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Abstract
We present a new constraint-based framework for task and motion planning (TMP). Our approach is extensible,
probabilistically-complete, and offers improved performance and generality compared to a similar, state-of-the-art
planner. The key idea is to leverage incremental constraint solving to efficiently incorporate geometric information at
the task level. Using motion feasibility information to guide task planning improves scalability of the overall planner.
Our key abstractions address the requirements of manipulation and object rearrangement. We validate our approach
on a physical manipulator and evaluate scalability on scenarios with many objects and long plans, showing order-of-
magnitude gains compared to the benchmark planner and improved scalability from additional geometric guidance.
Finally, in addition to describing a new method for TMP and its implementation on a physical robot, we also put
forward requirements and abstractions for the development of similar planners in the future.
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1 Introduction

Autonomous robots with complex objectives must
reason about both the high-level goals of their task and
the geometric motion to execute. The robot must plan
over a task-motion space, combining discrete decisions
about objects and actions with continuous decisions
about collision-free paths. Efficient algorithms exist
to solve each of these parts in isolation; however,
integrating task and motion planning (TMP)∗

presents algorithmic challenges both in scalability
and completeness. Isolated task planning typically
produces a single plan, whereas TMP may require
alternate task plans based on motion level exploration.
Isolated motion planning typically assumes a fixed
configuration space during planning, whereas TMP
may change the configuration space by moving objects.
A key challenge for TMP is that proving the
nonexistence of motion plans is difficult and unsolved
for the general case (Hauser 2013b; McCarthy et al.
2012). We directly consider alternate task plans,
changing configuration spaces, and motion feasibility
to introduce a TMP framwork based on incremental
constraint solving.

We present a new framework for TMP that offers
probabilistic completeness and improved performance
and generality over prior work. We first discuss a set of
reusable insights on TMP that underlie our approach

(see Sec. 2 and Sec. 4). Our TMP framework extends
constraint-based task planning† using the incremental
solution capabilities of Satisfiability Modulo Theories
(SMT) solvers to dynamically incorporate motion
feasibility at the task level (see Sec. 5). We analyze
the impacts of modeling on planning scalability
and formally prove probabilistic completeness of the
algorithm (see Sec. 6). The incremental framework
we employ enables detailed information about motion

1Department of Computer Science, Rice University, Houston, TX,
USA
2Current: Department of Computer Science, Colorado School of
Mines, Golden, CO, USA

Corresponding author:
Neil T. Dantam and Lydia Kavraki

Email: ndantam@mines.edu, kavraki@rice.edu
∗TMP is sometimes also referred to as Integrated Task and
Motion Planning (ITMP), Combined Task And Motion Planning

(CTAMP), or Task And Motion Planning (TAMP).
†Task and constraint have multiple meanings within planning
and robotics. In this article, our usage of “task” corresponds
to high-level, logical states or expressions. We do not use the
alternate meaning of “task” relating to the Cartesian space or

workspace the robot. Our use of “constraint” corresponds to
the logical assertions of task planners based on satisfiability
checking. We do not use the alternate meaning of “constraint”

relating to continuous restrictions limiting robot motion.

https://uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/0278364918761570
http://journals.sagepub.com/home/IJR


2 The International Journal of Robotics Research

feasibility to guide the task planner, which we
leverage to improve scalability, and we analyze domain
assumptions on connectivity that preserve probabilistic
completeness (see Sec. 7). Finally, we validate our
planner on a physical manipulator and show that it
scales better with the number of objects and length of
plan compared to a related TMP method of He et al.
(2015) (see Sec. 8).

This article extends initial work presented in
Dantam et al. (2016b) with a formal analysis of the
algorithm, enhanced feedback between the task and
motion layers, and additional benchmark results. We
analyze how choices in modeling the task domain
and actions affect state space growth and planning
scalability (see Sec. 6.1), and we formally prove
probabilistic completeness (see Sec. 6.2). We also
improve planner scalability by enhancing the feedback
between the motion and task layers using collision
information from the motion planner (see Sec. 7.4
and Sec. 8.3). The ability to incorporate such
geometric information to guide task planning through
additional constraints demonstrates the flexibility of
our framework.

2 Challenges and Requirements

TMP combines continuous motion decisions about
paths with discrete task decisions about objects and
actions. The typical algorithms for independent task
planning (Helmert 2006; Hoffmann and Nebel 2001;
Kautz and Selman 1999; Rintanen 2012b) and motion
planning (Kavraki et al. 1996; LaValle and Kuffner
2001) are fundamentally different. Consequently, most
TMP methods (Cambon et al. 2009; He et al. 2015;
Schüller et al. 2013; Srivastava et al. 2014) perform task
planning and motion planning as separate, possibly
interleaved, phases. We isolate and discuss the specific
requirements for task planning, motion planning, and
their interface in order to perform efficient and robust
TMP.

2.1 Task Planning Requirements

Task planning finds a discrete sequence of actions to
transition from a given start state to a desired goal
condition (Fikes and Nilsson 1972).

The key requirement for the task planning phase
of TMP is support for generating alternate plans.
As we iterate between task planning and motion
planning phases, feedback from the motion planner
ideally influences the task planner to favor operators
with previously computed motion plans or disfavor
more difficult or potentially infeasible operators.
The task planning layer must therefore be able to
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Figure 1. A simple Task and Motion Planning (TMP)
problem involving multiple types of actions and goals which
must be considered jointly. This problem extends the classic
Sussman Anomaly task planning problem by including the
motion of the robot arm and additional actions to push a
tray. (a) The Sussman Anomaly requires stacking block A on
block B and block B on block C. Because the robot cannot
move stacked blocks, it cannot treat the goal position of
block A and block B independently since that would prevent
moving the lower block in the stack. Instead, the full goal
condition must be considered together. (b) We extend this
classic task planning example to TMP where the robot must
also place the blocks on the tray and move the tray, refining
each of these discrete task actions into corresponding motion
plans. TMP considers the different actions to manipulate the
different kinds of objects—transfer blocks, stack blocks, push
tray—determines the order of these actions, and identifies
collision-free paths for the motion.

compute alternate plans for a domain and ideally
reuse work from previous planning rounds to improve
performance.

Secondarily, the task planner must support a
sufficiently expressive specification format to model
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the desired domain. Previous work applied a variety
of notations to the modeling of discrete robot tasks:
temporal logics (Belta et al. 2005; He et al. 2015; Kress-
Gazit et al. 2009), structured and natural language
(Kress-Gazit et al. 2008; Matuszek et al. 2013), logical
knowledge bases (Erdem et al. 2012; Tenorth and
Beetz 2015), the Planning Domain Definition Language
(PDDL) (Gharbi et al. 2015; McDermott et al. 1998;
Srivastava et al. 2014), and context-free grammars
(Dantam and Stilman 2013; Lyons and Arbib 1989;
Vijaykumar et al. 1987). Each notation provides
advantages for certain domains or proprieties, e.g.,
safety properties are easily specified with temporal
logics, action effects with PDDL, and hierarchies with
grammars. Therefore, a general robotics task and
motion planner would ideally be independent of the
particular domain specification syntax, enabling the
use of the most suitable notation.

2.2 Motion Planning Requirements

Geometric motion planning finds a collision-free path
from a given start position to a desired goal (Choset
et al. 2005). Rearranging objects changes the robot’s
configuration space, i.e., the valid joint positions.
Moreover, some objects are kinematically coupled (e.g.,
blocks on the tray in Fig. 1). Thus, the motion planner
must use underlying representations that permit both
efficient updates and model object interactions.

2.3 Task-Motion Interface Requirements

TMP combines the discrete action selection of task
planning with the continuous path generation of
motion planning.

The primary requirement of the task-motion layer is
to establish a correspondence between task operators
and motion planning problems. Given the geometric
scene, what is the corresponding task description?
Given a task action or plan, what are the corresponding
motion planning problems? The task-motion interface
must translate between the low-level scene geometry
and the high-level task descriptions.

A secondary requirement of the task-motion layer
arises when we wish to ensure some form of
completeness in planning. For the current state of the
art in high-dimensional motion planning, probabilistic
completeness is the best we can hope to achieve. A
fundamental challenge for general, high-dimensional
systems is that we cannot prove the non-existence
of a motion plan (Hauser 2013b; McCarthy et al.
2012). Consequently, we cannot definitively rule out an
attempted task action because a motion planner was
unable to find a concrete path in the allotted time; the
motion planner may have failed because such a path

indeed does not exist or merely because insufficient
time was allotted to motion planning. Thus, to ensure
probabilistically complete TMP, we must not eliminate
failed task actions but instead set them aside to be later
reattempted.

3 Related Work

3.1 Task Planning

Task planning is a well-established field, largely
evolving from the pioneering work on STRIPS (Fikes
and Nilsson 1972). The currently dominant approaches
for efficient task planning (Vallati et al. 2015) are
heuristic search (Helmert 2006; Hoffmann and Nebel
2001; Vidal 2014) and constraint-based methods
(Kautz and Selman 1999; Rintanen 2012b, 2014). Logic
programming is also used (Lifschitz 1999; Tenorth and
Beetz 2015).

Task domains are specified using the Planning
Domain Definition Language (PDDL) (Edelkamp and
Hoffmann 2004), temporal logics (He et al. 2015;
Belta et al. 2005; Kress-Gazit et al. 2009), or formal
languages (Dantam and Stilman 2013). The PDDL,
logic, and language forms are closely related and
often interchangeable (Cresswell and Coddington 2004;
De Giacomo and Vardi 2000; Dantam and Stilman
2013). For the purpose of this work, the choice of
notation—e.g., PDDL, temporal logics, grammars,
etc.—is a matter of convenience rather than a formal
necessity. In our benchmark tests, we define the task
domain for our implementation with PDDL.

We adopt the constraint-based task planning
approach to leverage ongoing advances in solvers for
Satisfiability Modulo Theories (SMT) (Barrett et al.
2015; De Moura and Bjørner 2011). Typical constraint-
based planners use Boolean satisfiability formulas
(Kautz and Selman 1999; Rintanen 2012b). SMT
extends Boolean satisfiability with rules (theories)
for domains such as linear arithmetic. Compared
to traditional SAT solvers, SMT solvers provide a
more expressive and high-level interface with useful
features for expressing constraints in robotics domains
(Nedunuri et al. 2014; Wang et al. 2016). Cashmore
et al. (2016) compile PDDL into SMT for task
planning in rich domains. Our focus is to leverage the
capabilities of SMT solvers to generate alternate plans
with guidance from the motion planner. Crucially,
some SMT solvers (Barrett et al. 2011; De Moura and
Bjørner 2008) enable incremental solving – adding and
deleting constraints at run-time to produce alternate
solutions. Our approach applies incremental solving to
update constraints about motion feasibility.
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3.2 Motion Planning

The major approaches for high-dimensional motion
planning are heuristic search (Hart et al. 1968) and
sampling-based (Kavraki et al. 1996; LaValle and
Kuffner 2001) methods. Heuristic search planners
are sometimes used for manipulation (Cohen et al.
2014), but it is challenging to find general heuristics
that work for different manipulators. In contrast,
sampling-based planners efficiently handle high degree-
of-freedom (DOF) systems without robot-specific
modifications, typically through constructing either
multi-query roadmaps (Kavraki et al. 1996) or single-
query trees (LaValle and Kuffner 2001). However,
sampling-based planners can offer only probabilistic
completeness. Consequently, the failure of a sampling-
based planner to find a plan does not prove such a
plan does not exist. This challenge is a fundamental
consideration in the design of our algorithm.

In this work, we do not modify the operation
of the motion planner, but rather employ sampling-
based planners from the Open Motion Planning
Library (Şucan et al. 2012). Specifically, we use
bidirectional Rapidly-exploring Random Trees (RRTs)
(Kuffner and LaValle 2000). However, our algorithm
and its properties depend only on the probabilistic
completeness of the underlying motion planner, so
other choices for a motion planner are possible.

3.3 Task and Motion Planning

Most prior work on TMP focuses on performance
over completeness or generality. Dornhege et al.
(2012) interleaves task and motion planning at the
level of individual task actions, calling the motion
planner directly from the task planner for feasibility
checks using semantic attachments. Erdem et al.
(2012) produces a knowledge base for household
robots in the logic programming paradigm (Lifschitz
2008). Lagriffoul et al. (2012) applies geometric
constraints to limit the motion planning space or prove
motion infeasibility in special cases, and Lagriffoul
and Andres (2016) uses geometric information to
guide the symbolic search.. Hierarchical Planning in
the Now (HPN) (Kaelbling and Lozano-Pérez 2011,
2013) interleaves planning and execution, reducing
search depth but requiring reversible actions when
backtracking. Several related methods (de Silva et al.
2013a,b, 2014; Gharbi et al. 2015) extend Hierarchical
Task Networks (HTN) (Erol et al. 1994) with geometric
primitives, using shared literals to control backtracking
between the task and motion layer. Srivastava et al.
(2014) interfaces off-the-shelf task planners with
an optimization-based motion planner (Schulman

et al. 2014) using a heuristic to remove potentially-
interfering objects. (Lozano-Pérez and Kaelbling 2014)
formulates the motion side of TMP as a constraint
satisfaction problem over a discretized, preprocessed
subset of the configuration space. Nedunuri et al.
(2014); Wang et al. (2016) use an SMT solver to
generate task and motion plans from a static roadmap,
employing plan outlines to guide the planning process
in a manner similar to Hierarchical Task Networks
(Erol et al. 1994). FFRob (Garrett et al. 2015) develops
an FF-like (Hoffmann and Nebel 2001) task-layer
heuristic based on a lazily-expanded roadmap. Bidot
et al. (2015) combine forward-chaining task planning
with a motion planner to evaluate geometric symbols
and backtrack to reconsider previous geometric choices;
however, the probabilistic completeness of sampling-
based motion planners is not directly addressed.
Overall, these methods set aside the general challenge
of ensuring probabilistic completeness of the overall
approach. In contrast, we directly address the challenge
of probabilistically complete TMP.

Other works perform task and motion planning for
differential or hybrid systems using sampling-based
planners (Karaman and Frazzoli 2012; Plaku and
Hager 2010; Plaku et al. 2010). Differential dynamics,
though necessary for some domains, poses challenges
for completeness even in isolated motion planning
(Kunz and Stilman 2015). In contrast, we consider
purely geometric motion which is adequate for many
manipulation tasks and for which there exist many
probabilistically-complete motion planners (LaValle
2006; Şucan et al. 2012).

A smaller number of other task and motion planners
also achieve probabilistic completeness. Vega-Brown
and Roy (2016) achieve even asymptotic optimality,
demonstrating results for planar manipulation. In
contrast, our framework focuses on handling high-
DOF manipulation domains rather than producing
optimal plans. The aSyMov planner (Cambon et al.
2004, 2009; Gravot et al. 2005) combines a heuristic-
search task planner based on metric-FF (Hoffmann
2003) with lazily-expanded roadmaps. Our proposed
algorithm operates differently at all levels, yielding
different performance characteristics from aSyMov.
For example, aSyMov’s composed roadmaps could
be amortized over multiple runs but composing
roadmaps for object interactions may be expensive,
as acknowledged by the authors in (Cambon et al.
2009). In contrast, we motion plan anew each run,
but efficiently update scene data structures to handle
object interaction. The Synergistic Framework (Plaku
et al. 2010) and related methods (Bhatia et al.
2010, 2011; He et al. 2015) are similar to our
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proposed approach, but there are important differences
in the underlying algorithms that suggest these
methods may be complementary. The Synergistic
Framework finds task plans through forward search,
while we use constraint-based methods to efficiently
generate task plans. There is also a distinction in
the feedback between task and motion planners.
Our approach incorporates geometric information
from failed motion planning attempts via incremental
constraint updates, while the Synergistic Framework
uses feedback between the task and motion planner
to guide a weighted forward-search which may assist
difficult motion planning domains. He et al. (2015) also
focuses on the manipulation domain. In comparison,
our method provides more flexible abstractions than
the domain-specific task-state graph used by He et al.
(2015), and our method offers significant performance
improvements for the benchmarks in Sec. 8. Thus,
we present our new approach as a complementary
alternative to prior work on probabilistically complete
TMP.

Deshpande et al. (2016) analyze the decidability
of TMP problems, focusing on pick-and-place style
domains.

Several related methods consider motion planning
with movable objects. We view such works as special
cases of TMP with restricted task actions. Navigation
among movable obstacles (NAMO) (Dogar and
Srinivasa 2011; Levihn et al. 2013; Stilman and Kuffner
2005; Stilman et al. 2007; Van Den Berg et al. 2010)
and Minimum Constraint Removal/Displacement
(MCR/MCD) (Hauser 2013a,b) find motion plans in
the presence of movable obstacles. Rearrangement
Planning bases the goal not on the robot’s position
but rather on positions of the objects to be moved
(Krontiris and Bekris 2015). In contrast to NAMO,
MCR, MCD, and Rearrangement Planning, general
TMP considers multiple, arbitrary task actions.

4 Task-Motion Abstractions and
Definition

We now formalize the abstractions for our approach
to TMP. To formally define the TMP problem, we
first separately define the task domain (see Def. 1) and
motion domain (see Def. 4), then combine them in the
task and motion domain (see Def. 5).

4.1 Task Domain

Task domains are typically defined in terms of states
and actions using a variety of notations (Erdem et al.
2012; He et al. 2015; Srivastava et al. 2014). To support

various notations, we define the notation-independent
task domain as the following formal language:

Definition 1. Task Language. The task language
is a set of strings of actions, defined by L =(
P,A, E , s[0],G

)
, where,

• P is the finite state space ranging over variables
p0, . . . , pn,

• A is the finite set of task operators, i.e., terminal
symbols,

• E ⊆ (P(P)×A× P(P)) is the finite set of
symbolic transitions, where P(P) is the power set

of P. Each ei ∈ E denotes transitions pre(ai)
ai−→

eff(ai), where pre(ai) ⊆ P is the precondition set,
ai ∈ A is the operator, and eff(ai) ⊆ P is the
effect set. We represent a concrete transition on
ai at step k from state s[k] to s[k+1] as s[k+1] =
ai(s

[k]), where s[k] ∈ pre(ai), s
[k+1] ∈ eff(ai), and

for all state variables pj independent of (i.e., free
in) eff(ai), pj

[k+1] = pj
[k],

• s[0] ∈ P is the start state,
• G ⊆ P is the finite set of accept states, i.e., the

task goal.

Definition 2. Task Plan. A task plan A is a
string in the task language L, i.e., A ∈ L, where A =(
a[0], a[1], . . . , a[h]

)
, a[k] ∈ A, s[k] ∈ pre

(
a[k]
)
, s[k+1] =

a[k](s[k]), and s[h] ∈ G.

Note that Def. 1 and Def. 2 are not a new
task notation but an abstraction for many existing
notations, e.g., Edelkamp and Hoffmann (2004);
McDermott et al. (1998).

4.2 Motion Domain

Motion Planning algorithms find plans within an
abstract configuration space ξ (Şucan et al. 2012).
The motion plan must follow points within the free
configuration space ξfree, where ξfree ⊆ ξ. For robot
manipulators, the configuration space ξ is typically a
real vector space or subset thereof representing joint
positions, and the free configuration space ξfree consists
of those joint positions not in collision.

Definition 3. Motion Plan. A motion plan
is a sequence of neighboring free configurations
Q =

(
q[0], q[1], . . . , q[n]

)
such that each q[k] ∈ ξfree

and
∥∥q[i+1] − q[i]

∥∥ < εq, for some small εq. The

initial configuration is first(Q) = q[0], and the final
configuration is last(Q) = q[n].

A widely-used model for the configuration spaces
of robot manipulators is the kinematic tree or scene
graph of joints and links (Hartenberg and Denavit
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1964); these structures underlie popular software
packages such as OpenRave (Diankov 2010), KDL
(Smits et al. 2011), MoveIt! (Şucan and Chitta 2015),
Gazebo (Koenig and Howard 2004), and ROS (Foote
2013; Willow Garage 2013). In contrast to prior
frameworks, TMP problems involving manipulation
require (1) translation between the motion and task
domains and (2) efficiently changing the kinematic
topology of the scene graph as objects are grasped,
moved, and released. To support TMP requirements
for task-motion translation and efficient, dynamic
updates, we modify and streamline typical scene graph
representations such as Willow Garage (2013) as
follows:

Definition 4. Scene Graph. γ = (Q,L,F), where

• Q ⊆ Rn is a space of configurations,
• L is a finite set of unique frame labels,
• F is a finite set of local coordinate frames (graph

nodes), such that each frame f` = (`, %`, ς`, µ`),
where,

– ` ∈ L is the unique label of frame of f`
– %` ∈ L is the label of the parent of frame of
f`, indicating graph edge connections

– ς` : Q 7→ SE(3), maps from a configuration
to the workspace pose of f` relative to its
parent %`, indicating graph edge values

– µ` is a rigid body mesh representing
geometry attached to f`.

The global or absolute SE(3) transform of any
frame ` in the scene graph is the product of relative
transforms from root 0 to frame `: 0Si ∗ . . . ∗ jS`, where
aSb is the transform in SE(3) from parent a to child
b and %bSb = ςb(q). Typically, it is not possible to
explicitly represent the free configuration space ξfree of
high DOF manipulators, so sampling-based planners
use specialized collision checkers (Pan et al. 2012) to
determine whether a given configuration is valid based
on the absolute SE(3) poses 0S` of all geometry µ`.

The absolute pose of frame f` in the scene graph is
defined recursively as,

0S`(q) =

{
s`(q), p` = 0
0Sp`(q)⊗ s`(q), p` 6= 0

(1)

Common TMP operations such as grasping an object
change the free configuration space, which we represent
by changing the topology of the scene graph. For
example, grasping block-c in Fig. 1 changes its parent
label from its support object, i.e., block-a, to the
gripper label. We formalize such topological changes
to the scene graph using a general reparent operation.

Reparenting changes the parent label of frame ` to %′`
and computes the new relative pose %′`S` that preserves
0S` by %′`S` = (0S%′`)

−1 ∗ (0S`).
While such a tree or graph structure is necessary to

model manipulators, mobile robot navigation problems
can sometimes use simpler models. Still, we can
represent robot navigation instances with a scene graph
structure by using only a single frame—rather than a
tree—for the robot.

4.3 Task and Motion Domain

We define the domain D for TMP problems in
terms of task languages and abstract configuration
spaces. Then, we use our scene graphs to model the
configuration space. A key detail is the translation
between task and motion states and actions, which we
define in a domain semantics for state abstraction and
action refinement. The domain semantics abstracts a
configuration space to a task state , and it refines a
task operator to a configuration space and one or more
configurations. We define D as follows:

Definition 5. Task–Motion Domain.
D =

(
L, σ[0], λα, λρ,Ω

)
• L is the task language, where P = Pm × Pt

represents the motion component Pm and non-
motion component Pt of task state,

• σ[0] =
(
s[0], ξfree

[0], q[0]
)

is initial the task-motion

state: task state s[0], free configuration space
ξfree

[0], and configuration q[0],
• λα : Ξ 7→ Pm is the state abstraction function

that maps free configuration space ξfree ∈ Ξ to the
motion component of task state sm ∈ Pm,

• λρ : Ξ×A 7→ P(Q)× Ξ is the action refinement
function that maps predecessor free configuration
space ξfree

[k] ∈ Ξ and task operator a[k] ∈ A to
a motion planning goal (a set of configurations)

Θ[k] ⊆ ξfree
[k] for the action and a successor free

configuration space ξfree
[k+1] ∈ Ξ,

• Ω ⊆ Ξ× P is the goal condition.

Definition 6. Task and Motion Plan. A task and
motion plan is a sequence of task operators and
motion plans, T =

((
a[0],Q[0]

)
, . . . ,

(
a[h],Q[h]

))
where

(
a[0], . . . , a[h]

)
∈ L and for each step

k,
(

Θ[k], ξfree
[k+1]

)
= λρ(a

[k], ξfree
[k]) such that

last
(
Q[k]

)
∈ Θ[k] ∧ first

(
Q[k+1]

)
= last

(
Q[k]

)
.

Now, we use our scene graphs (see Def. 4) to
represent the configuration spaces for TMP. We
represent the free configuration space at each step,
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Figure 2. Diagram of IDTMP. We incrementally incorporate
motion feasibility information into the task planner via
incremental constraint solving. The bound increases (Kautz
and Selman 1999) of our constraint-based task planner are
coupled to timeout increases for sampling-based motion
planning.

ξfree
[k], with a scene graph γ[k], and we denote the

set of configuration spaces Ξ with a set of scene
graphs Γ. The state abstraction function of the domain
semantics, λα, determines the task-state position s ∈ P
based on the parent %` of each object ` in the scene
graph. Task actions such as grasping or placing objects
correspond to a set of configurations q due to multiple
grasp positions or redundancy of the manipulator. The
action refinement function of the domain semantics, λρ,
determines the subsequent scene graph γ[k+1] ∈ Γ for
some task operator a[k] via reparenting frames, e.g., to
pick and place objects as indicated by the task action
a[k].

With TMP formally defined, we proceed to the main
contributions of the paper.

5 IDTMP Algorithm

We present a new algorithm for task and motion
planning (TMP), Iteratively Deepened Task and
Motion Planning (IDTMP). Fig. 2 depicts the overall
idea of the algorithm to iterate between task planning
and motion planning attempts with increasing search
depth. Algorithm 1 gives the details of the algorithm.
We use a constraint-based task planner to generate
candidate task plans (see line 9 of Algorithm 1),
then uses a sampling based motion planner to check
plan feasibility (see line 17). Constraint-based planners
encode the task planning problem over a bounded step
horizon as a logical formula and compute a solution
using a constraint solver, iteratively increasing the

Algorithm 1: IDTMP

Input:
(
L, σ[0], λα, λρ,Ω

)
: Task-Motion Domain

Output: T: Task-Motion Plan
1 (s[0], γ[0], q[0])← σ[0]; // Start State

2 (h, t)← (1, t0); // Initial Horizons

/* φ: formula for task domain */

3 φ← s[0] ∧ λα(γ0)
[0] ∧ (transitions of L at step 0) ;

4 push(φ); // Push scope

5 φ← φ ∧ (λα (ΩΓ))
[h] ∧ ΩP

[h] ; // Goal at h
6 T← ∅; // T: Task-Motion Plan

7 while ∅ = T do
8 A← ∅; // A: Task Plan

/* Task Planning */

9 while ∅ = A do
10 A← Incremental SMT(φ);
11 if ∅ = A then /* UNSAT */

12 pop(φ); // Pop scope

13 φ← φ ∧ (transitions of L at step h) ;
14 (h, t)← (h+ 1, t+ ∆t);
15 push(φ); // Push scope

16 φ← φ ∧ (λα(ΩΓ))
[h] ∧ ΩP

[h] ; // Goal

/* Motion Refinement */

17 foreach a[k] ∈ A do
18 (Θ[k], γ[k+1])← λρ(γ

[k], a[k]); // Goal

19 Q[k] ← motion plan(γ[k], q[k],Θ[k], t) ;

20 if ∅ = Q[k] then /* Motion Failed */

21 φ← φ ∧ (New Constraints) ;
22 T← ∅;
23 break; // back to task planner

24 else
25 q[k+1] ← last(Q[k]);

26 T← append(T, (a[k],Q[k]));

27 return T;

step horizon (see line 14) (Kautz and Selman 1999)
until a plan is found. Sampling-based motion planners
terminate either when a motion plan is found or when a
sampling horizon, or timeout, is exceeded (see line 19).
We couple a progressively increasing sampling horizon
of the motion planner to the increasing step horizon of
the task planner (see line 14). We use an SMT solver for
constraint-solving. Crucially, we use the SMT solver’s
constraint stack to efficiently generate alternate task
plans over the increasing step horizon, then if necessary
later pop (see line 12) the additional constraints (see
line 21) to revisit task plans with increased motion
search horizons, ensuring that the motion planner has
sufficient time to identify feasible paths.
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5.1 Task Planning Implementation

We develop a custom task planner by extending the
constraint-based planning method (Kautz and Selman
1999; LaValle 2006; Rintanen 2012a). Typical task
planners are optimized for single-shot queries whereas
for TMP, it may be necessary to generate alternate
task plans. Our task planner efficiently generates
alternate plans by leveraging modern, incremental
SMT solvers. Incremental SMT solvers maintain a
stack of constraints or assertions and can efficiently
perform repeated satisfiability checks as constraints
are pushed onto and popped from the constraint stack
(Barrett et al. 2011; De Moura and Bjørner 2008). Our
use of incremental SMT solving to update constraints is
a new feature compared to previous use of SMT solvers
in TMP (Nedunuri et al. 2014; Wang et al. 2016).

5.1.1 Background on Constraint-Based Planning
Constraint-based planners encode the planning
domain as a logical formula, then use a constraint
solver—typically, a Boolean satisfiability solver—
to find a satisfying variable assignment for that
formula, corresponding to the plan (LaValle 2006,
p69). The formula contains variables for the task
state and the action to take for a fixed number
of steps h. Given a domain with state variables
p0, . . . , pm and actions a0, . . . , an, the set of formula
variables for h steps is

{
pi

[k] | i ∈ 0. . .m, k ∈ 0. . .h
}
∪{

aj
[k] | j ∈ 0. . .n, k ∈ 0. . .h

}
. The formula itself asserts

the transitions from Def. 1 and Def. 2. Specifically, the
start state holds a step 0 (see line 3 of Algorithm 1)
and goal condition holds at step h (see line 5 and
line 16), and states and actions obey the transitions E
as follows (see line 3 and line 13):

• A selected action implies its preconditions and
effects (i.e., the pre(ai) and eff(ai) in E):
for every action ai and step k, ai

[k] =⇒(
pre(ai)

[k] ∧ eff(ai)
[k+1]

)
.

• State remains the same unless changed by an
action’s effect: for every state variable pi and step
k,
(
pi

[k] = pi
[k+1]

)
∨
(
aj

[k] ∨ . . . ∨ a`[k]
)
, where

aj , . . . , a` are the actions that modify pi. (These
are sometimes referred to as frame axioms.)

• Only one action is taken at a time: for
every action ai and step k, ai

[k] =⇒(
¬a0

[k] ∧ . . . ∧ ¬ai−1
[k] ∧ ¬ai+1

[k] ∧ . . . ∧ ¬an[k]
)
.

The planner progressively increases step count h until
the formula is satisfiable, indicating a valid plan where
the action at each step k is given by which variables
ai

[k] are true in the satisfying assignment.

5.1.2 An Incremental Task Planner We extend previ-
ous work on constraint-based task planning by using

an incremental SMT solver for constraint satisfaction.
In Algorithm 1, the key, novel feature of our task
planner compared to typical constraint-based planners
is the ability to efficiently add (line 21) and remove
(line 12) constraints based on motion feasibility to
generate and revisit alternate task plans (line 10). The
incremental SMT solver maintains constraints using a
stack of scopes, where each scope is a container for
a set of constraints. Fig. 3 illustrates our use of the
constraint stack. The planner pushes scopes onto the
stack, adds new constraints to the top scope on the
stack, and later pops the top scope from the stack thus
removing the constraints within that scope (Barrett
et al. 2015). In Fig. 3, we begin with the start state
s[0] on the stack. For each step bound, we push the
transition function at that step f [k] onto the stack.
The top scope contains the goal at the final step g[k].
To increase the step bound (see line 14), we pop goal
g[k], and then push an additional transition function
f [k+1] and the goal at the increased bound g[k+1]. To
generate alternate task plans, we push constraint m
that incorporates information about motion feasibility
(see Sec. 5.3). To later revisit task plans, we pop m
when we increase the step bound.

5.2 Motion Planning Implementation

We use a sampling-based, single-query motion planner
– specifically RRT-Connect (Kuffner and LaValle 2000;
Şucan et al. 2012) – to instantiate task actions. Using a
probabilistically complete, single-query planner backed
by our scene graphs (see Def. 4) allows us to ensure
probabilistic completeness (see Sec. 6.2) over changing
configuration spaces at the cost of repeated motion
planning computation, which we partially address
through extensions in Sec. 7. Alternatively, roadmap
based planners such as Bohlin and Kavraki (2000,
2001) offer the potential for efficient repeated queries.
However, in TMP, the scene and configuration space
may change with each action taken during the plan,
posing challenges for roadmap use.

For each step k (see line 17), we determine the goal
based on operator a[k] and the current scene graph γ[k]

(see line 18), then attempt to find a motion plan (see
line 19). If the motion planner cannot find a plan for
a[k] within the current sampling horizon t (see line 20),
we give additional constraints to the task planner to
select a different operator (see line 21).

5.3 Task-Motion Interaction

The task-motion interface connects the task layer and
motion layer through the domain semantics functions
λα and λρ (see Def. 5). Abstraction function λα
translates scene graphs to task state (see line 3, line 5,
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Start State: s[0]

Transition Function: f [k]

Goal Condition: g[h]

Motion Feasibility: m

Key

s[0]

(a)

s[0]

f [0]

g[1]

UNSAT

(b)

push
(
f [0] ∧ g[1]

)
s[0]

f [0]

(c)

pop ()

s[0]

f [0]

f [1]

g[2]

SAT

(d)

push
(
f [1] ∧ g[2]

)
s[0]

f [0]

f [1]

g[2]

m

UNSAT

(e)

push (m)

s[0]

f [0]

f [1]

(f)

pop ()

s[0]

f [0]

f [1]

f [2]

g[3]

...

(g)

push
(
f [2] ∧ g[3]

)

Figure 3. Example illustration of SMT Solver constraint stack use by IDTMP algorithm. (a) Initially, the stack contains only

the start state s[0]. (b) the transition f [0] from step 0 to step 1 and goal g[1] at step 1 are pushed onto the stack, encoding a

plan with one step. (c) no one step plan was found (UNSAT), so the goal at step 1 is popped. (d) the transition f [1] at step

1 and goal g[2] at step 2 are pushed onto the stack, encoding a length 2 plan. A plan is found (SAT), which the motion
planner attempts to refine. (e) to generate an alternate task plan, the motion feasibility constraint m (see constraint
equations (3), (5), (6)) is pushed onto the stack. (f) No additional two step plan was found (UNSAT), so the motion

constraint and goal at step 2 are popped. (g) the transition f [2] at step 2 and goal g[3] at step 3 are pushed onto the stack,
and the process continues.

and line 16). Refinement function λρ translates task
operators to motion planning problems (see line 18).

We illustrate the use of state abstraction and action
refinement functions for the specific example in Fig. 1.
Initially, the planner applies state abstraction function
λα to the given starting scene γ[0] to produce the
starting task state. In this example, the starting task
state defines the positions and stacking of the blocks
and tray:

s[0] = λα(γ[0]) =
(

(position(a) = c)

∧ (position(b) = `(2, 1))

∧ (position(c) = `(2, 0))

∧ (position(t) = `(0, 0))
)

Similarly, the planner uses λα to compute the task state
for the goal scene: G = λα(γgoal). The start state, goal
state, and set of operators define the task language
(see Def. 1), providing sufficient information to find
candidate task plans. A candidate plan will unstack
and restack the blocks and then move the tray:

A =
(
transfer(c, t(0, 0)),

stack(b, c),

stack(a, b),

push(t, `(0, 1))
)

(2)

We use action refinement function λρ to find
corresponding motions for each operator in a candidate
task plan. For the first operator transfer(c, t(0, 0)) in
the plan above, which moves block c to tray location
(0, 0), the refinement function λρ will compute the path
to move the gripper to a grasping location for c, a path
to move the grasped block c to tray location (0, 0), and
the final scene graph with the transferred block c now
placed on the tray. Action refinement continues in this
fashion for the rest of the plan. However, if at any point
refinement fails, i.e., motion planning times out, then
we must find an alternate task plan.

We use the incremental feature of SMT solvers
to efficiently generate alternate task plans which the
motion planner attempts to refine. If the motion
planner fails to refine a task plan, we give an additional
motion feasibility constraint to the task planner to
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produce the alternate plan (line 21). Fig. 3 illustrates
how the motion feasibility constraint m is pushed onto
the SMT solvers constraint stack and later popped if
we must revisit task plans.

The simplest motion feasibility constraint will
enumerate plans; more efficient extensions are
presented in Sec. 7.3 and Sec. 7.4. To enumerate
plans, the additional constraint asserts that action
variable assignments ai

[k] be different from that of the
previously generated plan:

¬
h∧
k=0

(
n∧
i=0

(
ai

[k]′ = ai
[k]
))

(3)

Then, the next satisfiability check (line 10) will produce
a different task plan A if one exists.

Since failure of the motion planner to refine
operator ai does not prove ai is impossible, we later
reattempt motion planning for ai with a greater motion
planning horizon. While retrying motion planning
duplicates computation, it is necessary for probabilistic
completeness; we mitigate the extra computation
through extensions in Sec. 7. We reconsider operators
using the SMT solver’s constraint stack. When our
planner cannot find a different task plan at the current
step horizon, we (a) pop the top constraint scope,
removing the constraints it contains (see line 12),
(b) increment both task planning step horizon h the
motion planning sampling horizon t (see line 14), and
finally (c) push a new scope for future constraints (see
line 15). Increasing the step horizon results in new task
plans of longer length, even if the same constraints
are later re-added. Thus we search for longer task
plans through the incremented step horizon, and we
search longer for motion plans through the incremented
sampling horizon, notably reconsidering the previously
failed task operators.

6 Algorithm Analysis

6.1 Scalable Task Models

The modeling or encoding of a task domain influences
the scalability of planning. Modeling decisions affect
the size of the task state space which in turn affects
planning performance.

We illustrate the construction of scalable task
models with the widely-used transfer operator
(Alami et al. 1995; Erdmann and Lozano-Pérez 1987),
also referred to as manipulate in Stilman et al.
(2007). Informally, transfer moves a single object
from a source object location to a final object location.
Though our TMP algorithm maintains independence
from any particular operators by separately defining

a domain semantics (see Sec. 4.3), transfer is of
particular interest due its broad use in domains
involving moving or rearrangement of objects.

Constraint-based task planning, which we use and
extend, operates on a propositional or grounded
representation of the state space with variables for
the state and selected action (see Sec. 5.1). The
grounded representation “fills-in” the parameters to
the first-order logic predicates (representing state)
and operators (representing actions) to create Boolean
propositions. Thus, the size of the grounded state
space—which the constraint solver must search—grows
with the number of parameters to predicates and
operators.

Two specific representations of transfer in PDDL
are shown in Fig. 4. Both transfer encodings use
a finite set of object placement locations and the
predicate occupied(`), indicating whether an object
is already placed at location `. However, differences
in action parameters change the growth of the state
space for the constraint solver, which in turn changes
task planning scalability.

The first transfer operator in Fig. 4a takes both a
source and destination parameter. Location occupancy
is modeled with a per-location predicate, occupied(`).
The effect of transfer(o, `src, `dst) sets occupied(`src)
to false and occupied(`dst) to true, where o is the
object, `src is the source location, and `dst is the
destination location. When we ground this transfer

operator by filling in both the location parameters, we
produce a number of action variables quadratic in the
number of locations.

Proposition 1. The transfer encoding of Fig. 4a
produces O(kn2) grounded action variables, where k is
the number of objects and n is the number of locations.

Proof. One grounded transfer action is produced for
each of k objects, for each of n source locations, for each
of n destination locations, giving k ∗ n ∗ n grounded
actions.

The second transfer operator in Fig. 4b takes
only a single location parameter for the destination.
We avoid the need for a source location parameter
by using a derived predicate occupied to determine
location occupancy. The first, two-location transfer

used the operator’s effect to set occupied for the source
and destination locations. Instead, the second, single-
location transfer determines the location occupancy
based on the known locations of each object, i.e.,
if there exists an object whose location is `, the
occupied(`) is true. Because we have a separate
function for the object’s location—position(o)—we
no longer need to include the source location for
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( define (domain t rans f e r−quadrat i c )
( : types block l o c a t i o n − ob j e c t )
( : predicates ( at ? obj − block

? l o c − l o c a t i o n )
( occupied ? l o c − l o c a t i o n ) )

( : action t r a n s f e r
: parameters (? obj − block

? s r c ? dst − l o c a t i o n )
: precondition (and ( at ? obj ? s r c )

(not ( occupied ? dst ) ) )
: ef fect (and (not ( at ? obj ? s r c ) )

(not ( occupied ? s r c ) )
( at ? obj ? dst )
( occupied ? dst ) ) ) )

(a)

( define (domain t r a n s f e r− l i n e a r )
( : types block l o c a t i o n − ob j e c t )
( : functions ( p o s i t i o n ? obj − block ) − l o c a t i o n )
( : derived ( occupied ? l o c − l o c a t i o n )

( exists (? obj − block ) (= ( p o s i t i o n ? obj )
? l o c ) ) )

( : action t r a n s f e r
: parameters (? obj − block

? dst − l o c a t i o n )
: precondition (not ( occupied ? dst ) )
: ef fect (and (= ( p o s i t i o n ? obj )

? dst ) ) ) )

(b)

Figure 4. Two PDDL models of transfer actions. (a) is a direct representation of the transfer action which takes as
parameters both the source and destination locations of the object. (b) models transfer with only the destination location as
a parameter by using a derived type to determine the occupied predicate from object locations. For constraint-based task
planners using a grounded encoding – where actions are instantiated for all valid parameter sets – the encoding in (a) will
produce a number of grounded actions quadratic in the number of locations while (b) produces only a linear number of
grounded actions.

transfer, only the destination to indicate where the
object should be placed. When we ground this transfer
operator, filling in just the single destination location
parameter, we produce a number of action variables
that is only linear in the number of locations.

Proposition 2. The transfer encoding of Fig. 4b
produces O(kn) grounded action variables, where k is
the number of objects and n is the number of locations.

Proof. One grounded transfer action is produced for
each of k objects, for each of n destination locations,
giving k ∗ n grounded actions.

We have used the key transfer operator to show
how to efficiently model the task domain to reduce
the size of the state space that the task planner or
constraint solver must search. Eliminating redundant
state variables and reducing the number of parameters
to operators results in a more compact state space.
Because task planning is generally exponential in
the size of the state space, reducing state space
growth from quadratic to linear strongly impacts
planning scalability. Such effects on the state space are
important to consider with modeling the task domain.

6.2 Completeness

We now prove the completeness properties of our basic
algorithm.

Definition 7. Probabilistic Completeness. The
probability p(t) of finding an existing solution
approaches one, increasing monotonically, the more
time t is spent computing the solution:

lim
t→∞

p(t) = 1

Theorem 1. Näıve IDTMP is probabilistically
complete.

Proof. Assume there exists feasible task plan,

A = a0, a1, . . . , an,

where there exists a valid motion plan for each operator
ai. Constraint-based task planning is complete (Kautz
and Selman 1999). At each step horizon n, the task
planner enumerates all candidate task plans up to
length n by incrementally adding constraint (3). We
progressively increment the step horizon n—removing
previously added constraints from (3)—and will thus
identify and revisit task plan A at all step horizons of
n or greater. At a given motion planning timeout t,
the probability P (t) of successfully refining A into its
corresponding motion plans is

P (t) = p0(t) ∗ p1(t) ∗ . . . ∗ pn(t),

where pi(t) is the probability of successfully refining
operator ai into its corresponding motion plan.
Because the bidirectional RRT motion planner is
probabilistically complete (Kuffner and LaValle 2000),

lim
t→∞

pi(t) = 1

Then, the limit of P (t) distributes over its factors:

lim
t→∞

P (t) = lim
t→∞

p0(i) ∗ lim
t→∞

p1(i) ∗ . . . ∗ lim
t→∞

pn(i) = 1

The probability P (t) of successfully refining A
therefore approaches one as t increases in the limit.
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We have proven probabilistic completeness of näıve
IDTMP for scenarios that we can model using the
problem formulation in Sec. 4, and we note the
definitional caveat that this analysis does not apply to
scenarios which cannot be modeled in this formulation.

7 Completeness-Preserving Extensions

We now extend the initial IDTMP presented in
Sec. 5 to improve performance while maintaining
probabilistic completeness for typical cases. We
formally define a basic assumption on connectivity of
the configuration space for our extensions to preserve
probabilistic completeness.

7.1 Connectivity Assumption

In the general case, different plans to move an object
may create disconnected configuration-space regions,
such as in Fig. 5. The basic IDTMP implementation
handles this possibility by retrying motion planning
operations – both those that previously failed and
previously succeeded. Failed operations must be retried
because in general we are unable to prove the
nonexistence of motion plans. Successful operations
must also be retried to ensure exploration of
different, disconnected final configurations. However,
by focusing on typical manipulation environments
where final configurations are connected, we can extend
our algorithm to improve performance. We define
a connectedness assumption to extend IDTMP as
follows:

Definition 8. Connected Configuration Set. A
configuration set Θ is connected if there is a motion
plan between all configurations in Θ:

C(Θ) , (∀qi, qj ∈ Θ, (∃Q, first(Q) = qi ∧ last(Q) = qj))

(a) (b)

Figure 5. Example object placements that cause
disconnected post-configurations by “blocking-in” the robot.
For this 3-DOF planar robot, the two sides of the workspace
are disconnected.

Now we define postcondition configuration sets for
plans and task states. The connectedness of these
configuration sets enables our extensions to preserve
probabilistic completeness.

Definition 9. Plan Post-Configuration. The plan
post-configuration EAQ maps from task plan A ∈ L to
the set of valid final configurations Θ ⊆ Q for that task
plan,

EAQ : L 7→ P(Q).

For example, if we have a plan that ends with
grasping some object, the plan post configuration
would be the set of all non-colliding inverse-kinematics
solutions for valid grasps of the object.

Similarly, the post-configuration of a task operator
to place an object is constrained by possible
configurations that place the object in the desired
destination. This configuration set is disconnected if,
as in Fig. 5, the placed object blocks the robot from
reaching part of the space. We can approximate the
plan post-configuration by sampling valid placement
configurations. Thus, plan post-configurations are
determined by the final operator rather than the entire
plan.

Definition 10. State Post-Configuration. The state
post-configuration E0Q maps from an initial state σ[0] ∈
P ×Q and a final task state s[h] ∈ P to the set of valid
final configurations Θ ⊂ Q for the plans that reach s[h]

from σ[0],

E0Q : P ×Q× P 7→ P(Q).

For example, consider the block-moving scenario of
Fig. 1. If we have a final state consisting of several
unstacked blocks, there may be many plans leading to
this state since we could place the blocks in different
orders. Each plan would end with the placement of one
of blocks in its final location. Thus, the state post-
configuration would be the union of the placement
configurations for each of the blocks.

Generally, the state post-configuration E0Q is
the union of plan post-configurations EAQ for plans
satisfying the initial and final condition of E0Q:

E0Q(σ[0], s[h]) ={
q ∈ EAQ(A) |σ[0] |= pre(A) ∧ s[h] |= eff(A)

}
. (4)

Based on our connectivity assumption for these sets,
we extend our algorithm and maintain probabilistic
completeness.

7.2 Completeness-preserving Plan Cache

We can reuse feasible motion plans without affect-
ing completeness whenever a different plan to move
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an object does not change the reachable configura-
tions. If a plan post-configuration is connected, i.e.,
C(EAQ(A)) = >, then the reachable goal configura-
tions are the same starting from all configurations
in the plan post-configuration EAQ(A). Consequently,
we need consider only a single motion plan for task
plan A to capture all reachable configurations from
EAQ(A). Conversely, if the post-configuration is not
connected, i.e., C(EAQ(A)) = ⊥, then reachable goal
configurations will be different for the disconnected
configuration regions. Thus, considering only a single
motion plan neglects configurations reachable from the
disconnected portion of EAQ(A).

We use plan post-configuration connectivity to
implement a completeness preserving cache of motion
plan prefixes. For a given task plan A with some prefix
α, if C(EAQ(α)) = >, we first check for a cached motion
plan for α, using it if it exists. Otherwise, we try to
refine α, and if we find a motion plan, we add it to the
cache. This eliminates näıve IDTMP’s duplication of
motion planning work for plan prefixes.

7.3 Failure-Generalization Constraints

We reduce motion planning time spent attempting
infeasible actions by generalizing motion planning
failures. This failure generalization does not affect
completeness when different task plans do not
change the reachable configurations. If a state post-
configuration is connected, i.e., C(E0Q(σ[0], s)) = >,
then the nonexistence of a motion plan from one
configuration q0 in E0Q(σ0, s) to some configuration qn
implies that no plan to qn exists for any configuration
in E0Q(σ0, s). Though we cannot in general prove
nonexistence of motion plans, we instead heuristically
defer retrying these failed motion plans at the current
motion planning horizon.

If the motion planner failed to refine operator ai at
state s, this may be because such a plan does not exist.

Constraint (3) requires only that the task planner
produce any different plan, pruning only the current,
single task plan. Instead, we can prune multiple task
plans by generalizing the motion planning failure
across multiple steps. We prune plans that attempt ai
from state s for any step from 0 to step horizon hby
modifying the incremental constraint added in line 21
of Algorithm 1 with the following constraint asserting
that operator ai not be attempted at state s for all
steps:

h∧
k=0

(
s[k] =⇒ ¬ai[k]

)
(5)

Then, when we deepen the step and sampling horizons,
we likewise pop the added constraint describe in (5)

so that we will later reattempt these operators with
greater search depth. Fig. 3 illustrates the pushing and
popping of this constraint m.

Using constraint (5), we generalize motion planning
failures to all task steps.

7.4 Collision-Generalization Constraints

While the previous two extensions consider only
success or failure of motion planning, we can further
extend our framework by considering the specific
collisions detected during motion planning. These
detected collisions indicate objects which may block
the robot, while other objects with which no collision
was detected may not affect feasibility of the current
operator. We extend the failure generalization of
Sec. 7.3 to prune multiple states based on the locations
of these potentially blocking objects.

To identify the potentially blocking objects, we
extend the motion planner to track collisions as
we compute motion plans to refine each operator.
When the collision checker finds that a newly-sampled
configuration contains a collision, we add the colliding
objects to the tracked collision set. If motion planning
for the current operator succeeds, the collision set is
discarded; otherwise, if motion planning fails, then the
collision set indicates the potentially blocking objects
for the current operator.

Then, we modify constraint (5), replacing the single
s—which constrains the location of all objects—with
an expression that constrains the locations of only the
objects in the collision set:

h∧
k=0

 n∧
j=0

`j
[k]

 =⇒ ¬ai[k]

 (6)

where `j is a proposition indicating that object j is
at the location where the collision was detected during
the motion planning attempt to refine operator ai.

The key difference between (5) and (6) is that (5)
prunes the failed operator only at the single state where
motion planning failed whereas (6) prunes the operator
at a set of states.

Furthermore, a degenerate case where no collisions
are identified during motion planning may occur when
a goal pose is outside the robot’s workspace or no
inverse kinematics solution can be found. In such cases,
(6) simplifies to

∧h
k=0 ¬ai[k], which defers retrying the

failed operator ai for all states and steps at current
step horizon h.

Constraint (6) maintains probabilistic completeness
under the same assumptions as (5). All states pruned
by constraint (6) are those with objects in the
locations that impeded the motion planner, and the
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connectivity assumption ensures that there is no
alternate configuration space region to explore. Also,
as with the previous constraint (5), we handle spurious
motion planning failures by removing the constraint (6)
when we deepen the step and sampling horizons, so
as to reattempt motion planning with greater search
depth.

The new collision constraint (6) strengthens the
connection between the task and motion layers in
our framework. Through each of the various motion
feasibility constraints—plan enumeration (3), failure
generalization (5), and collision generalization (6)—
we incorporate progressively more precise geometric
information into the task planner. The flexibility of
the incremental constraint framework enables such
additional information to guide the task planner. We
see in Fig. 3 that only a change to the specific
constraint m is required to provide the task planner
with further geometric guidance. We show in Sec. 8.3
that more precise geometric information improves
planning scalability.

8 Experimental Results

We validate IDTMP on a physical robot and test
scalability for simulated scenes. The physical validation
demonstrates that IDTMP works for real planning
problems with multiple types of actions. We compare
the scalability of IDTMP against the planner in He
et al. (2015), which is the closest to our method
in terms of philosophy and performance guarantees.
Both methods similarly couple the task and motion
planner, and both offer similar guarantees on
probabilistic completeness. The simulated scalability
tests demonstrate that IDTMP improves performance
compared to the benchmark planner He et al. (2015).

Our tests use simulated and physical Rethink
Robotics Baxter manipulators. We use Z3 4.3.2
(De Moura and Bjørner 2008) as our backend SMT
solver, the RRT-Connect (Kuffner and LaValle 2000)
implementation in OMPL (Şucan et al. 2012) for
motion planning, FCL (Pan et al. 2012) for collision
checking, and POV-Ray (Enzmannn et al. 1994) for
visualization. The benchmarks were conducted on an
Intel R© i7-4790 under Linux 3.16.0-4. We randomly
generate the benchmark scenes, resulting in small
variance in the results. The physical validation uses the
camera registration and servoing method of Dantam
et al. (2014) to perform grasping and employs the Ach
library (Dantam et al. 2015) and Linux kernel module
(Dantam et al. 2016a) for real-time communication.
Though the test domains use axis-aligned grasps, this
is not a limitation of our method, and arbitrary grasps,

e.g., based on precomputed grasp quality metrics, are
possible.

The task domain for the experiments is based
on the single-parameter transfer operator discussed
in Sec. 6.1. We create the set of object placement
locations using a fixed-resolution grid, though other
methods are also possible, e.g., randomly-sampled
locations or an explicit, user-provided set of locations.
The physical experiments also include operators for
stacking and pushing.

8.1 Physical Validation

We validate IDTMP on a physical manipulator for the
scenario in Fig. 1, where the robot must stack the
blocks on the tray and then push the tray. This domain
demonstrates the object coupling of the scene graph
(see Def. 4) during tray pushing, where for each object
(i.e., block) frame `, its parent %` (i.e. other block or
tray) is the other object on which it rests. Fig. 6 shows
the robot executing the plan, demonstrating that our
overall system works for physical scenarios.

8.2 Scalability Tests

We benchmark the scalability of IDTMP against the
method of He et al. (2015). For each planner, we
measure the time spent in the task planning layer
and the time spent in the motion planning layer.
For IDTMP, task planning time corresponds to the
total time used by the constraint solver, and motion
planning time is the cumulative time spent attempting
to refine all task operators into motion plans. The
total planning time also includes the feedback between
the two layers; however, the time for the feedback
component was negligible in all cases.

We first test scalability over increasing number of
objects (see Fig. 7). While task planning in IDTMP
does scale exponentially with the number of objects,
it still performs task planning for tens of objects
in around one second. In comparison, He et al.
(2015) scales worse than IDTMP for task planning
with increasing object count. Above five objects, task
planning using He et al. (2015) took several minutes.
Motion planning performance for He et al. (2015)
and IDTMP are similar as both use a sampling-based
motion planner in the same way to refine candidate
task plans. We do see that motion planning times
increase with additional objects due to the need to
check for collisions between the robot and the added
objects. The variance in motion planning times occurs
if a motion planning call exceeds the timeout, which
is more likely with more objects, and must then be
reattempted.
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start stack(b,c) push(t,l(0,1)) goal

Figure 6. Physical validation of IDTMP. The robot iteratively plans over actions for transferring blocks, stacking blocks, and
pushing the tray and generating collision-free paths for the selected actions. The resulting task-motion plan is successfully
executed on the physical robot.
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Figure 7. Scenario testing scalability as the object count, and correspondingly the discrete state space size, increase. (a) The
robot must move the marked object (blue) to the center of the board (green arrow), removing the object that was there. For
each object count, the initial object positions are randomly assigned in a uniform distribution over all locations. (b) compares
the task-planning performance of IDTMP and He et al. (2015) over five trials for each object count. (c) motion-planning
times are comparable between both methods. Planning times are cumulative over all iterations, and task times are on a
logarithmic scale. Data for He et al. (2015) is only shown up to n=5 due to long task planning times; at n=6, He et al.
(2015) took an average of 275 seconds to for task planning.

Next, we test scalability for increasing length of the
task plan that must be computed (see Fig. 8). Task
planning time scales exponentially with increasing plan
length, taking about 10 seconds to compute a plan
that is 10 task actions long In comparison, He et al.
(2015) scales worse than IDTMP for task planning in
the plan length test. Motion planning time for He et al.
(2015) is similar to IDTMP, just as in the object count
test. In this case, motion planning scales approximately
linearly with increasing plan length. Each additional
step in the plan requires an additional motion planning
problem of approximately equal difficulty to prior
steps, leading to the observed linear scaling.

8.3 Benchmark of IDTMP Extensions

Finally, we test the benefit of our completneness-
preserving extensions to IDTMP by rerunning the
object count test (see Fig. 7a) but with the grasping
pose constrained to one side of the object, e.g., when
picking from a shelf, resulting in many infeasible
operations due to blocking objects (see Fig. 9a). Task
planning still scales exponentially, though the rate
of growth is now improved. However, the informed
constraints improve scalability on the motion planning
side by reducing the necessary number of motion
planning attempts.

Significantly, the collision constraints (6) improve
scalability to sub-exponential in the number of
blocking objects. TMP is a computationally difficult
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Figure 8. Scenario testing scalability as necessary plan length increases. (a) The robot must move every block to a different
goal location. (b) compares task-planning performance of IDTMP and He et al. (2015) over five trials for each length. (c)
motion planning times are comparable between both methods. Planning times are cumulative over all iterations, and task
times are on a logarithmic scale. Data for He et al. (2015) is only shown up to n=7 due to long task-planning times.
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Figure 9. Comparison of IDTMP extensions. We test planner scalability for the plan enumeration constraint (3), the failure
generalization constraint (5), and the collision generalization constraint (6). (a) the object count test (see Fig. 7) was rerun
with grasp poses constrained to one side of the object, e.g. when picking from a shelf, which causes infeasible actions due to
objects blocking the grasp. (b) Task planning time is not significantly changed by the extensions. (c) motion planning time is
improved by the extended constraints. From this semi-log plot, the collision constraint (6) improves scalability of motion
planning to sub-exponential in the number of blocking objects. Plan constraint (3) times are only shown up to n = 2 and
state constraint (5) times to n = 3 due to long planning times at larger n.

problem. Quickly pruning infeasible plans is crucial
to achieving scalable performance, and the motion
planner is able to provide us with strong, though not
exact, guidance on plan feasibility. The gains from
constraint (6) highlight the incremental constraint
framework’s flexibility in incorporating additional
information from the motion planner.

9 Conclusion

We have discussed the challenges and requirements
of Task and Motion Planning (TMP), presented
a new TMP framework based on incremental
constraint satisfaction, and demonstrated scalable

planner performance. The TMP requirements and
abstractions we present in Sec. 2 and Sec. 4
underlie our planning framework. Moreover, these
abstractions model the key features of task-motion
domains and may aid the development and analysis
of other task-motion planners. Our TMP algorithm
is probabilistically complete, handles domains with
various actions, and models kinematic coupling
between objects.

While the simple form of our algorithm duplicates
work at the motion planning level in order to achieve
probabilistic completeness over changing configuration
spaces, the flexibility of our incremental constraint
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framework enables increasingly-precise information
from the motion planner to guide task planning,
improving overall scalability. By incorporating collision
information into the incremental constraints, we
rapidly prune infeasible plans and achieve sub-
exponential scalability of the planner.

We validate IDTMP on a physical Baxter manipu-
lator and show that IDTMP provides improved scal-
ability to object count and plan length compared to
the manipulation framework of He et al. (2015), a
previously developed, similar task and motion planner.

Finally, scaling TMP to handle larger domains
remains a challenge. Additional improvements to
cache and reuse plans and search trees may help
in some cases. Our incremental constraint framework
is general to various types of geometric information,
and additional constraints based on related methods
(Hauser 2013b; Lagriffoul et al. 2012; Lagriffoul
and Andres 2016; Lozano-Pérez and Kaelbling 2014;
Srivastava et al. 2014) could further aid in pruning
infeasible plans and improving overall scalability.
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manipulation planning algorithms. In: WAFR. AK

Peters, Ltd., pp. 109–125.

Barrett C, Conway CL, Deters M, Hadarean L, Jovanović
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Kaelbling LP and Lozano-Pérez T (2011) Hierarchical task

and motion planning in the now. In: Int. Conf. on

Robotics and Automation (ICRA). IEEE, pp. 1470–

1477.
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