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I. Introduction

Robots require novel reasoning systems to achieve complex
objectives in new environments. Everyday activities in the

physical world couple discrete and continuous reasoning. For
example, to set the table in Fig. 1, the robot must make discrete
decisions about which objects to pick and the order in which to
do so, and execute these decisions by computing continuous
motions to reach objects or desired locations. Robotics has
traditionally treated these issues in isolation. Reasoning about
discrete events is referred to as task planning while reasoning
about and computing continuous motions is the realm of
motion planning. However, several recent works have shown
that separating task planning from motion planning—that is
finding first a series of actions that will later be executed
through continuous motion—is problematic; for example, the
next discrete action may specify picking an object, but there
may be no continuous motion for the robot to bring its hand
to a configuration that can actually grasp the object to pick
it up. Instead, Task–Motion Planning (TMP) tightly couples
task planning and motion planning, producing a sequence of
steps that can actually be executed by a real robot to bring
the world from an initial to a final state. This article provides
an introduction to TMP and discusses the implementation and
use of an open-source TMP framework that is adaptable to
new robots, scenarios, and algorithms.

TMP presents challenges both in algorithmic design and
software engineering. Interaction between the discrete, task
component and the continuous, motion component imposes
requirements not faced by stand-alone task planners or motion
planners. The planner may need to consider alternate task
plans in an efficient way until finding one that can actually be
executed by the robot at hand, whereas typical task planners
generate only a single plan. In addition, actions where the
robot grasps and rearranges objects will change the kinematics
and configuration space in which the robot can move, whereas
typical motion planners assume a fixed configuration space.
Thus, we cannot expect to combine existing tools for isolated
task planning and motion planning and produce frameworks
that can consistently use high-level specifications of behavior
to produce motion. Instead, we must handle the possible
interactions of discrete and continuous components to identify
task plans and executable motions.

The Task–Motion Kit (TMKit)1 is an end-to-end system
for probabilistically complete task–motion planning and real-
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Figure 1: An example Task–Motion Planning problem: setting
a table. The input for TMP includes (a) the start state, (b) the
goal state, and a set of allowable actions (e.g., pick, place,
etc.). TMP finds the output (c) which consists of a sequence
of discrete actions (the task plan) and their corresponding
continuous paths (or motion plans).

time execution. TMKit follows the high-level design shown
in Fig. 2 to implement the algorithm of [1], [2] and at the
same time provides a general framework to integrate multiple
methods for task planning, motion planning, and task–motion
interaction. Shared abstractions and data structures are funda-
mental aspects of TMKit that enable coupling of task planning,
motion planning, and real-time estimation and control. TMKit
is modular, extensible, and we are adapting it to additional
methods for TMP [3], [4]. Whenever appropriate, we employ
widely-used formats and protocols to promote compatibility.
The resulting system generates real-time, collision-free robot
motion from high-level specifications. To our knowledge, this
is the first publicly-available, general-purpose TMP frame-
work. Sharing this project with the community will encourage
the implementation of more TMP approaches and provide a
valuable tool for the development and comparison of related
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techniques.

II. Background

A. Task Planning

Task planning identifies a sequence of discrete actions that
change an initial state into a desired goal state or condition,
given a task domain that defines the available actions and
their preconditions and effects (see Sec. IV-A). This field
evolved largely from pioneering work on the Stanford Re-
search Institute Planning System (STRIPS) [5]. The leading
approaches for efficient task planning are heuristic search [6]
and constraint satisfaction [7].

Off-the-shelf task planners typically focus on efficiently
finding a single plan. In contrast, TMP often requires search
through multiple, alternate task plans as discussed in the in-
troduction. This raises an inherent challenge: motion planners
used to compute paths are at best probabilistically complete for
high-dimensional systems. Consequently, we cannot generally
prove the non-existence of corresponding motion plans. To
address this challenge, our system does not use an off-the-
shelf task planner but rather employs a newly-introduced task
planner capable of efficiently generating alternate plans.

B. Motion Planning

Motion planning identifies a continuous path of valid
configurations—i.e., joint positions—from an initial state to
a desired goal state (see Sec. IV-B). Sampling-based motion
planners are widely used for high-dimensional systems [8].
Such sampling-based planners offer probabilistic complete-
ness, guaranteeing that the planner will eventually find a
solution if one exists. However, if solution does not exist, a
sampling-based planner cannot prove this negative; in such
case, the planner would not terminate or would run until
a timeout. Motion planners based on gradient descent or
optimization are also common and highly efficient, but they
do not offer the same probabilistic completeness guarantees as
the sampling-based motion planners. This work uses sampling-
based planners that offer probabilistic completeness guarantees
because probabilistic completeness of the overall framework
is a desired property. Conveniently, high-quality, open source
implementations of such planners are available [9]. Future in-
tegration of alternate motion planning approaches is possible,
with their accompanying set of trade-offs, but the integration
of motion planners in TMP needs special attention to address
the coupling of task planning and motion planning.

Off-the-shelf motion planning frameworks often abstract the
details of robot kinematics or assume the kinematic equations
are fixed or change infrequently, with only configurations
changing during planning [9]. In contrast, TMP requires rapid
updates to kinematic equations; as the robot grasps and trans-
fers objects, these objects’ poses change between fixed values
and functions of robot configuration. Moreover, these changes
may involve more than just the individual grasped object, such
as in the case of moving a tray or pushing a cart containing
other objects. Consequently, kinematic representations capable
of efficient updates are required for TMP (see Sec. IV-B).

C. Task–Motion Planning
Task–Motion Planning (TMP) takes an initial state to a desired
goal state through the concurrent or interleaved production
of high-level, discrete action sequences via task planning and
continuous, collision-free paths via motion planning.

Most prior work on TMP focuses on computational per-
formance rather than completeness or generality, which is
emphasized in this work. [10] applies geometric constraints to
limit the motion planning space or prove motion infeasibility
in special cases. Hierarchical Planning in the Now (HPN)
[11] interleaves planning and execution, reducing search depth
but requiring reversible actions—e.g., rearranging objects but
not pouring a cup down a drain—when backtracking. [12]
extends a hierarchical task planner with geometric primitives,
using shared literals that relate task-level symbols with motion-
level geometric entities. [13] interfaces an off-the-shelf task
planner and motion planning using a heuristic to remove
objects that potentially block the robot’s path. [14] formulates
the motion side of TMP as a constraint satisfaction problem
over a discretized, preprocessed subset of the configuration
space. The Robosynth framework [15] uses a Satisfiability
Modulo Theories (SMT) solver to generate task and motion
plans from a static roadmap, employing plan outlines to guide
the planning process. FFRob [16] develops an FF-like [6] task-
layer heuristic based on a lazily-expanded roadmap. Overall,
these methods set aside the broad challenge of ensuring prob-
abilistic completeness that arises from interactions between
the task and motion layers. In contrast, the framework we
implement focuses on probabilistically complete TMP.

A smaller number of task and motion planners do achieve
probabilistic completeness. The aSyMov planner [17] com-
bines a heuristic-search task planner with lazily-expanded
roadmaps. Our implementation of [1], [2] in TMKit operates
differently at the task level, motion level, and interface level,
yielding different performance characteristics than aSyMov.
For example, aSyMov’s composed roadmaps could be amor-
tized over multiple runs but composing roadmaps for object
interactions may be expensive. In contrast, [1], [2] finds
a new motion plan each run, but efficiently updates scene
data structures to handle object interaction (see Sec. IV-B).
Furthermore, TMKit is extensible to both forward-search [6]
and constraint-based [7] task planners.

While source code is available for some specific methods
such as [13], we believe that TMKit is the first publicly
available framework that is extensible to multiple methods
and domains. A key to this extensibility is our abstraction
of the interaction between task and motion layers via the
domain semantics (see Sec. IV-C and Fig. 6) that enable
the introduction of new actions and domains without any
necessary changes to the framework itself.

D. Plan Execution
Motion planners make certain assumptions to achieve suffi-
cient performance, and the execution step must correct those
assumptions in real-time. Specifically, motion planners typi-
cally assume (1) a given model for the kinematics and geome-
try of the robot and environment and (2) that motion between
nearby joint configurations is possible. In reality, geometric
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models contain numerous errors due to imprecise lengths,
encoder calibration error, flexing of assumedly rigid bodies,
inaccurate object detection, inaccurate camera calibration, etc.
Thus, despite the precision or repeatability of many robots,
accurate motion to correct poses still presents challenges. In
addition, robot motion is subject to dynamic constraints on
velocity, force, current, etc. The execution step must track the
planned path in a way that is physically feasible, and it must
correct for the inevitable and sundry errors.

III. Overview of Task–Motion Planning

We first discuss the high-level approach to task–motion plan-
ning and execution shown in Fig. 2.

A. Input to TMP

The input to TMP includes the discrete Task Domain, the
continuous Motion Domain, and the coupling of these two
sides.

1) Task Domain: The task domain defines the discrete ac-
tions the robot can take, including their preconditions and ef-
fects. For example, the action pick-up may have a precondi-
tion that the object is on the table and the effect that the object
is in the robot’s hand. Sec. IV-A describes our implementation
of task domains, and Fig. 6 provides a complete example of
the pick-up action with preconditions and effects.

2) Motion Domain: The motion domain defines the 3-
dimensional (3D) positions objects in the environment, the
kinematic structure of robot joints, and the geometry—i.e.,
meshes—of objects and robot links. Collectively, we call the
robot and environment the scene and the tree or graph of the
local coordinate frames of environment objects and robot links
the scene graph. A scene graph defines the configuration space
of a robot. For a given configuration, computing the forward
kinematics of each frame in the scene graph provides the mesh
positions; then, specialized collision checkers [18] determine
whether those positions are in collision.

We specify both an initial scene—consisting of the robot
and environment—and a goal scene for the planner. Then,
we map from these scenes to task states using the domain
semantics.

3) Domain Semantics: The domain semantics defines the
coupling between the discrete task domain and the continuous
motion domain. Two types of functions are necessary. First, we
need a function to map from a scene graph to a discrete state
for the task planner. For example, if the scene graph defines
some object a’s position relative to the robot’s hand, the
domain semantics would set a discrete variable holding-a,
indicating that the robot is holding object a, to true. Second,
we need a function to map from a discrete task action to a
motion planning problem (start and goal states) for the motion
planner. For example, the pick-up action would start at the
robot’s current configuration and move to a goal that is a
grasping configuration for the object to be picked up. Sec. IV-C
discusses our implementation of the domain semantics.

B. Task–Motion Planner
The Task–Motion Planner finds the sequence of discrete task
actions from the task domain and their corresponding motion
plans, based on the domain semantics, that will take the system
from some initial state or scene to a desired state or scene. This
planning process is structured as an alternation between task
planning to identify the discrete actions and motion planning to
identify the paths for each action. Some task plans may include
infeasible actions, e.g., picking up an object that is blocked by
something in front of it. In this case, motion planning would
fail—that is, exceed a timeout—and we would go back to the
task planner to find a different task plan, e.g., first moving
the blocking object out of the way. Sec. IV-C discusses our
implementation of a Task–Motion Planner.

C. Task–Motion Control
The Task–Motion Control phase executes the plan in real-time.
Each path produced by the motion planner is a sequence of
waypoints that the robot must move through. To execute this
motion plan, we compute a reference position, velocity, etc.
for the robot at each timestep by interpolating between the
waypoints. In addition, we must correct positioning error in
following the motion plan through feedback control. Finally,
we operate the gripper to grasp and release objects as specified
by the actions in the plan. Sec. IV-D discusses our control and
execution implementation.

IV. TMKit Implementation
We now discuss our task–motion system TMKit. This section
targets the researcher interested in TMKit for the algorithm of
[1], [2] or for implementing new TMP approaches. Fig. 3 out-
lines the major software components in our system implemen-
tation. TMP involves many different software modules, and
our design choices were also influenced by the need to support
real-time execution. The key to integrate these components
in our system was identifying the appropriate abstractions
for task and motion domains and relating these abstractions
through the domain semantics. Using these suitable abstrac-
tions not only eases development but also increases flexibility
by providing a uniform interface to domain information such
as task state or scene geometry.

A. Task Domain
We represent the task domain by the Task Language (a)
in Fig. 3. Generally, task domains are specified using a
variety of notations and logics, but at a fundamental level, all
these representations define some type of transition system,
automaton, or formal language. The de facto standard syntax
for task planning is the Planning Domain Definition Language
(PDDL) [19], which our framework also takes as input. PDDL
(see Fig. 6) defines parameterized actions with preconditions
and effects based on first-order logic. Our task planning
algorithm [1], [2], however, is not specific to PDDL and
assumes only that the state space is finite and compactly
represented with a set of variables. Thus, new task domains can
be created in PDDL, and the underlying algorithm is adaptable
to other notions as well.
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Figure 2: High-Level Planning and Execution Block Diagram. The inputs are the task domain definition (see Sec. IV-A Fig. 6),
the environment and robot geometries, combined to produce the scene graph (see Sec. IV-B and Fig. 4), and the domain
semantics that relate the task and motion layers (see Sec. IV-C and Fig. 6). The Task–Motion Planner generates a plan based
on these inputs. The Task–Motion Control layer executes the plan, sharing a geometric representation—the scene graph—with
the planning layer. The control output u drives the robot, resulting in configuration q. In a parallel layer, we visualize the
system at simulated configuration q̃. Sec. III provides an overview of the system, and Sec. IV discusses its implementation.
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Figure 3: Map of software components. The key data structures are (a) the task language (see Sec. IV-A) and (b) the scene
graph (see Sec. IV-B). These data structures are connected by (c) the domain semantics definitions (see Sec. IV-C). (d) the
scene compiler is also an important component (see Fig. 5). This system integrates the following external tools and formats:
BLAS/LAPACK (Basic Linear Algebra Subprograms / Linear Algebra PACKage): High-performance linear algebra routines
with many vendor-optimized implementations. COLLADA (COLLAborative Design Activity): An interchange file format for
3D applications. FCL (Flexible Collision Library): A popular software library for collision checking. GCC (GNU Compiler
Collection): A compiler suite from the GNU project. OMPL (Open Motion Planning Library): A popular software library
for sampling-based motion planning. POV-Ray (Persistence Of Vision RAYtracer): An open source ray-tracing program.
PDDL (Planning Domain Definition Language): Cross-platform library to access graphics, audio, mouse, keyboard, etc. SDL
(Simple DirectMedia Layer): Cross-platform library to access graphics, audio, mouse, keyboard, etc. SMT (Satisfiability
Modulo Theories): A decision problem combining logic and additional theories, e.g. integer constraints, lists, arrays. STL
(STereoLithography): A file format for CAD software. URDF (Universal Robot Definition Format): XML file type for robot
kinematics. XML (eXtensible Markup Language): A tree-structured, general-purpose file format. Z3: A high-performance
theorem prover/SMT solver.

https://github.com/Z3Prover/z3
http://smtlib.cs.uiowa.edu/
https://www.libsdl.org/
https://www.opengl.org/
http://www.povray.org/
http://ompl.kavrakilab.org/
https://github.com/flexible-collision-library
http://www.netlib.org/blas/
http://www.netlib.org/lapack/
https://www.blender.org/
https://gcc.gnu.org/
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B. Motion Domain
The motion domain is represented by the scene graph (b) in
Fig. 3. Motion planning algorithms are typically defined in
terms of abstract configuration spaces [9], while robot manip-
ulators are modeled as kinematic trees or scene graphs of joints
and links in packages such as OpenRave2, Orocos KDL3, and
MoveIt!4. Existing implementations, however, focus on only
a subset of the TMP pipeline shown in Fig. 2. Consequently,
TMKit, uses a new, streamlined scene graph representation
that enables direct task–motion translation, efficient updates,
and real-time kinematics.

The scene graph is a tree representing relative Cartesian
poses, with data attached at each node for geometry (e.g.,
meshes), inertial parameters, joint limits, etc. Fig. 4 shows how
the scene graph edges correspond to symbolic multiplication
or chaining of transformations in the Cartesian space. Starting
from the global root “0” (see Fig. 4) and multiplying the
relative pose of each local coordinate frame along a chain
yields the global pose of the frame at the end of the chain.
Picking and placing objects, common operations in TMP, are
represented by reparenting a frame in the scene graph, i.e.,
changing the object’s parent between the hand and a support
surface such as a table.

We now discuss the details of implementing the scene graph
data structure, which provides essential infrastructure for TMP
systems. Our scene graph implementation offers a unique set
of features that make it suitable for both TMP and real-time
execution. We use two variations on the structure: a mutable
version and a persistent, i.e., purely functional version. Both
variations can be efficiently updated at runtime, e.g., when
the robot picks up a tray of objects, and they share underlying
data for geometric objects via reference counting so that data
for large meshes is not copied. The mutable version is based
on indexed arrays and avoids heap allocations—which may
impose unacceptable pauses—after construction, making it
suitable for real-time operation. The persistent version is based
on weight-balanced binary trees that efficiently create partial
copies on updates, useful during planning when we backtrack
to a previous point in the search and a previous version of
the scene graph. To enable efficient multi-threaded access,
e.g., when performing inverse kinematics, motion planning,
and visualization in separate threads, we separate the scene
graph object from the data for states and configurations.

We also provide a compiler (see Fig. 5) enabling scene
graphs to be specified in domain specific languages. Our
compiler supports the widely-used ROS Universal Robot Def-
inition Format (URDF). Additionally, due to the difficulty of
writing URDF by hand, we also introduce a new, compact
scene file syntax (see Fig. 6). Compiling scenes offers several
performance and administrative advantages:

1) Compiled scenes are fast to load because the operat-
ing system directly maps into memory (via mmap) the
included mesh data, eliminating runtime parsing and
processing.

2http://openrave.org/
3http://www.orocos.org/kdl
4http://moveit.ros.org

2) Compiled scenes reduce memory use compared to run-
time parsing when multiple operating system processes
operate on the same scene, because the memory mapped
scene graphs in different processes share physical mem-
ory.

3) Compiled scenes are easy to distribute to other machines,
e.g., a cluster, which may lack scene sources, utilities, or
support libraries. Only the executable or shared library is
required to load the compiled scene, reducing potential
runtime dependencies.

4) Compiled scenes avoid the need to include large parsing
libraries, e.g., an XML parser, in real-time processes and
reduce the dynamic allocations necessary to load scene.

5) Multiple compiled scenes can be flexibly composed both
statically ahead-of-time and dynamically at run-time, im-
proving overall scene construction efficiency when some
portions of the scene are fixed and others changing. For
example, we can pre-compile the scene for the robot,
which remains constant based on the robot’s mechanical
design. However, the locations of objects on a table may
change frequently, so we can compose the pre-compiled
robot scene with the separate or dynamically-generated
scene for these objects.

The scene graph data structure and scene compiler provide
the necessary geometric support for TMP and plan execution.

C. Task–Motion Planning
Our TMP implementation follows the overall structure of
Fig. 2, based on the algorithm of [1], [2]. In the task layer,
we use an incremental, constraint-based task planner. In the
motion layer, we include a variety of sampling-based motion
planners through the Open Motion Planning Library (OMPL)
[9].

The key to achieving generality in our planner is the selec-
tion of abstractions. Our task languages can model arbitrary
finite state task domains, and our scene graphs can model
arbitrary rigid body robots and environments.

We relate the task and motion domains by defining a
Domain Semantics (see Fig. 3.c). The domain semantics
defines the conversion of the scene graph to a task state
and defines functions to refine high-level task actions by
computing the corresponding motion plans. Concretely, the
domain semantics in TMKit are functions written in Python
or Common Lisp. Fig. 4 includes an example of a task state
computed from a scene graph, and Fig. 6 contains an example
of a refinement function in the domain semantics for pick-
and-place manipulation. The same semantics definition may
be used across multiple scenes or problem instances. Changes
to the task domain, e.g., new actions, do require updating
the domain semantics but require no changes to the planner
itself. By abstracting task-motion interaction to these separate
domain semantics definitions, our planning system generalizes
across domains.

D. Output and Execution
The immediate output of our system is a Task–Motion plan
describing the sequence of task actions and corresponding
motion plans. We benchmark the performance and scalability

http://openrave.org/
http://www.orocos.org/kdl
http://moveit.ros.org
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Figure 4: The scene graph abstraction for a simplified version of the Baxter robot and the corresponding task state: (a) kinematic
equation to compute the right wrist pose. (b) kinematic equation to compute the left wrist pose. (c) the local coordinate frames
of the corresponding scene graph overlaid on the Baxter. (d) the task state corresponding to the scene graph for a pick-and-place
task domain, partially shown in Fig. 6. This state abstracts the object relationships in the scene graph. Note that the task state
is computed automatically via the Domain Semantics and that additional or different task predicates may be used by modifying
the Domain Semantics (see Sec. IV-C). The transform aSb is the relative Cartesian pose between parent a and child b. The
coordinate frame labels for Baxter consist of the left (l) or right (r) arm; the shoulder (s), elbow (e) or wrist (w); and the
zeroth (0), first (1), and second (2) joint. The other frame labels represent the global root (0), table (T ), or blocks (A, B, C).
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Figure 5: The scene graph compiler aarxc. (a) Compiler block diagram. The compiler includes parsers for scene files,
Wavefront OBJ meshes, and ROS URDF files. It uses the Blender 3D modeling program to convert a variety of meshes to the
conventional Wavefront OBJ format. The compiler translates the loaded scene graph to optimized C code for later fast loading
and real-time execution. It can also translate scene graphs to input for the POV-Ray raytracer for high-quality visualization.
(b) Compile times—including mesh processing, code generation, and C compilation—and load times for common robots using
Blender 2.77 and GCC 4.9.2 on an Intel R© CoreTM i7-4790. Example plans and planning times are presented in Fig. 6 and
Fig. 8. [1], [2].

of the overall approach in [1], [2]. Fig. 6 shows a fragment of
such a plan for the table-setting example, represented using
a plain-text, line-based file format, which is both human-
readable and can be efficiently parsed. Each line indicates
either a task action, the joints moved during a motion plan,
a waypoint in a motion plan, or a reparent operation, e.g.,
picking or placing an object by changing an edge in the scene
graph from the table to hand or vice versa. The resulting file
defines the interleaving of task actions and motion plans.

Finally, we execute the task–motion plan by interpolating
the given motion plans and performing the indicated reparent-

ings to grasp and release objects. There are numerous methods
to interpolate the waypoint sequence of a motion plan so
as to satisfy the physical limits of a robot, e.g., maximum
acceleration and velocity. Given any such interpolation, we use
a feedback control law to compute the command for robot:

q̇u(t) = q̇r(t)− k (qa(t)− qr(t)) (1)

where q̇u is the velocity command, q̇r is the reference velocity
from the interpolated waypoints, k is a feedback gain, qa is the
actual position, and qr is the interpolated reference position.

https://www.blender.org/
https://gcc.gnu.org/
http://www.povray.org/
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Finally we must communicate with the robot hardware at
each time step to retrieve the actual state qa and q̇a and to
send the velocity command q̇u. For example, we would use
Controller Area Network (CAN) bus message for the Schunk
LWA4, TCP for the Universal Robot, or ROS communication
for the Rethink Baxter.

V. Example Use Case
Fig. 6 illustrates an example use case of TMKit for a domain
such as the table setting in Fig. 1, including the planner’s
specific input and output.

1) Task Domain: The task domain block shows the
pick-up action, with its preconditions and effects. This
action picks up an object from a table, so the precondition
requires the object to be on the table and uncovered. The
effect is that robot holds the object and the object is not on
the table. The full task domain includes similar definitions for
other actions to put-down objects, unstack objects, etc.

2) Motion Domain: The motion domain block shows the
definition for a single object—a glass. The definition includes
the object’s relative position to its parent (the shelf) and the
object’s geometric mesh. The full task domain includes similar
definitions for the other glasses and bowls as well as the links
and joints of the robot.

3) Domain Semantics : The domain semantics block shows
the function to find a motion plan for the pick-up action.
This function computes the current position of the object, then
it attempts to find a motion plan to bring the robot’s hand
to a grasping pose for that object. If motion planning fails
(exceeds a timeout), the motion planning function generates an
exception that the task–motion planner will catch and handle
by finding a different task plan based on the feedback from
the motion planner.

4) Task–Motion Planner : The task–motion planner block
illustrates the alternation and feedback between task planning
and motion planning. The task planner identifies a high-
level plan. The motion planner attempts to find corresponding
paths. Failing to do so, the motion planner provides additional
constraints to the task planner which then finds a different task
plan. This process iterates until finding a task plan where all
actions have corresponding motion plans.

5) Task–Motion Plan: The task–motion plan block shows the
first two actions of the plan: picking and placing an object. The
first pick-up action includes the joint waypoints to move
the robot’s hand to the grasping position for an object, then
changes the object’s parent in the scene graph to the robot’s
hand. The second put-down action includes the waypoints to
move the robot’s hand and the grasped object to the desired
location, then (unshown) will change the object’s parent in
the scene graph to the table, placing the object. The full
task-motion plan contains the rest of the actions necessary
to achieve the desired goal.

6) Plan Execution: Fig. 7 and Fig. 8 show two example
task–motion plans and planning times, one for the Rethink

Robotics Baxter and one for the Universal Robots UR5. The
same overall framework produces the plan for each system.
We apply the framework in each case by using the URDF
model of the robot for the specific system.

These examples demonstrate the modularity and extensibil-
ity of TMKit. TMKit works on multiple robots, it supports
multiple types of actions—e.g., picking, placing, stacking,
pushing—and it handles coupling between objects—i.e., mov-
ing cans in a bin in Fig. 8. Additional benchmark results are
presented in [1], [2].

VI. Conclusion
We have presented a new software framework for Task–Motion
Planning (TMP) and execution, the Task–Motion Kit (TMKit).
TMKit is available under an open source, permissive license5.
We believe that TMKit is the first open source TMP framework
that is extensible to multiple domains, different planning
methods, and supports end-to-end planning and execution. Its
modular design enables TMKit to generalize across hardware
platforms, task domains, and TMP algorithms.

Our objective in this work was to produce a general-purpose,
easy-to-use, and extensible framework for TMP. There are
numerous avenues to improve and build upon this framework.
Going beyond our implemented method of [1], [2], we will
extend the feedback between the task and motion layers,
improve plan re-use, and incorporate additional rich constraint
capabilities. Already, we are adapting and integrating the
additional TMP methods of [3], [4] with TMKit. We hope
the community will find this end-to-end system both easy to
use and a helpful platform to demonstrate other methods for
TMP.

Currently, TMKit focuses on the geometric case of motion
planning, which is often sufficient for manipulation. Planning
with dynamics, e.g., considering torques in the planning layer,
may be necessary for other cases such as bipedal walking.
However, including dynamics during motion planning may
impact completeness [20], so careful analysis is necessary.
Improved considerations for planning with dynamics remains
an area of future work for TMKit.

An ongoing need in TMP is support to compare and
benchmark different TMP algorithms and implementations.
We believe that TMKit, as an extensible framework supporting
common formats such as PDDL and URDF, can help meet that
need. Furthermore, modular components such as the scene
graph compiler (see Fig. 5) could aid the development of
alternate TMP methods and implementations. We hope that
TMKit will be a useful tool for other researchers to evaluate
existing algorithms and extend to new approaches.
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(:a c t i o n pick-up
:parameters (?object)
:p r e c o n d i t i o n (and (clear ?object)

(ontable ?object)
(handempty))

: e f f e c t (and (not (ontable ?object))
(not (clear ?object))
(not (handempty))
(holding ?object)))

Task Domain

frame cup0 {
translation [25e-2, 25e-2, 0];
rpy [0, 0, pi/2];
parent "shelf3";
geometry {

mesh "glass.obj";
}

}

Motion Domain

def op_pick_up(scene, config, operator):
# The object to pick up
obj = operator[1]
# Initial state descriptor
initial = tm.op_nop(scene,config)
# Compute object pose
tf_obj = tm.op_tf_abs(initial,obj)
# Try to find motion plan to object
mp = motion_plan(initial, FRAME, tf_obj)
# Update scene graph with grasped object
return tm.op_reparent(mp, FRAME, obj)

Domain Semantics

Task-Motion Planner

TASK
PLANNER

(USING Z3)

MOTION
PLANNER

(USING OMPL)

candidate task plan

motion feasibility constraints

# Action: pick up object wine3 from location (shelf3 0 -1)
a PICK-UP wine3 shelf3 0 -1
# Motion Plan: starts with list of configuration variables
m r_s0 r_s1 r_e0 r_e1 r_w0 r_w1 r_w2
# Next are the waypoints of the motion plan
p 0.157 -0.785 0.0 0.785 0.0 1.57 0.0
p 0.445 -1.079 -2.09 1.544 0.535 0.252 -0.099
# Reparent operation modifies scene graph
r wine3 end_effector_glass
# Action: put down object wine3 at location (table -1 -1)
a PUT-DOWN wine3 table -1 -1
m r_s0 r_s1 r_e0 r_e1 r_w0 r_w1 r_w2
p 0.445 -1.079 -2.099 1.544 0.535 0.252 -0.099
p 0.497 -0.980 -1.927 1.545 0.490 -0.016 -0.194
# ...

Task–Motion Plan

Figure 6: Task–Motion Planner Implementation Diagram, showing fragments of the planner’s input—i.e., the task domain,
domain semantics, and motion domain—and output—i.e., the task–motion plan. Sec. V discusses this example.
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[9] I. Şucan, M. Moll, and L. E. Kavraki, “The open motion planning
library,” Robotics & Automation Magazine, vol. 19, no. 4, pp. 72–82,
2012.

[10] F. Lagriffoul and B. Andres, “Combining task and motion planning: A
culprit detection problem,” Intl. J. of Robotics Research, vol. 35, pp.
890–927, July 2016.

[11] L. P. Kaelbling and T. Lozano-Pérez, “Integrated task and motion
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(a) (b) (c)

(d) (e) (f)

Figure 7: Example task–motion plan to set a table using the Rethink Robotics Baxter. Average planning time for 10 trials was
64.8 s on an Intel R© CoreTM i7-4790. (a) the initial state. (b) picking the first glass. (c) placing the first glass. (d) placing the
second glass. (e) placing the first bowl. (f) placing the second bowl.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 8: Example task–motion plan to load and move a bin using the Universal Robots UR5. The same overall framework
with a different URDF for the robot produces this plan for a different system. Average planning time for 10 trials was 8.78 s
on an Intel R© CoreTM i7-4790. (a)-(i) simulated execution. (j)-(r) physical execution.
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