarization experiments, were provided.
The molecule builder of Maestro software (version 9.1) [20]
was used for generating the 3-D structures from the 2-D
representations. The obtained 3-D structures of the ligands
were energy minimized in vacuum using the Clean Up
Geometry module of Maestro. Each ligand is subsequently
prepared using a python script called prepare ligand4.py
from the MGLTools package. Hydrogen atoms were treated
in a fashion similar to that explained in Section II-A.
The script also identifies non-amide rotational bonds in the
ligand. The ligands in our docking study have on an average
15 rotational bonds, which is substantially larger than the
number of rotational bonds in small molecules generally
used for docking studies. As a consequence, this study is
a prime example of issues that arise due to large numbers of
rotational bonds in ligands. It provides a thorough analysis
of the docking results when current docking programs are
applied to a problem involving large ligands. Thus, this
study sets a benchmark for the development of new docking
programs that attempt to model SH2-domain peptidomimetic
complexes and, in general, address current limitations of
docking ligands with large number of rotational bonds.

C. Docking program setup

Both AUTODOCK and VINA use the same input for-
mat for receptor and ligand structures which are obtained
from the preparation steps described above. All the pa-
rameters of VINA were set to their default values. In
AUTODOCK, the number of energy evaluations to be per-
formed (ga num evals) was set to 25 million and the number
of docked poses to be computed (ga run) was set to 50,
which is standard practice. All other parameters were set
to the default values. Both programs use a rectangular 3-
dimensional grid for specifying the binding site of the recep-
tor as well as for efficient evaluation of the scoring function.
The grid is centered on coordinates x = −5.22Å, y =

Fig. 2: Receiving operating characteristic (ROC) curves for
AUTODOCK (green) and VINA (red). The dashed line represents
ROC curve when ligands are randomly ranked. The area under curve
(AUC) values are displayed in the legend.

−1.37Å, z = −0.43Å. The dimensions of the AUTODOCK
grid are 54 × 42 × 54 with a grid spacing of 0.375Å. The
dimensions of the VINA grid are identical.

III. RESULTS

Each docking run with AUTODOCK produced 50 poses
of the ligand while VINA produced 9 poses. Each pose is
defined by the position and orientation of the ligand and its
rotational bonds. We evaluated the results from the docking
study in the following three ways: (1) screening accuracy,
(2) comparison of the experimental binding affinities and
docking program scores, and (3) structure analysis of the
docked complex.

A. Screening accuracy

An important criterion for the success of docking programs
is their screening accuracy. Though there are many other
useful criteria, our goal in this study is not the evaluation
of docking programs. Rather our aim is to model the SH2
domain-peptidomimetic complexes using popular docking
programs and screen the most potent inhibitors. Area under
the receiving operating characteristic curve is an important
statistic to evaluate screening accuracy [21]. In general, given
a set of known active and decoy ligands, the number of active
ligands found among the top-n ranked ligands is plotted
against n, where n is the size of the set. This plot is known
as the receiver operating characteristic (ROC) curve and the
area under the curve (AUC) is given as a fraction of the
total plot area. Our docking study is not a typical study with
active and decoy ligands. Therefore for computing AUC,
we assume that the top 5 most potent (lowest IC50 values)
inhibitors are the active ligands that are to be screened from
the set of 142 ligands. Figure 2 shows the ROC curves
obtained from docking of the ligands with AUTODOCK and
VINA. AUTODOCK (AUC=0.86) performed much better
than VINA (AUC=0.48) which performed worse than a
screening process that randomly ranks ligands (AUC=0.50).
AUTODOCK was able to find the 5 active ligands in the
top 47 ligands ranked according to decreasing AUTODOCK
scores. The best scoring pose obtained for each ligand was
used for ranking. Interestingly, the most potent inhibitor with
IC50 = 39nm (Fig. 3(a)) was ranked second highest by
AUTODOCK.



(a) (b)

Fig. 3: Most potent (lowest IC50 value) peptidomimetic: (a) 2-
D representation and (b) 3-D structure of complex modeled by
AUTODOCK. The SH2 domain is shown as a surface and the
peptidomimetic is shown with sticks. The phosphate group (white
circle) of the peptidomimetic fits in its known binding pocket.

Fig. 4: Comparison of difference scores from AUTODOCK (green)
and VINA (red), and difference binding energies (blue) from
fluorescence polarization experiments.

B. Binding affinity comparison

Binding affinity gives a measure of the thermody-
namic stability of a SH2 domain-peptidomimetic com-
plex. We collected binding affinity (IC50) values for the
142 peptidomimetics from the literature survey (section II-
B). The IC50 value gives the concentration of the pep-
tidomimetic that is required to competitively inhibit the bind-
ing of FAM-Ala-pTyr-Leu-Pro-Gln-Thr-Val-NH2 (FAM=5-
carboxyfluorescein) to Stat3 by 50% [15]. Since scoring
functions of AUTODOCK and VINA give binding affinity
estimates in terms of energy values (in kcal/mol), we convert
IC50 values to energy values using the following equation:

∆G = RTln(IC50/1.066) (1)

where, R = 1.986 × 10−3kcalK−1mol−1, T = 298K, and
IC50 is in nanomolar.

Figure 4 compares scores of the lowest scoring poses from
the docking programs and binding energy values from (1). It
is assumed that in general there is an offset between scores
from the docking programs and binding energy values. To
eliminate the offset, we compared difference scores with
difference energies. Each score/energy was subtracted by the
lowest score/energy value among all ligands. The comparison
shows that scores and binding energies do not correlate well.
This is not surprising because, as mentioned in section II-
B, the ligands have on an average 15 rotational bonds. It
is generally understood that docking programs are more
accurate when docking smaller ligands (≤ 10 rotational
bonds) which is reflected in Figure 5. To investigate this

Fig. 5: Comparison of difference scores from AUTODOCK
(green)and difference binding energies (blue) from fluorescence
polarization experiments. Only the ligands that have 10 or fewer
rotational bonds were considered. Comparison of scores from VINA
results in a similar figure.

Fig. 6: Pearson correlation coefficient (R) between scores and
binding energies is plotted against threshold on the number of
rotatable bonds. The scores were obtained from AUTODOCK
(green) and VINA (red).

further, we plotted (see Figure 6) the variation of Pearson
correlation coefficient (R) between the scores and the binding
energies with increasing threshold on the number of rotatable
bonds. At each threshold value, only ligands that have
number of rotatable bonds less than or equal to the value
were considered for computing R. The plot shows high
correlation for the smaller ligands and poor correlation for
the larger ones.

C. Structure analysis

There is very little knowledge regarding the structures of
SH2 domain-peptidomimetic complexes and modeling these
structures is one of our main goals. From crystallography
data and the relatively few modeling studies on a couple
of peptidomimetics ([13], [4], [17]), it is clear that the
phosphate group in the peptidomimetics sits in the binding
pocket formed by residues Lys591, Arg609, Ser611, Glu612,
and Ser613. For the most potent inhibitor, that is indeed
the case (Fig. 3(b)). We computed the Euclidean distance
(D) of the phosphorus atom in the phosphate group of
the lowest scoring pose of each ligand from coordinates
x = −8.42Å, y = 4.50Å, z = −6.09Å. These coordinates
correspond to the location of the phosphorus atom in the
above binding pocket as proposed in [4]. For a given thresh-
old (Dthresh), we calculated the fraction of the total number
of ligands that have D <= Dthresh. Figure 7 plots the
fraction against varying values of the distance threshold. The
plot shows that poses generated by AUTODOCK are much
better than the poses generated by VINA when evaluating



Fig. 7: Fraction of the total number of ligands, that have the
phosphate group of the lowest scoring pose in or near the known
binding pocket, is plotted against the distance threshold. The poses
were obtained from AUTODOCK (green) and VINA (red).

the fit of the phosphate group to its known binding pocket.
Interestingly, in approximately 65% of the ligands poses
computed by AUTODOCK, the phosphate group of the
lowest scoring pose fits within 4.0Å of the binding pocket.
This is an important outcome of our study as it shows
that even with the current limitations of docking programs
(Section III-B), we are able to model many SH2 domain-
peptidomimetic complexes in agreement with the existing
observations about the complexes.

IV. DISCUSSION
We described, to our best knowledge, the first comprehen-

sive study on modeling the SH2 domain of Stat3 (a cancer
target) in complex with a set of phosphopeptide mimics. We
used the popular docking programs AUTODOCK and VINA
for modeling the complexes. AUTODOCK computed more
accurate ligand poses as compared to VINA. AUC values
were higher for AUTODOCK and it found the most potent
inhibitor in the second highest ranked ligand. The exper-
imentally derived binding energy values did not correlate
well with the scores from the docking program and this
was due to the known limitations of docking programs in
dealing with ligands with large number of rotational bonds.
However, AUTODOCK computed reasonable binding poses,
which were in agreement with the existing knowledge on
the structure of SH2 domain-peptidomimetic complexes, for
approximately 65% of ligands. To model the complexes more
accurately, new docking programs will have to be developed
that are capable of accurately docking ligands with large
number of rotational bonds. New docking programs might
have to account for the flexibility of the SH2 domain as the
binding pocket is surrounded by loops. Limitations of dock-
ing programs notwithstanding, this study sets a good starting
point for the modeling of SH2 domain-peptidomimetic com-
plexes.
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