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Abstract

The definition of reaction coordinates for the characterization of a protein folding reaction has long

been a controversial issue, even for the “simple” case where one single free energy barrier separates the

folded and unfolded ensemble.

We propose a new and general approach to this problem based on nonlinear dimensionality reduction. Essen-

tially, the configurational space spanned by a protein during folding can be imagined as a low-dimensional

non-linear manifold, embedded in a much higher-dimensional space. Taking advantage of recent advances

in nonlinear dimensionality reduction we infer reaction coordinates directly from molecular dynamics sim-

ulation data.

We apply this method to characterize the folding landscape associated with a coarse-grained src-SH3 pro-

tein model, as sampled by molecular dynamics simulations. The folding free energy landscape projected on

the coordinates extracted from the embedding can correctly distinguish the folding transtition state ensem-

ble from the folded and unfolded state ensembles. The first embedding dimension efficiently captures the

evolution of the folding process along the main folding route.

These results clearly show that a complex process such as protein folding can be essentially described by a

very low-dimensional free energy landscape.
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1 Introduction

The folding of a protein to its functional (native) state can be viewed as a chemical reaction, where the

ensemble of unfolded configurations constitutes the reactant and the native state is the product.

Generally, the characterization of chemical reactions requires to locate the reactants, products, and

transition states on a free energy surface. Simple models (so-called “reaction profiles”, or “reaction coor-

dinate diagrams”) are oftentimes used to describe the change in free energy as a function of the progress

of the reaction from reactant to product. Clearly, a reaction profile is meaningful if the process of interest

can be described in terms of one or a few collective coordinates. For instance, in a dissociation reaction

where a diatomic molecule splits into the constituent atoms, the distance between the two atoms provides a

natural choice for the reaction coordinate, and the progress of the reaction can be quantitatively character-

ized in terms of this coordinate. For more complex reactions, the definition of a set of reaction coordinates

is a nontrivial task. Because of the high dimensionality of a protein configurational space this problem is

particularly challenging –and source of significant debate– in protein folding studies.

We present here a new approach to the definition of reaction coordinates for the theoretical char-

acterization of a protein folding free energy landscape, based upon the idea of non-linear dimensionality

reduction. Modern dimensionality reduction techniques allows us to define a fast and efficient procedure

that uses a significant sample of configurations along the folding to extract the most relevant global coor-

dinates that can effectively describe the process. We prove the efficiency and robustness of this method

by applying it to study the folding of src-SH3 domain, as obtained from simulation with a coarse-grained

protein model [1].

The possibility of using only a few global coordinates to characterize the mechanism through which a

protein “organizes” its constituent atoms into a compact functional structure has important practical implica-

tions. It is worth mentioning for example that a quantitative comparison between simulation and experiment

in protein folding oftentimes relies upon the assumption that it is possible to identify the folding transition

state, and/or intermediate state ensembles from the analysis of the simulated folding (and/or unfolding) tra-

jectories. However, the definition of these ensembles is generally based upon the choice of the reaction

coordinates [2–4]. Alternative definitions of reaction coordinates have been discussed in the literature [2, 5–

8], as well as different methods for the identification of a set of transition state structures [3, 4, 9]. Most of

the discussion revolves around the validity of empirical reaction coordinates that are commonly used in this

endeavor. Commonly used empirical reaction coordinates in folding studies are defined to condense in a pa-

rameter the information on the degree of similarity with the native structure. Examples of such coordinates
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include the fraction of native contacts formed, Q [2, 5, 10–12], the average shortest path length, 〈L〉 [13, 14],

the radius of gyration, Rg [12], or the partial contact order pCO [13, 15]. The theoretical justification for

the use of these structural reaction coordinates relies on the fact that generally proteins are minimally frus-

trated systems, and their folding mechanism can be described as a diffusion process in a funnel-like energy

landscape where the potential depth is strongly correlated with the degree of nativeness [16–19]. This ar-

gument is not sufficient to ensure a perfect a-priori correspondence between a given ensemble of structures

experimentally detected (as for instance the transition state ensemble, experimentally characterized by Φ-

value analysis [20, 21]) and the corresponding ensembles obtained on a low-dimensional landscape defined

through these reaction coordinates.

It has been argued that the parameter Pf old , defined as the probability of a protein structure to reach

the folded state before the unfolded state, would serve as ideal exact reaction coordinate for protein folding

studies [2, 8, 14, 22, 23]. However, the calculation of Pf old is computationally so expensive that it becomes

unfeasible for most systems of interest. Moreover, it has been shown recently that the parameter Pf old does

not capture the essential features of a folding landscape if the folding mechanism is intrinsically multidimen-

sional (as for instance is the case when folding occurs via multiple routes), or in the presence of intermediate

states [5]. The definition of new strategies to estimate the intrinsic dimensionality of a folding reaction and

the definition of the reaction coordinates themselves are paramount issues in folding studies. The approach

presented here addresses both these questions.

2 What is the intrinsic dimensionality of a folding landscape?

A protein conformation is usually described by the Cartesian coordinates of its constituent atoms; a protein

structure with N atoms is thus completely specified by 3N parameters. However, these parameters are

not independent on each other. Clearly, the constraints of maintaining intact the covalent bonds and angles

and other steric factors effectively reduce the degrees of freedom of a protein molecule. In addition, the

high cooperativity of the folding process strongly suggests that the motion of different parts of the pro-

tein is correlated along the productive folding route(s), further reducing the effective dimensionality of the

configurational space. These considerations lead to assume that most of the relevant conformations vis-

ited by a protein throughout the folding process lie on a low-dimensional manifold embedded in the much

higher-dimensional space described by the Cartesian coordinates.

In folding/unfolding simulations, molecular dynamics (MD) trajectories provide a sampling of con-

figurations populating the the embedded manifold that we wish to characterize. Given a sample of protein
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configurations along the folding process we address the problem of finding a low-dimensional embedding

such that the shape of the underlying manifold is preserved. The final goal is to rigorously define a low-

dimensional free energy landscape that could be used to quantitatively characterize a folding simulation.

The density of states populated on the manifold needs to be preserved as well, so that free energy can be

estimated directly from the low-dimensional embedding. In practice, the main question underlying the def-

inition of this embedded folding landscape is whether a base set of coordinates exists in which very few

show considerable variation while all the others remain almost constant during the considered reaction.

Mathematically, this is a problem of dimensionality reduction. Similar problems are common in a number

of disparate fields. For instance, dimensionality reduction plays an important role in image analysis and

recognition, where the essential information distributed over a large number of pixels needs to be captured

by few global parameters that can be quantitatively and meaningfully compared [24–27].

The definition of an embedded folding free energy landscape by dimensionality reduction techniques

can reduce the systematic error associated with the choice of empirical reaction coordinates in the calcu-

lations of ensemble averages on particular regions of the landscape (such as for instance, transition state

ensembles). An important feature of dimensionality reduction is that usually the quality of the embedding

can be expressed as a function of the the number of dimensions chosen. This allows one to estimate a priori

the error associated with a set of reaction coordinates. Ideally, one could automatically compute an embed-

ding that preserves, say, 99% of the features§ of the original data. Unlike empirical reaction coordinates, the

dimensions of an embedding are completely uncorrelated, so that the number of dimensions of an accurate

embedding is the same as the number of dimensions of the sub-manifold. Minima and saddle points of a

specified function of the embedding coordinates (such as a free energy) can be automatically identified in

an embedding. This is important if more than two or three dimensions are needed to capture the features

of the original data, as in that case it is not possible to identify visually the folded and unfolded minima or

transition paths between them.

3 Dimensionality reduction of folding simulations: fundamental and tech-

nical aspects

The problem addressed by dimensionality reduction techniques is to find the best d-dimensional embedding

for N objects in an n-dimensional space. Ideally, the embedding is much more compact than the original

§“Feature” is a rather vague term, as a number of essential properties of the original data that one wish to preserve need to be
specified, and the choice may be system-dependent.
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representation and dependencies between dimensions are removed. Dimensionality reduction techniques fall

broadly into two categories: linear and nonlinear techniques. Principal Component Analysis (PCA) [28] is

probably the best known (and widely used) linear technique. Essentially, PCA computes a hyperplane that

passes through the data points as best as possible in a least-squares sense. The principal components are

the tangent vectors that describe this hyperplane. These vectors are ordered by the amount of variance

they exhibit on the data. So, the first principal component corresponds to the best possible projection onto

a line, the first two correspond to the best possible projection onto a plane, and so on. Clearly, if the

manifold of interest is inherently non-linear the low-dimensional embedding obtained by means of PCA is

severely distorted. PCA is commonly used in the analysis of near-equilibrium fluctuations sampled by MD

simulations [29–33], as one can usually assume that the manifold of interest can be reasonably approximated

by its tangent hyperplane around an equilibrium point. However, the extent of conformational changes

involved in a folding process prohibits any a-priori linearization of the manifold, and non-linear techniques

need to be used¶. The fact that empirical reaction coordinates routinely used in protein folding studies can

not be reduced to a linear combination of the Cartesian coordinates underscores the inadequacy of linear

dimensionality reduction techniques to characterize a folding landscape.

3.1 The Underlying Idea: Isomap Algorithm

Although several non-linear dimensionality reduction techniques have been proposed (especially in the con-

text of image analysis [34], speech recognition [35], visualizing word usages [36], climate data analy-

sis [37, 38]) the development of new methods is still an active area of research. The technique we use

here for the characterization of folding landscapes is based upon the recently proposed Isomap algorithm

[39]. The basic idea of Isomap is to define a low-dimensional embedding that preserves as best as possible

“geodesic distances” between all pairs of data points in the sample under consideration [39]. Since we start

from the assumption that our data lie on a low-dimensional manifold, a good approximation of the “geodesic

distance” between a general pair of points, say x and y, on the manifold can be obtained by adding up the

short distances connecting neighboring points throughout the shortest sequence of segments connecting x

and y. This assumption implies that the geodesic distance for a couple of neighboring points can be approxi-

mated by the distance between them in the initial (high dimensional) space. Figure 1 illustrates this idea on a

¶One of the technical disadvantage of PCA is that it works on the covariance matrix of mean-centered data, thus requiring the
data to be of an euclidean nature, since it uses coordinates to compute the optimal projections. This in turn prompts the need for
alignment of the whole set of conformations with some ”reference” protein conformation to allow the aligned Cartesian coordinates
to be used as the input space. The alignement biases the principal components by centering them around the reference structure.
The nonlinear method we consider here preserves the original RMSD distance between conformations in a global sense, and does
not rely on a reference structure and Cartesian coordinates.
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simple case of embedding. The data points shown in Figure 1(a) lie on a 2-dimensional torus embedded in a

3-dimensional space. The application of the Isomap algorithm to this set of data produces the 2-dimensional

manifold shown in Figure 1(b), where the network of neighboring points is also shown.

The approximation for the geodesic distance holds provided that the data represents a good sampling

of the embedded manifold (i.e., the sampling needs to be sufficiently dense). In addition the neighborhood

size cannot be too small or too large, that is, a robust definition of “neighboring points” is required. These

issues are discussed in details in the Supplementary Material, where several tests on the validity of the

approximations used are presented.

In practice, the Isomap algorithm consists of the following three steps:

i) First, all nearest neighboring points (according to some distance metric) are computed for each point. We

can either choose a fixed number of neighbors or fix a cut-off distance for a neighborhood around a point.

The nearest neighbors induce a graph where the nodes correspond to the data points. There exists an edge

between two nodes if they are nearest neighbors. The edges are weighted by the distance between them.

ii) The second step consists in computing the shortest paths between every pair of nodes. These shortest paths

approximate the geodesic distances within the underlying manifold.

iii) The final step is to apply Multidimensional Scaling‖ (MDS) to the matrix of pairwise shortest path dis-

tances to obtain a low-dimensional embedding.

The basic Isomap algorithm as described above suffers from two performance bottlenecks and can

not be directly applied to the study of folding reactions. The major bottleneck is the computation of the

shortest paths for all pairs. This operation requires O(kN2 logN) time, where k is the neighborhood size

(see Supplementary Material §C.4) and N the number of points. Another, relatively smaller bottleneck

is the eigenvalue calculation that is part of the MDS algorithm. Computing all eigenvalues takes O(N 3)

time, but computing just the first m eigenvalues, m � N, can be done much more efficiently using iterative

Arnoldi methods [40, 41]. These bottlenecks render computationally impossible the application of the

Isomap algorithm to study protein simulations, where the number of conformations sampled is generally

N � 100,000. We use here the basic idea of Isomap as a starting point to define a procedure amenable to

deal with very large sets of protein conformations and computationally efficient. The procedure we propose

‖Multidimensional Scaling computes an embedding such that distances in the embedding correspond to dissimilarities between
the original data points. The dissimilarity function used can be Euclidean distance (in which case PCA and MDS are equivalent),
but in general does not need to be a metric. All that is required of a dissimilarity function d(i, j) is that d(i, j) = d( j, i), it returns
0 if i = j, and is positive otherwise. The “geodesic distance” as defined in the text can be used as dissimilarity function. Given
a matrix of pairwise dissimilarities D, MDS computes the largest eigenvalues and corresponding eigenvectors of B = − 1

2 HD2H,
where H is the “centering matrix” (i.e., the sum of each row and column of B is 0). The embedding coordinates of point i are
(
√

λ1~v1, . . . ,
√

λd~vd), where λk and~vk are the kth largest eigenvalue and corresponding eigenvector of B.
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is outlined in next section.

Before we proceed to present our method and the results obtained in the application to the analysis of

folding simulations, it is worth mentioning another nonlinear dimensionality reduction technique that has re-

ceived much attention in recent years: Locally Linear Embedding (LLE) [42]. This algorithm computes an

embedding in three stages. Like Isomap, it first computes the nearest neighbors of each point. It then com-

putes the best possible linear construction of each point in terms of its neighbors. Given the reconstruction

weights associated with each point, the final step is then to compute embedding coordinates such that the

difference between the embedding coordinates and the reconstruction from the neighbors’ embedding coor-

dinates is minimized. This problem can be reduced to finding the smallest eigenvalues and corresponding

eigenvectors of a sparse matrix. Isomap and LLE algorithms may seem similar, but they are fundamentally

different. While Isomap preserves global properties (geodesic distances between points), LLE preserves

local properties by considering the differences between a point and its neighbors. LLE uses only sparse ma-

trices, but it requires the computation of the smallest eigenvalues. That unfortunately becomes much more

difficult than computing the largest eigenvalues (as in the Isomap algorithm) as the matrix size increases.

Basically, if the matrix is ill-conditioned (which tends to be the case if the intrinsic dimensionality is much

smaller than the dimensionality of the original space), the computation is limited by numerical precision

problems. The Isomap algorithm does not suffer from this problem. For all these reasons our procedure is

based upon the Isomap rather than the LLE algorithm.

4 Application of Nonlinear Dimensionality Reduction to Large Folding Sim-

ulation

As discussed in the previous section, the basic Isomap algorithm can not be straightforwardly applied to the

analysis of folding/unfolding trajectories. However, the algorithm becomes suited to this purpose when a

number of non-trivial modifications are introduced.

First of all, the computational bottlenecks present in Isomap can be strongly reduced by using land-

mark points, as has been proposed in recent literature [43, 44]. We designate nL data-points (i.e., protein

configurations) to be landmarks, where nL � N. Rather than computing all-pairs shortest paths, we just

compute the shortest path from each landmark to every other point. The use of landmarks reduces the com-

putational time by a factor nL/N. A slightly modified version of MDS then computes from the nL ×N

distance matrix an embedding for all N points. The intuition for landmark-based Isomap is that if the man-

ifold is low-dimensional, each point can be located by considering its distance to only a small number of
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landmarks. In theory, if nL ≥ d + 1 and the landmarks are in general position, then there are enough land-

marks to locate each point. If the landmarks are chosen randomly, then nL needs to be sufficiently larger

than d to guarantee stability (see section C.2 in the Supplementary Material).

Although it is more space– and time–efficient than the basic version of the algorithm, landmark-

based Isomap is still not practical to compute low-dimensional embeddings of large molecular trajectories

(typically > 100,000 conformations). To obtain a good coverage of the conformational manifold (that is

in turn essential to ensure the validity of the geodesic approximation, and to obtain accurate free energy

estimates), it is necessary to compute embeddings of very large trajectories.

We scale up the procedure by implementing the following three steps:

i) Filtering and reinsertion of redundant configurations:

The objective of the dimensionality reduction is to preserve the shape of the conformational manifold and

the density of samples on that manifold as best as possible. We expect that low free-energy areas on a

folding landscape will have a very high sampling density. The high number of conformations sampled

in these areas are redundant to infer the topology of the manifold under consideration. The recovery of

the embedded manifold becomes computationally efficient when most of the many similar conformations

visited along folding simulations are filtered out (see Supplementary Material C.4 for detail on the filtering

procedure). However, the density of states around a particular structure is an essential piece of information

for free energy calculations. Discarding configurations in high density regions does not significantly

affect the recovery of purely geometric information but strongly distorts calculations of thermodynamic

quantities on the embedded manifold. This problem is circumvented by reinserting all the discarded

conformations onto the embedded manifold after the embedding is found, in order to preserve the density

of state as a function of the newly found coordinates. The reinsertion of points on the embedded manifold

can be done by using a local fitting much in the spirit of the LLE procedure[42] described above. In

practice, the embedding coordinates of the filtered-out conformations are computed as follows. For a

conformation c to be reinserted we compute the k nearest neighbors –in the original space– among the

conformations used to compute the embedding. The next step is to express c as a weighted sum of its

neighbors as best as possible (see [42] for detail). Finally, we compute the new embedding coordinates of

c by applying the same weights to the corresponding embedding coordinates of the neighbors.

The insertion of conformations into a low-dimensional embedding can also be used to further enrich

the resolution of the landscape, for instance by adding configurations sampled at different temperatures

(that can be combined in free energy calculations [45, 46]). Moreover, the reinsertion of configurations

provides a way to test the robustness of the procedure to extract the low-dimensional embedding. If some
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of the configurations to be reinserted are in regions where their closest neighbors are in fact far apart, the

approximation used is not valid. In the application presented below all the configurations initially filtered

out could be reinserted without experiencing such a problem.

ii) Reducing the size of each conformation: The Isomap algorithm requires to determine the nearest neigh-

bors of each conformation. In the work presented here distance is measured using root-mean-square-

deviation (RMSD). This metric is relatively expensive to compute compared to, say, Euclidean distance∗∗.

Fortunately, we can use a lower bound on the RMSD between two conformations that can be computed

much faster. The bound is obtained by averaging the positions of groups of atoms, and computing the

RMSD of these averaged conformations. Further discussion on this point, a validation of the approxima-

tion involved, and a rigorous proof of this statement is provided in the Supplementary Material. It is worth

mentioning that this issue may be particularly relevant for the application of the dimensionality reduction

procedure to all-atom protein simulations.

iii) Computing the embedding in parallel on a cluster of machines: We have developed a parallel implemen-

tation of the algorithm. Our implementation uses MPI for inter-process communication and can be run on

a large cluster of machines.

The first two steps above involve approximations. The last step is exact. It entails transforming the

landmark Isomap algorithm into an output-equivalent parallel algorithm. The validation of these steps is

discussed in the Supplementary Material C.4, where more details on the motivation and implementation of

the procedure are also presented.

5 Results: Folding landscape of SH3 as a low-dimensional embedded mani-

fold

We tested the non-linear dimensionality reduction procedure outlined above by applying it to characterize

the protein folding landscape obtained from simulation of a coarse-grained model of src-SH3 domain. The

basic ideas and computational details of the model are briefly described in the Supplementary Material A,

and detailed in a recent publication [1], where a comparison of the results with experimental data is also

presented.

The purpose of the application presented here is not to further validate this coarse-grained protein

∗∗Computing RMSD involves: re-center all the conformations to the origin, computing a 3× 3 covariance matrix from the two
conformations under consideration, computing an optimal alignment from this covariance matrix, applying the alignment to one of
the conformations, and, finally, computing the Euclidean distance between the aligned conformations.
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model, rather to show how non-linear dimensionality reduction can be used to estimate the intrinsic di-

mensionality of the configurational space explored in folding simulations, and to “naturally” define a set of

orthogonal reaction coordinates associated to the relevant dimensions. Algorithm details and the values of

the parameters used are provided in the Supplementary Material C.4.

The performance of a dimensionality reduction procedure can be estimated by monitoring the residual

variance σr(d,n) as a function of the number, d, of dimensions considered for the embedded manifold.

Following the definition used in [39] the residual variance σr(d,n) can be computed as: σr(d,n) = 1−

R2(D̂d,Dn) where R(D̂d,Dn) is the correlation coefficient taken over all the entries of matrices D̂d and Dn.

The matrix D̂d contains all the pairwise distances as obtained on the d-dimensional embedding, while the

matrix Dn stores the corresponding geodesic distances as computed in the original (n-dimensional) space.

In the case of SH3 folding simulations that we are considering here, the original space has dimensionality

n = 3×57 = 171. The function σr(d,n) monotonically decreases as the number n of embedding dimensions

considered increases, up to the limit value σr(n,n) = 0 when d = n. By definition, the maximum possible

value of the residual variance is σr(d,n) = 1, if the distances computed on the d-dimensional embedded

manifold are completely uncorrelated with the geodesic distances computed in the original space. If σr(d,n)

drops close to zero for small values of d � n, then the space of interest can be well approximated by

considering only d embedding dimensions.

Figure 2 shows that the embedded landscape associated to the folding simulations of the coarse-

grained model of SH3 has extremely low residual variance (blue points), even when only one dimension is

considered. Namely, σr(1,n) ' 0.08, σr(2,n) ' 0.04, and σr(3,n) ' 0.02. These values give an estimate of

the “distortion” introduced when one, two, or three embedding dimensions are used as reaction coordinates

to describe the folding landscape. The small magnitude of these values is evident when they are compared

to the corresponding residual variance obtained when PCA is used on the same data (red points in Figure 2).

These results support the idea that the folding landscape of SH3 can be essentially described by one reaction

coordinate, in agreement with results from previous work [1, 47].

Free energy surfaces can be computed as a function of the embedding coordinates. Figure 3 shows

the free energy profile obtained when only the first dimension is used as a reaction coordinate for the folding

process. These results are obtained for a temperature very close to the folding temperature T f . One main

barrier separates the free energy minima corresponding to the unfolded and folded states, as expected in

a two-state folding process. On this reaction profile the transition state can be defined as the ensemble of

states with a value of the first embedding coordinate corresponding to the top of the free energy barrier.

For a two-state folding process the parameter Pf old provides a stringent test for the identification of the
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transition state ensemble [2, 8, 10, 14, 22, 23]. Each individual configuration around the free energy barrier

(namely, each conformation with a value of the first embedding coordinate x1 in the range −7 < x1 < 0)

is labeled with a value of Pf old by means of a set of 100 ancillary simulations starting from it. For each

small interval x1 ± dx1 an average value of Pf old is computed over all conformations with a corresponding

x1 within that interval, while the variance is reported as error bar. The inset of Figure 3 shows that the range

of values on the first embedding coordinate x1 ' −4 corresponding to the of the free energy barrier has

an associated value of Pf old ' 0.5. The red circle in the inset identifies the Pf old values corresponding to

the top of the free energy barrier (that is, around x1 ' −4). Remarkably, the transition state identified by

means of the 1-dimensional free energy profile F(x1) as a function of the first embedding coordinate, x1, is

in full agreement with the ensemble obtained by a thorough Pf old analysis: the top of the free energy barrier

corresponds to Pf old ' 0.5. The theoretical folding probability [48] Pt(x1) =
∫ xU

x1
exp(F(y)/kBT )dy

∫ xU
xN

exp(F(y)/kBT )dy associated to

the one-dimensional free energy F(x1) is also shown in the inset of Figure 3. The folding probability Pt is in

agreement with the calculated Pf old values on most of the interval considered (particularly, at the transition

state). Deviation between the average value of the calculated Pf old and the theoretical folding probability

Pt(x1) are observed around the folded state (x1 '−6) and can be explained in terms of the variation of free

energy along the second embedding dimension in this region (see Figure 4).

It is worth noting that for the protein model considered here the Pf old analysis required > 12,000 CPU

hours (Intel Xeon 2.2 GHz) and was performed for a small subset of configurations†† while the embedding

procedure was completed in < 500 CPU hours (less than 24 CPU hours running on 20 processors) and

provides information on the whole configurational space.

Not surprisingly, the transition state ensemble from the 1-dimensional embedded manifold of the SH3

model is also in good agreement with what obtained using the parameter Q as empirical reaction coordinate

(data not shown): previous studies have shown that Q is a robust reaction coordinate for some two-state

folding proteins [5, 10, 47], SH3 among them. However, this may not be the case in general, particularly for

more complex folding reactions where more than one reaction coordinates is needed.

Additional information on the folding process is obtained when the first two embedding dimen-

sions are considered as reaction coordinates in the free energy calculation. Figures 4(a)-(c) present the

2-dimensional embedded free energy landscape as a function of the first two embedding dimensions. Figure

4(a) shows a contour plot of the free energy. Again, as expected for a two-state folding protein, two distinct

free energy minima appear: a more localized one corresponding to the folded state, and one with a larger

††The Pf old parameter was computed for about 8000 protein configurations. The total number of configurations used in the
definition of the embedded free energy landscape is 1,818,000.
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basin corresponding to the unfolded state. The free energy gradient field is superimposed to the free energy

contour plot in Figure 4(b). The transition state ensemble on this 2-dimensional landscape can be defined by

considering the “Continental Divide”, that is, the separatrix between the basin corresponding to the folded

and unfolded states. In practice, a point on the landscape is considered in the basin of a given minimum if

the gradient flux starting from that point leads to the minimum. The transition state ensemble is then defined

as all regions on the landscape where gradient fluxes leading to opposite minima meet. The transition state

region so defined is depicted in Figure 4(b).

It is clear from the figure that the most populated folding route (defined by the minimum free energy

path on this landscape) closely follows the first embedding dimension. However, deviations from the main

folding route are probable, as a non-negligible amount of structures lie outside the minimum free energy

path (about 15% of structures lie within the the light orange free energy level on figure 4).

It is important to clarify that the existence of a main folding route doesn’t mean that the folding

mechanism follows a deterministic pathway where one single protein structure evolves into the next one

along the pathway. Each point along this route on the low-dimensional landscape represents a large ensemble

of structures that are not necessarily similar to each other. The fact that a single parameter (i.e., the first

embedding dimension, in this case) captures the evolution of folding process simply means that is possible

to define a “macroscopic” quantity condensing into a single number the common features of the ensemble

of structures populated at a given stage of the folding process. The first embedding coordinate describes the

evolution of this parameter from the unfolded to the folded ensembles.

Figure 4(c) presents the results from the Pf old analysis superimposed on the 2-dimensional embedded

landscape. The comparison of Figures 4 (b) and (c) reveals that the region with Pf old ' 0.5 matches the

separatrix region identified by the diverging gradient fluxes. The variance of Pf old measured in each 2-

dimensional interval (x1 ± dx1,x2 ± dx2) is δPf old ' 0.12, significantly lower than the variance δPf old '

0.2 observed in the 1-dimensional case (see Figure 3). The larger uncertainty obtained when only one

embedding dimension is considered accounts for the fluctuations observed along the second embedding

coordinate.

Finally, Figure 5 shows the free energy landscape obtained when the first three embedding dimensions

are considered as reaction coordinates. The third dimension spans a small range, less than 1/4 of the range

spanned by the first dimension. Moreover, deviations from the 2-dimensional landscape involve only high

free energy regions, that are populated with low probability. Similarly to the 2-dimensional landscape,

the lowest free energy regions clearly identify the main folding route, evolving along the first embedding

coordinate. Alternative routes have a lower probability (i.e., higher free energy).
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6 Conclusions

We propose a general procedure to obtain a low-dimensional free energy landscape associated with a sim-

ulated protein folding reaction. By using non-linear dimensionality reduction methods (based on Isomap

[39]) an embedded folding manifold is extracted from a large set (' 2,000,000) of protein conformations

sampled throughout extensive folding/unfolding simulations of a coarse-grained model of src-SH3. The

first few embedding coordinates provide a set of reaction coordinates independent of each other. The quality

of the embedding can be expressed as a function of the number of dimensions considered. This feature

provides an estimate of the error introduced when the first few d embedding dimensions are used as reac-

tion coordinates to describe the simulated folding process. As a consequence, it is possible to estimate the

intrinsic dimensionality of a simulated folding process.

The application of this procedure to the folding of a coarse-grained protein model of SH3 domain

reveals that its folding landscape is essentially one-dimensional. The first embedding dimension captures

the evolution of the folding process along the main folding route. However, additional features emerge

when two or three dimensions are considered. For instance, the two-dimensional free energy landscape as a

function of the first two embedding dimensions reveals deviations around the main folding route, populated

with a lower probability. The simulated folding reaction considered in this paper is known to be a two-

state folding process, where no intermediate states are significantly populated. For such kind of processes,

the calculation of the transition probability (or Pf old parameter) provides a strict a posteriori test for the

”goodness” of a reaction coordinate on the identification of the transition state ensemble. Remarkably, a

thorough Pf old analysis confirms that protein configurations in the transition state region as identified on

the embedded free energy landscape have Pf old ' 0.5. Moreover, fluctuations around this average value of

Pf old significantly decrease when the transition state region is identified on the two dimensional free energy

landscape (defined by means of the first two embedding coordinates), with respect to a one dimensional free

energy landscape (where only the first embedding coordinate is used). These results validate the use of the

first few embedding dimensions as optimal reaction coordinates to characterize the protein folding reaction,

at least for the protein model used here. Applications of this procedure to the characterization of the folding

mechanism of larger systems and more complex reactions are in progress.

Acknowledgments

This work was supported by grants from NSF (CC Career CHE-0349303, LK ITR-0205671, LK and CC

CCF-0523908 and CNS-0454333), ATP (003604-0010-2003), the Robert A. Welch Foundation (CC Nor-

14



man Hackermann Young Investigator award, and C-1570), and the Sloan Foundation (LK). The Rice Teras-

cale Cluster used for the calculations is supported by NSF under Grant EIA-0216467, Intel, and Hewlett

Packard.

We acknowledge Alessandro Mossa for contributions to initial stages of this project. We thank Peter

Wolynes, Attila Stzabo, Yannis Kevrekidis, Tolya Kolomeisky and Michele Vendruscolo for their insighful

comments, and members of Kavraki’s and Clementi’s groups for stimulating discussions.

References

[1] P. Das, S. Matysiak, and C. Clementi. Balancing energy and entropy: A minimalist model for the

characterization of protein folding landscapes. Proc. Natl Acad. Sci. USA, 102:10141–10146, 2005.

[2] R. Du, V.S. Pande, A.Yu. Grosberg, T. Tanaka, and E.I. Shakhnovich. On the transition coordinate for

protein folding. J. Chem. Phys., 108:334–350, 1998.

[3] G. Hummer. From transition paths to transition states and rate coefficients. J. Chem. Phys., 120:

516–523, 2004.

[4] R.B. Best and G. Hummer. Reaction coordinates and rates from transition paths. Proc. Natl Acad. Sci.

USA, 102:6732–6737, 2005.

[5] S.S. Cho, Y. Levy, and P.G. Wolynes. P versus q: Structural reaction coordinates capture protein

folding on smooth landscapes. Proc. Natl Acad. Sci. USA, 103:586–591, 2006.

[6] A. Baumketner, J-E. Shea, and Y. Hiwatari. Improved theoretical description of protein folding kinetics

from rotations in the phase space of relevant order parameters. J. Chem. Phys., 121:1114–1120, 2004.

[7] A. Ma and A.R. Dinner. An automatic method for identifying reaction coordinates in complex systems.

J Phys B, 109:6769–6779, 2005.

[8] Y.M. Rhee and V.S. Pande. One-dimensional reaction coordinate and the corresponding potential of

mean force from commitment probability distribution. J Phys B, 109:6780–6786, 2005.

[9] D.K. Klimov and D. Thirumalai. Progressing from folding trajectories to transition state ensemble in

proteins. Chem Phys, 307:251–258, 2004.

[10] C. Clementi, P.A. Jennings, and J.N. Onuchic. Prediction of folding mechanism for circular-permuted

proteins. J. Mol. Biol., 311:879–890, 2001.

15



[11] C. Clementi and S.S. Plotkin. The effects of nonnative interactions on protein folding rates: Theory

and simulation. Protein Sci, 13:1750–1766, 2004.

[12] V.I. Abkevich, A.M. Gutin, and E.I. Shakhnovich. A protein engineering analysis of the transition state

for protein folding: simulation in the lattice model. Fold. Des., 3:183–194, 1998.

[13] L.L. Chavez, J.N. Onuchic, and C. Clementi. Quantifying the roughness on the free energy landscape:

Entropic bottlenecks and protein folding rates. J Am Chem Soc, 126:8426–8432, 2004.

[14] N.V. Dokholyan, L. Li, F. Ding, and E.I. Shakhnovich. Topological determinants of protein folding.

Proc. Natl Acad. Sci. USA, 99:8637–8641, 2002.

[15] P. Das, C.J. Wilson, G. Fossati, P. Wittung-Stafshede, K.S. Matthews, and C. Clementi. Characteriza-

tion of the folding landscape of monomeric lactose repressor: Quantitative comparison of theory and

experiment. Proc. Natl Acad. Sci. USA, 102:14569–14574, 2005.

[16] J.D. Bryngelson and P.G. Wolynes. Intermediates and barrier crossing in a random energy model (with

applications to protein folding). J.Phys. Chem., 93:6902–6915, 1989.

[17] H. Nymeyer, A.E. Garcı́a, and J.N. Onuchic. Folding funnels and frustration in off-lattice minimalist

protein landscapes. Proc. Natl Acad. Sci. USA, 95:5921–5928, 1998.

[18] J.N. Onuchic, Z. Luthey-Schulten, and P.G. Wolynes. Theory of protein folding: the energy landscape

perspective. Annu Rev Phys Chem, 48:545–600, 1997.

[19] J-E. Shea and C.L. Brooks III. From folding theories to folding proteins: A review and assessment of

simulation studies of protein folding and unfolding. Annu Rev Phys Chem, 52:499–535, 2001.

[20] A.R. Ferst and S. Sato. φ -value analysis and the nature of protein-folding transition states. Proc. Natl

Acad. Sci. USA, 101:7976–7981, 2004.

[21] A.R. Fersht, R.J. Leatherbarrow, and T.N.C. Wells. Quantitative analysis of structure-activity relation-

ships in engineered proteins by linear free-energy relationships. Nature, 322:284–286, 1986.

[22] D. K. Klimov and D. Thirumalai. Multiple protein folding nuclei and the transition state ensemble in

two-state proteins. Proteins: Struct. Funct. Genet., 43:465–475, 2001.

[23] F. Ding, W. Guo, N. V. Dokholyan, E. I. Shakhnovich, and J-E Shea. Reconstruction of the src-sh3

protein domain transition state ensemble using multiscale molecular dynamics simulations. J. Mol.

Biol., 350:1035–1050, 2005.

16



[24] M. Kirby and L. Sirovich. Application of the karhunen-loeve procedure for the characterization of

human faces. IEEE Trans. Pattern Anal. Mach. Intell., 12:103–108, 1990.

[25] M.A. Turk and A.P. Pentland. Face recognition using eigenfaces. Proceedings of the IEEE Conference

in Computer Vision and Pattern Recognition, pages 586–591, 1991.

[26] M. Benito and D. Pena. Dimensionality reduction with image data. Lecture Notes in Computer Science,

3177:326–332, 2004.

[27] E. Cho, D. Kim, and S.Y. Lee. Posed face image synthesis using nonlinear manifold learning. Lecture

Notes in Computer Science, 2688:946–954, 2003.

[28] I.T. Jolliffe. Principal Components Analysis. Springer-Verlag, New York, 1986.

[29] S. Hayward, A. Kitao, and N. Go. Harmonic and anharmonic aspects in the dynamics of bpti - a

normal-mode analysis and principal component analysis. Protein Sci, 3:936–943, 1994.

[30] S. Hayward, A. Kitao, and H.J.C. Berendsen. Model-free methods of analyzing domain motions in

proteins from simulation: A comparison of normal mode analysis and molecular dynamics simulation

of lysozymeessential domain motions in barnase revealed by md simulations. Proteins: Struct. Funct.

Genet., 27:425–437, 1997.

[31] S.B. Nolde, A.S. Arseniev, V.Y. Orekhov, and M. Billeter. Essential domain motions in barnase re-

vealed by md simulations. Proteins: Struct. Funct. Genet., 46:250–258, 2002.

[32] Y. Levy and A. Caflisch. Flexibility of monomeric and dimeric hiv-1 protease. J Phys B, 107:3068–

3079, 2003.

[33] Phillips G.N.Jr. Teodoro, M. and L.E. Kavraki. Understanding protein flexibility through dimension-

ality reduction. J. Comp. Biol., 10:617–634, 2003.

[34] K. Q. Weinberger and L. K. Saul. Unsupervised learning of image manifolds by semidefinite pro-

gramming. Proceedings of the IEEE Conference in Computer Vision and Pattern Recognition, pages

988–995, 2004.

[35] M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation.

Neural Comp., 15:1373–1396, 2003.

17



[36] M.E Brand. Continuous nonlinear dimensionality reduction by kernel eigenmaps. In Proceedings of

the Eighteenth International Join Conference on Artificial Intelligence, pages 547–552, 2003.

[37] A. H. Monahan. Nonlinear principal component analysis by neural networks: Theory and application

to the lorenz system. J Climate, 13:821–835, 2000.

[38] A. Z. Gamez, C. S. Zhou, A. Timmermann, and J. Kurths. Nonlinear dimensionality reduction in

climate data. Nonlinear Processes in Geophysics, 11:393–398, 2004.

[39] J.B. Tenenbaum, V. de Silva, and J.C. Langford. A global geometric framework for nonlinear dimen-

sionality reduction. Science, 290(22):2319–2323, December 2000.

[40] W.E. Arnoldi. The principle of minimized iterations in the solution of the matrix eigenvalue problem.

Quarterly of Applied Mathematics, 9:17–29, 1951.

[41] Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, second edition, 2003.

[42] S.T. Roweis and L.K. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science,

290(22):2323–2326, December 2000.

[43] V. de Silva and J.B. Tenenbaum. Global versus local methods in nonlinear dimensionality reduction. In

S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural Information Processing Systems

15, pages 705–712. MIT Press, Cambridge, MA, 2002.

[44] V. de Silva and J.B. Tenenbaum. Sparse multidimensional scaling using landmark points. Technical

report, Stanford University, Mathematics Department, 2004.

[45] A.M. Ferrenberg and R.H. Swendsen. Optimized monte carlo data analysis. Phys. Rev. Lett., 63:

1185–1198, 1989.

[46] A.M. Ferrenberg and R.H. Swendsen. New monte carlo technique for studying phase transitions. Phys.

Rev. Lett., 61:2635–2638, 1988.

[47] C. Clementi, H. Nymeyer, and J.N. Onuchic. Topological and energetic factors: what determines the

structural details of the transition state ensemble and en-route intermediates for protein folding? An

investigation for small globular proteins. J. Mol. Biol., 298:937–953, 2000.

[48] Y.M. Rhee and V.S. Pande. On the role of chemical detail in simulating protein folding kinetics.

Chemical Physics, in press, 2006.

18



[49] V. P. Grantcharova and D. Baker. Folding dynamics of the src sh3 domain. Biochemistry, 36:15685–

15692, 1997.

[50] D.A. Pearlman, D.A. Case, J.W. Caldwell, W.S. Ross, T.E. Cheatam, D.M. Ferguson, and D.M. Singh.

Amber,v.4.1. 1984.

[51] B. Roux. The calculation of the potential of mean force using computer simulations. Comp Phys

Comm, 91:275–282, 1995.

[52] I. Lotan and F. Schwarzer. Approximation of protein structure for fast similarity measures.

J.Comp.Biol., 11(2–3):299–317, 2004.

[53] S. Brin. Near neighbor search in large metric spaces. In Proc. 21st Conf. on Very Large Databases,

pages 574–584, 1995.

[54] T.H. Cormen, C.E. Leiserson, R.R. Rivest, and C. Stein. Introduction to Algorithms. MCG, second

edition, 1990.

[55] K.J. Maschhoff and D.C. Sorensen. P ARPACK: An efficient portable large scale eigenvalue package

for distributed memory parallel architectures. In Proceedings of the Third International Workshop

on Applied Parallel Computing, Industrial Computation and Optimization, pages 478–486. Springer-

Verlag, 1996.

[56] R.B. Lehoucq, D.C. Sorensen, and C. Yang. ARPACK Users’ Guide: Solution of Large-Scale Eigen-

value Problems with Implicitly Restarted Arnoldi Methods. SIAM, 1998.

19



FIGURE CAPTIONS

FIGURE 1: A simple case of embedding: The data points (blue dots) shown in (a) “live” on

the 2-dimensional surface of the torus, although they are embedded on a 3-dimensional space. The

application of the Isomap algorithm [39] to this set of data defines two independent coordinates on

which all points are mapped. The resulting 2-dimensional embedded space is shown in (b). These two

embedding coordinates can not be reduced to a linear combination of the original coordinates. The

network of neighboring points (used to compute the geodesic distances) is shown both in the original

(a) and embedded (b) space.

FIGURE 2: Residual variance as a function of dimensions considered in the embedding, as obtained

when the Principle Component Analysis (blue dots) or our non-linear dimensionality reduction (red

points) –based on the idea of the Isomap algorithm [39]– are used to characterize the space sampled

in extensive folding/unfolding simulations of a src-SH3 protein model. The high residual variance

associated to PCA is not surprising, as linear dimensionality reduction methods can not be used to analyze

intrinsically nonlinear spaces such as the configurational space explored by a protein during folding. In

contrast, the low residual variance resulting from our nonlinear dimensionality reduction indicates that

this method can successfully define a few embedded coordinates that capture the essential dynamics of

the protein model. The residual variance drops very close to zero for more than 3 dimensions, indicating

that the first three embedded dimension suffice to describe the process.

FIGURE 3: One-dimensional free energy profile F(x1) as a function of the first embedded dimen-

sion, x1, as extracted from the dimensionality reduction procedure. One single barrier is detected around

the value x1 ' −4. The average value of Pf old associated to each small interval x1 ± dx1 ∈ (−7,0) is

plotted in the inset, as a function of x1. The error bar corresponds to the variance of Pf old for a given

value of x1. The continuous gray line is the theoretical folding probability Pt(x1) associated to the

one-dimensional free energy curve F(x1) (see text for detail). The red circle identify the Pf old and Pt

values corresponding to the top of the free energy barrier (that is, around x1 '−4): The transition state

ensemble identified by the one-dimensional free energy profile corresponds to Pf old ' Pt ' 0.5. Deviation

between the average Pf old and the theoretical folding probability Pt(x1) around the folded state can be

explained in terms of the fluctuations along the second embedding dimension (see Figure 4).

FIGURE 4: Two-dimensional free energy profile F(x1,x2) as a function of the first and second em-

bedded dimensions (x1, and x2, respectively) as extracted from the dimensionality reduction procedure.

The free energy is shown as a contour plot in (a). Each contour represents an increase of free energy

of 1kBT and colored according to the color map shown at the top of the figure (colors from red to blue
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indicate progressively decreasing free energy). The free energy gradient field is superimposed to the free

energy contour plot in (b). The thick gray line approximately locates the separatrix between the the

folded and unfolded state basins, where gradient fluxes leading to opposite minima meet. The results

from the Pf old analysis are superimposed on the 2-dimensional embedded landscape in (c). The average

value of Pf old at a given (x1,x2) position on the landscape is color-coded according to the color-map

shown at the top of the figure. Colors ranging from red to blue indicates values of Pf old increasing from

0 to 1. The comparison of (b) and (c) reveals that the region with Pf old ' 0.5 is fully consistent with

the separatrix region.

FIGURE 5: Free energy landscape obtained when the first three embedding dimensions are consid-

ered as reaction coordinates. Each isosurface marks an increase of free energy of 1kBT . A smaller range

of free energy than what used in Figure 4 is shown here, to simplify the image. The third embedded

dimension spans a much smaller range than the first two.
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SUPPLEMENTARY MATERIAL

A Molecular Dynamics Simulations

The dimensionality reduction method described in the paper is applied to analyze the folding landscape

of a coarse-grained model of src-SH3, a 57 residue protein domain that is known to fold in a two-state

fashion, and has been extensively studied both computationally [1, 11, 47] and experimentally [49]. The

coarse-grained model uses an off-lattice simplified representation of the protein, where each amino acid is

described by a single bead on a polymer chain located on the Cα position. The potential energy function is

comprised of a local and non-local term. The local potential term includes bond, angle and torsional energy

terms and is designed to have its absolute minimum in the native state, as in previous models (see e.g.,

[15, 47]). The non-local potential term describes the interaction between a residue pair separated by at least

three residues and is expressed using a pairwise standard 10-12 potential function. The energy parameters

of the non-local potential term are optimized by an iterative procedure where the stability of the native state

is maximized with respect to the compact non-native structures with low energy[1]. Details on the energy

function and the design procedure for the energy parameters can be found in ref. [1].

The folding/unfolding simulations are performed at constant temperature using the MD module SANDER

of the simulation package AMBER [50], properly adapted to deal with the minimalist protein representation.

B Calculation of Thermodynamic quantities

The weighted histogram analysis method (WHAM)[45, 46, 51] is used to combine simulation data at differ-

ent temperatures to estimate the density of states, which is then used to compute thermodynamic quantities

over a continuous range of temperatures. In particular, the WHAM procedure is applied to compute the

heat capacity as a function of temperature and the free energy profile as a function of one, two, or more

embedding reaction coordinates (as resulting from the dimensionality reduction procedure). The folding

temperature Tf is estimated as the temperature corresponding to the peak in the heat capacity curve.

C Computational Setup

As stated in the paper, our implementation is based on the landmark Isomap algorithm. Applying the “vanilla

version” of the Isomap algorithm would be completely impractical for any trajectory of interest. Both the

space and time requirements would be prohibitively large. In our simulations we have applied our algorithm
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to several MD trajectories, each with up to 606,000 conformations. The total memory needed to store the

pairwise distances for all pairs of conformations in such a trajectory is 6060002 ×8/10244 = 2.67 terabyte

(assuming that distances are stored in 8 bytes, the typical size of a double precision floating point number on

a 32-bit machine). Even distributed over 100 nodes, this is more memory than typically found on a cluster

node.

We provide here additional details on the definition and implementation of the nonlinear dimension-

ality reduction algorithm. Particularly, we discuss the approximations made and the testing performed to

ensure that these approximations hold for the application presented in the paper.

C.1 Reducing the size of each protein conformation

As mentioned in section 4, a lower bound for the RMSD distance can be obtained by averaging the positions

of groups of atoms, and computing the RMSD of these averaged conformations. A rigorous proof of this

statement is provided below (see section D). If we compute the lower bound by averaging every p atoms,

then the computation is approximately p times faster than the exact RMSD. This bound can be used in two

ways. First, it can be used in nearest neighbor queries to determine if two conformations are “close”. If

the lower bound on the RMSD is large, then the true RMSD is definitely large. Otherwise we compute the

true RMSD to check whether the conformations are really close together or not. Obviously, the tighter the

bound, the larger the performance improvement will be. If we end up computing both the approximate and

exact RMSD in practice, there is actually a performance loss. The overall performance gain for maintaining a

nearest neighbor data structure depends on how many atoms are averaged together as well as the distribution

of the conformations. In our experience for the application presented in this paper, the bound is in fact very

tight if we average over small groups of consecutive atoms. Figure C.1 shows the correlation between the

real RMSD and the RMSD lower bound obtained by averaging p atoms together (p = 1, . . . ,5), for 10,000

pairs of conformations selected uniformly at random from a MD trajectory of the SH3 model. These results

suggest a second use of the RMSD lower bound: we could use just the bound itself as an approximation of

the RMSD. This step would introduce an approximation, but allows to gain significant computational and

space savings. This approximation was not used to obtain the results presented in this paper. However, we

envision that it may be particularly useful in applications to larger protein systems and/or all-atom protein

configurations.
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Figure C.1: In order to evaluate the tightness of

the RMSD lower bound obtained by averaging

beads together, we compare the true RMSD

and the approximate RMSD obtained by av-

eraging p beads (p = 2, . . . ,5) for 10,000 ran-

domly chosen pairs of conformations. Differ-

ent colors correspond to different values of p.

The case p = 1 corresponds to the identity line

(drawn in black). The small approximation in-

troduced by averaging consecutive atoms al-

lows a faster, less memory intensive run.

C.2 Reducing the number of conformations

As stated in the text, to recover just the shape of the embedded manifold we do not need to preserve the

density of samples on that manifold. We filter out a large number of conformations in higher density ar-

eas before computing the low-dimensional embedding. Once we have an embedding we can reinsert the

conformations that were left out into the embedding, as described in the text (see section 4).

For the application presented in the paper we have used a priori information on the folded confor-

mation to filter out data from the folded state ensemble, that we know is a minimum of free energy, thus

populated with high probability. However, it is possible to generalize the approach in a way that does not

require any a priori information on the data, nor the existence of a well defined native state. Such an ap-

proach consists on filtering the conformations of a MD trajectory by an unbiased computational “tool”, as

for instance clustering or indexing data structures (such as trees) that group conformations by metric simi-

larity (using RMSD as the metric, for instance). Conformations lying in a densely populated area (according

to the tool used) can be discarded for later reinsertion. We are currently working on the development and

testing of a set of these computational tools.

Figure C.2 shows the function f (Q) used to filter out configuration for the src-SH3 simulation data

used in the paper. The parameter Q quantifies the similarity to the native structure (pdb structure 1FMK.pdb,

residues 84-140). For each configuration, with a corresponding Q value, the probability to be filtered out is

given by f (Q). This fraction is monotonically increasing with Q, with a sharp increase for large values of

Q, in such a way that only configurations with q > 0.7 can be discarded. For Q = 1 we reject 80% of the
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conformations, as all the fully folded configurations are highly similar to each other. Around 20% of the

conformations are removed in total.

Figure C.2: The function f (Q) used to fil-

ter out redundant conformations is plotted as

a function of Q, the fraction of native con-

tacts formed in a given structure. The value

f (Q) = 0 corresponds to not filtering out any

conformations. This choice of f (Q) is mo-

tivated by the fact that most conformations

with high Q-value are very similar to the native

structure (and to each other), and contribute

very little information to the large-scale mani-

fold shape. A different, more general strategy

can be used if no a priori information on the

data set is available.

C.3 Choice of distance measure

In this paper we use RMSD as a distance measure between protein conformations. The procedure presented

in the paper can accommodate different distance measures for the definition of geodesic. In principle, if the

data represent a dense sampling of the manifold, neighboring points are all very close to each other, and the

results are not strongly affected by the choice of the distance measure.

Another common distance measure for conformations is the difference in intra-molecular distances

(sometimes referred to as dRMS). This metric has as the advantage to be translation and orientation invariant;

that is, no alignment is necessary. However, for this metric we need to compare a number of distances that

is quadratic in the number of atoms.

Like for RMSD, this metric can be approximated by averaging atoms together. The averaging can

also be combined with performing PCA on the set of intramolecular distances to determine which residue

pairs contribute the most to the overall dRMS, in the same spirit of the approach proposed in [52]. The use

of a reduced set of residue pairs in the computation of dRMS can greatly reduce the computational time

associated to this distance measure.

Preliminary tests with this alternative definition of distance measure (based on dRMS) did not produce

any significant difference in the results, nor did show significant computational gain for the src-SH3 model

protein used in the paper. For this reason in the work presented here we have chosen RMSD as a distance
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metric, as its use is more common in the analysis of MD simulations.

C.4 Definition of Neighboring Network

We have tested the dependence of the results on the neighborhood size, as quantified by the parameter k. For

each conformation in our data set, we define a neighborhood as the k closest conformations to the selected

one.

Some care needs to be taken in the choice of k. If k is too small, the connectivity of the network may

decrease significantly, and the approximation of geodesics as the sum of distances connecting neighboring

points throughout the network may be affected. On the other side, increasing k to a very big number would

artificially “flatten out” the recovered manifold. In the limit k = N−1 the geodesic distance between any two

configurations reduces to the corresponding RMSD, and any nonlinearity of the dimensionality reduction is

lost. However, for a dense sampling of an intrinsically low-dimensional manifold, we expect the procedure

to be robust and results to be relatively insensitive to the exact value of k within a certain range of values.

Figure C.3: Residual variance as a function of

the number of dimensions, as obtained for dif-

ferent choices of the neighborhood size, k, for

the src-SH3 model protein we have used in

the paper. The resulting embedding appears

completely insensitive to the neighborhood size

within the range 5 ≤ k ≤ 9. The magnitude of

the residual variance should be compared to the

residual variance obtained from PCA, shown in

Figure 2 of the paper (note the different scale

on the y-axis in Figure 2).

Figure C.3 shows the residual variance as a function of the number of dimensions, as obtained for

different choices of k for the src-SH3 model protein we have used in the paper. The curves corresponding

to 5 ≤ k ≤ 9 all collapse into a single curve, suggesting that the embedded manifold as obtained from our

procedure is relatively insensitive to the neighborhood size within this range of k. The results presented in

the paper are obtained with k = 9.
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C.5 Number of Landmarks

As stated in the paper, the use of landmark points has been recently proposed [43, 44] to significantly

improve the efficiency of the Isomap algorithm when dealing with extremely large data sets.

We designate nL data-points (i.e., protein configurations in our case) to be landmarks and we compute

the shortest path from each landmark to every other point. Ideally, if the manifold being recovered were

truly d-dimensional, d + 1 independent landmarks (i.e. not lying on a d − 1-dimensional surface) should

yield a unique, correct placement of all the points on the manifold. In practice, however, since the data

are noisy and the true dimensionality of the manifold is unknown, a large number of landmarks must be

used. If the landmarks are chosen randomly, the number of landmarks needs to be sufficiently larger than

d to guarantee stability. In order to have a robust procedure, we use an increasing number of landmarks

Figure C.4: Residual variance as a function of

the number of dimensions, as obtained for dif-

ferent choices of the number of landmarks, nL,

used in the embedding procedure, for the src-

SH3 model protein used in the paper. The re-

sulting embedding appears robust against fur-

ther increase in the number of landmarks for

nL ≥ 4,650. Based on this test, we have se-

lected a number of landmarks nL = 5,000 for

the study presented in the paper.

and monitor the results. If the number of landmarks is sufficiently large, no performance improvement is

observed upon further increase. Figure C.4 shows the residual variance as a function of the number of

dimensions, as obtained when an increasing number of landmarks nL ∈ (3,000− 6,000) is used. Results

obtained for nL ≤ 4,500 have an associated error significantly larger than results for nL ≥ 4,650. Further

increasing the number of landmarks in the interval (4,650− 6,000) does not improve the quality of the

embedding. Based on this test, we have used a number of landmarks nL = 5,000 for the study presented in

the paper.

It is worth noticing that the overall number of configurations considered in the paper (for instance, the

total number of configurations used to compute the free energy surfaces shown in Figure 4) is ' 2,000,000.
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C.6 Parallelizing the Isomap Algorithm

Any practical application of the Isomap algorithm to real molecular trajectories will require some form of

parallelization both to fit the entire trajectory in memory and to achieve non-trivial speedups in the com-

putation. Broadly, Isomap is divided into three main stages that can be parallelized in different ways; our

approach was to do so as follows.

1. Building the neighborhood graph. Since we are using RMSD as our distance measure, which is non-

Euclidean, we are limited in the choice of data structure to use. In particular, k-d trees and their

derivatives are not suitable for this metric. Instead, we use a variant of the Geometric Near-Neighbor

Access Tree (GNAT) [53]. Each processor can then build a partial neighborhood for its own points

(conformations) using a locally built tree as an index, and then ask other processors for neighbors of

its points, merging the results into a list of true k-nearest neighbors for each point.

2. Computing Geodesics. The shortest paths between landmark points and all points can be computed

from the neighborhood graph constructed in the first stage by using any graph search algorithm. Our

implementation uses Dijkstra’s algorithm [54] to do so, and since all processes have a copy of the

neighborhood graph this can be done without the need for communication.

3. Solving the MDS eigenvalue problem. Each process has a fraction of the rows of the squared distance

matrix between landmarks and all conformations. The eigenvector calculations are performed using

P ARPACK [55], a parallel version of the ARPACK library [56] based on iterative Arnoldi meth-

ods. From the eigenvectors and eigenvalues, the embedding coordinates can be computed on each

processor.

D Proof for the Fast Lower-Bound on RMSD

Let d(A,B) denote the squared RMSD between two conformations A and B. Conformations are represented

by 3× n matrices, where n is the number of atoms. Column i of each matrix contains the position of atom

i. Assume we can write n = p× q, where p and q are integers. Suppose we create conformations Ac and

Bc consisting of q “super-atoms” whose positions are obtained by averaging every p atoms. We can write
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Ac = AC and Bc = BC, where C is a n×q matrix of the following form:

C =
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1/p
...

1/p
. . .

1/p
...

1/p























































. (D.1)

Theorem 1. The RMSD of the averaged conformations, d(Ac,Bc), is a lower bound for the RMSD of the

original conformations, d(A,B).

Proof. We can write d(A,B) as 1
n‖A−RB‖2

F , where ‖·‖F denotes the Frobenius norm‡‡, and R is the rotation

matrix that minimizes this norm for given A and B. Similarly, let Rc be the rotation matrix that minimizes

‖Ac −RcBc‖. It follows that

d(Ac,Bc) = 1
q‖Ac −RcBc‖

2
F ≤ 1

q‖Ac −RBc‖
2
F = 1

q‖(A−RB)C‖2
F = 1

q trace(XCCT XT ), (D.2)

where X = A−RB. The matrix CCT is a block diagonal matrix, where each block has size p× p and all

elements of each block are equal to 1/p2. We will show that each element of the diagonal of 1
q XCCT XT

is smaller than the corresponding element of 1
n XXT . This is a sufficient condition for d(Ac,Bc) ≤ d(A,B).

Let Y = CCT XT . We will show that the first diagonal element of Z̃ = 1
q XY is smaller than the first diagonal

element of Z = 1
n XXT ; the proof for the other elements is analogous. The first diagonal element of Z̃ can be

written as

z̃11 = 1
q ∑

i

x1iyi1 = 1
q

(

(x11 . . .x1p)(y11 . . .yp1)T +(x1(p+1) . . .x1(2p))(y(p+1)1 . . .y(2p)1)
T + . . .

)

(D.3)

‡‡The Frobenius norm of a matrix M is defined as the square root of the sum of the squared elements of M: ‖M‖F =
√

∑i, j m2
i j
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The first diagonal element of Z can be written as

z11 = 1
n ∑

i

x2
1i = 1

q

(

(x11 . . .x1p)(x11 . . .x1p)T +(x1(p+1) . . .x1(2p))(x1(p+1) . . .x1(2p))
T + . . .

)

(D.4)

To show that z̃11 ≤ z11, it is sufficient to show that each term on the right-hand side of equation D.3 is less

than the corresponding term in equation D.4. We will show that this is true for the first terms; the proof for

the remaining terms is analogous. We need to show that

1
q(x11 . . .x1p)(y11 . . .yp1)T ≤ 1

n(x11 . . .x1p)(x11 . . .x1p)T = 1
n

p

∑
i=1

x2
1i (D.5)

By expanding CCT XT we see that y11 = . . . = yp1 = 1
p2 ∑p

i=1 x1i. It follows that

1
q(x11 . . .x1p)(y11 . . .yp1)T = 1

np

(

p

∑
i=1

x1i
)2

≤ 1
n

p

∑
i=1

x2
1i. (D.6)

The difference between the right side and left side of the inequality is proportional to the variance of

x1i, . . . ,x1p. This gives us an intuitive interpretation of the tightness of the bound.
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